1
|
Lu A, Duan P, Xie J, Gao H, Chen M, Gong Y, Li J, Xu H. Recent progress and research trend of anti-cataract pharmacology therapy: A bibliometric analysis and literature review. Eur J Pharmacol 2022; 934:175299. [PMID: 36181780 DOI: 10.1016/j.ejphar.2022.175299] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022]
Abstract
Cataract is the leading cause of blindness worldwide. Cataract phacoemulsification combined with intraocular lens implantation causes great burden to global healthcare, especially for low- and middle-income countries. Such burden would be significantly relieved if cataracts can effectively be treated or delayed by non-surgical means. Excitingly, novel drugs have been developed to treat cataracts in recent decades. For example, oxysterols are found to be able to innovatively reverse lens clouding, novel nanotechnology-loaded drugs improve anti-cataract pharmacological effect, and traditional Chinese medicine demonstrates promising therapeutic effects against cataracts. In the present review, we performed bibliometric analysis to provide an overview perspective regarding the research status, hot topics, and academic trends in the field of anti-cataract pharmacology therapy. We further reviewed the curative effects and molecular mechanisms of anti-cataract drugs such as lanosterol, metformin, resveratrol and curcumin, and prospected the possibility of their clinical application in future.
Collapse
Affiliation(s)
- Ao Lu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China; The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Ping Duan
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Jing Xie
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Hui Gao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Mengmeng Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Yu Gong
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Jiawen Li
- Department of Ophthalmology, University-Town Hospital of Chongqing Medical University, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China.
| |
Collapse
|
2
|
Eissa LD, Ghobashy WA, El-Azab MF. Inhibition of thioredoxin-interacting protein and inflammasome assembly using verapamil mitigates diabetic retinopathy and pancreatic injury. Eur J Pharmacol 2021; 901:174061. [PMID: 33766618 DOI: 10.1016/j.ejphar.2021.174061] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/07/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022]
Abstract
It has been previously demonstrated by our group that genetic inhibition of thioredoxin-interacting-protein (TXNIP) preserved retinal neuronal function in chemically-induced retinopathy. Moreover, elevated intracellular levels of TXNIP and calcium ions play important roles in hyperglycemia-induced oxidative stress and inflammation. Current study aimed to appraise the potential therapeutic benefits of pharmacological inhibition of TXNIP using verapamil in diabetic retinopathy. Diabetic retinopathy was assessed in type-1 diabetes rat model induced by a single intravenous injection of streptozotocin (45 mg/kg), with or without daily treatment with verapamil (10 mg/kg, oral) for 4 months. Verapamil treatment commenced 48 h post-streptozotocin insult and continued for 16 weeks. Untreated diabetic rats exhibited higher expression of toll-like-receptor-4 (TLR4), TXNIP, nucleotide-binding domain-like receptor protein-3 (NLRP3), caspase-1, cytochrome-c, and ssDNA as assessed immunohistochemically in both retinal and pancreatic tissues 16 weeks post-diabetes induction. This was associated with a reduced thioredoxin reductase (Trx-R) activity, increased release of TNF-α and IL-1β into vitreous fluid along with retinal ganglion cell (RGC) loss, pancreatic islets shrinkage, and enhanced CD34 expression. The treatment with verapamil enhanced Trx-R activity, significantly inhibited TLR4 mediated NLRP3-inflammasome assembly with subsequent diminishing of inflammatory markers (TNF-α and IL-1β) release into the vitreous, suppression of pathological angiogenesis, and preservation of RGC count and pancreatic islets diameter. Current study showed that using the calcium channel blocker, verapamil, interferes with the pathogenesis of diabetic retinopathy and pancreatic islets damage at multiple levels mainly through the inhibition of TLR4, TXNIP and NLRP3-inflammasome, suggesting its promising role as an anti-diabetic and a neuroprotective agent.
