1
|
Chen X, Xie K, Zhang X, Gu X, Wu Y, Su S. Bradykinin receptor participates in doxorubicin-induced cardiotoxicity by modulating iNOS signal pathway. J Biochem Mol Toxicol 2023; 37:e23393. [PMID: 37409694 DOI: 10.1002/jbt.23393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/10/2023] [Accepted: 05/26/2023] [Indexed: 07/07/2023]
Abstract
Doxorubicin (DOX), an effective and broad-spectrum anthracycline antibiotic, is widely used in the treatment of numerous malignancies. However, dose-dependent cardiotoxicity limits the clinical application of DOX, and the molecular mechanisms are still unknown. In this study, we used the BK receptor B1/B2 double-knockout (B1B2 -/- ) mice to observe the role of BK receptor in cardiotoxicity induced by DOX and the underlying mechanisms. DOX induced myocardial injury with increased serum levels of AST, CK, and LDH, upregulated tissue expression of bradykinin B1/B2 receptor, FABP4 and iNOS, and downregulated expression of eNOS. However, these altered releases of myocardial enzyme and the expression level of iNOS were significantly prevented in the B1B2-/- mice. We concluded that the activation of both B1 and B2 receptors of BK were involved in the DOX-induced acute myocardial injury, possibly mediated through iNOS signaling pathways.
Collapse
Affiliation(s)
- Xueyan Chen
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
- Department of Pharmacology, The Key Laboratory of Pharmacology and Toxicology for New Drugs, Hebei Medical University, Shijiazhuang, P. R. China
| | - Kerang Xie
- Department of Pharmacy, Shijiazhuang people's hospital, Shijiazhuang, P. R. China
| | - Xiaofei Zhang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
- Department of Pharmacology, The Key Laboratory of Pharmacology and Toxicology for New Drugs, Hebei Medical University, Shijiazhuang, P. R. China
| | - Xinshun Gu
- Department of Cardiology, The Second Hospital of Hebei Medical University Shijiazhuang, Shijiazhuang, China
| | - Yi Wu
- State Key Laboratory of Radiation Medicine and Prevention, Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital, Soochow University, Suzhou, China
| | - Suwen Su
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
- Department of Pharmacology, The Key Laboratory of Pharmacology and Toxicology for New Drugs, Hebei Medical University, Shijiazhuang, P. R. China
| |
Collapse
|
2
|
Abstract
Cardiovascular diseases (CVD) constitute the major cause of death worldwide and show a higher prevalence in the adult population. The human umbilical cord consistsof two arteries and one vein, both composed of three tunics. The tunica intima, lined with endothelial cells, regulates vascular tone through the production/release of vasoregulatory substances. These substances can be vasoactive factors released by endothelial cells (ECs) that cause vasodilation (NO, PGI2, EDHF, and Bradykinin) or vasoconstriction (ET1, TXA2, and Ang II) depending on the cell type (ECs or SMC) that reacts to the stimulus. Vascular studies using ECs are important for the analysis of cardiovascular diseases since endothelial dysfunction is an important CVD risk factor. In this paper, we will address the morphological characteristics of the human umbilical cord and its component vessels. the constitution of the vascular endothelium, and the evolution of human umbilical cord-derived endothelial cells when isolated. Moreover, the role played by the endothelium in the vasomotor tone regulation, and how it may be associated with the existence of CVD, were discussed.
Collapse
|
3
|
Adrar NS, Madani K, Adrar S. Polyphenol-bradykinin interaction: Role in pain sensation. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Hu Y, Chen M, Wang M, Li X. Flow-mediated vasodilation through mechanosensitive G protein-coupled receptors in endothelial cells. Trends Cardiovasc Med 2021; 32:61-70. [PMID: 33406458 DOI: 10.1016/j.tcm.2020.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022]
Abstract
Currently, endothelium-dependent vasodilatation involves three main mechanisms: production of nitric oxide (NO) by endothelial nitric oxide synthase (eNOS), synthesis of prostanoids by cyclooxygenase, and/or opening of calcium-sensitive potassium channels. Researchers have proposed multiple mechanosensors that may be involved in flow-mediated vasodilation (FMD), including G protein-coupled receptors (GPCRs), ion channels, and intercellular junction proteins, among others. However, GPCRs are considered the major mechanosensors that play a pivotal role in shear stress signal transduction. Among mechanosensitive GPCRs, G protein-coupled receptor 68, histamine H1 receptors, sphingosine-1-phosphate receptor 1, and bradykinin B2 receptors have been identified as endothelial sensors of flow shear stress regulating flow-mediated vasodilation. Thus, this review aims to expound on the mechanism whereby flow shear stress promotes vasodilation through the proposed mechanosensitive GPCRs in ECs.
Collapse
Affiliation(s)
- Yong Hu
- Department of Hand and Foot Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, No.247, Beiyuan Street, Jinan, Shandong Province, 250031, China.
| | - Miao Chen
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, No.71, Xinmin Street, Changchun, Jilin Province, 130021, China.
| | - Meili Wang
- Department of Obstetrics, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, NO.238, Jingshi East Road, Jinan, Shandong, 250012, China.
| | - Xiucun Li
- Department of Hand and Foot Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, No.247, Beiyuan Street, Jinan, Shandong Province, 250031, China; Department of Anatomy and Histoembryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, NO.44, Wenhua West Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
5
|
Rassias G, Leonardi S, Rigopoulou D, Vachlioti E, Afratis K, Piperigkou Z, Koutsakis C, Karamanos NK, Gavras H, Papaioannou D. Potent antiproliferative activity of bradykinin B2 receptor selective agonist FR-190997 and analogue structures thereof: A paradox resolved? Eur J Med Chem 2020; 210:112948. [PMID: 33139111 DOI: 10.1016/j.ejmech.2020.112948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/24/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022]
Abstract
Βradykinin stimulation of B2 receptor is known to activate the oncogenic ERK pathway and overexpression of bradykinin receptors B1 and B2 has been reported to occur in glioma, colorectal and cervical cancers. B1R and B2R antagonists have been shown to reverse tumor proliferation and invasion. Paradoxically, B1R and B2R agonism has also been reported to elicit antiproliferative benefits. In order to complement the data accumulated to date with the natural substrate bradykinin and peptidic B2R antagonists, we decided to examine for the first time the response elicited by B2R stimulation in breast cancer lines with a non-peptidic small molecule B2R agonist. We synthesized and assessed the highly selective and potent B2R partial agonist FR-190997 in MCF-7 and MDA-MBA-231 breast cancer lines and found it possessed significant antiproliferative activity