Collapse
Affiliation(s)
| | - Waleed A Ghobashy
- Department of Ophthalmology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mona F El-Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
3
|
Rubini A, Catena V, Del Monte D, Bosco G. The effects of nifedipine on respiratory mechanics investigated by theend-inflation occlusion method in the rat. J Enzyme Inhib Med Chem 2016; 32:1-4. [PMID: 27766901 PMCID: PMC6009865 DOI: 10.1080/14756366.2016.1225045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
CONTEXT Calcium channel blockers may theoretically exhibit relaxing effects not only on vascular smooth muscle but also on airway smooth muscle. OBJECTIVE To investigate possible effects of nifedipine on respiratory mechanics in the rat. METHODS Respiratory system mechanical parameters were measured by the end-inflation occlusion method in the rat in vivo before and after the intraperitoneal administration of nifedipine. RESULTS We found that nifedipine affects respiratory mechanics, inducing a reduction of airway resistance and of respiratory system elastance, probably because of a relaxing action on airway and parenchimal smooth muscle cells. CONCLUSION Should these results be further confirmed by human investigations, a possible role of nifedipine in pharmacological respiratory system's diseases treatment may be suggested.
Collapse
Affiliation(s)
- Alessandro Rubini
- a Department of Biological Sciences, Section of Physiology , University of Padova , Padova , Italy
| | - Vincenzo Catena
- b Department of Emergency and Intensive Care , ULSS 2 , Feltre , Italy
| | - Daniele Del Monte
- b Department of Emergency and Intensive Care , ULSS 2 , Feltre , Italy
| | - Gerardo Bosco
- a Department of Biological Sciences, Section of Physiology , University of Padova , Padova , Italy
| |
Collapse
|
4
|
Wang Q, Ju X, Chen Y, Dong X, Luo S, Liu H, Zhang D. Effects of L-carnitine against H2O2-induced oxidative stress in grass carp ovary cells (Ctenopharyngodon idellus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:845-857. [PMID: 26701137 DOI: 10.1007/s10695-015-0179-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
This study was designed in vitro to investigate the effects of L-carnitine against H2O2-induced oxidative stress in a grass carp (Ctenopharyngodon idellus) ovary cell line (GCO). GCO cells were pre-treated with different concentrations of L-carnitine, followed by incubation with 2.5 mM H2O2 for 1 h to induce oxidative damage. The results indicated that adding L-carnitine at concentrations of 0.01-1 mM into the medium for 12 h significantly increased cell viability. Pre-treatment with L-carnitine at concentrations of 0.1-5 mM for 12 h significantly inhibited 2.5 mM H2O2-induced cell viability loss. The significant decreases in the level of reactive oxygen species and cell apoptosis were observed in 0.5 mM L-carnitine group compared to the H2O2 group. Malondialdehyde values of all of the L-carnitine groups were significantly lower than those of the H2O2 group, while total glutathione levels of all of the L-carnitine groups were significantly higher than of the H2O2 group. The activity of antioxidant enzymes, such as total superoxide dismutase (0.1 and 0.5 mM L-carnitine), catalase (0.5 mM L-carnitine) and γ-glutamyl cysteine synthetase (0.5 and 1 mM L-carnitine), was significantly increased. In addition, pre-treatment of L-carnitine in GCO cells exposed to 2.5 mM H2O2 significantly increased the mRNA expression of copper, zinc superoxide dismutase, catalase (0.5 mM L-carnitine), glutamate cysteine ligase catalytic subunit (0.1-1 mM) and glutathione peroxidase (0.1 mM L-carnitine). In conclusion, L-carnitine promotes GCO cell growth and improves antioxidant function, it plays a protective role against oxidative stress induced by H2O2 in GCO cells, and the appropriate supplemental amount of L-carnitine is 0.1-1 mM.
Collapse
Affiliation(s)
- Qiuju Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xue Ju
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yuke Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiaoqing Dong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Sha Luo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hongjian Liu
- Fishery Technical Extension Station of Jilin Province, Changchun, 130012, China
| | - Dongming Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|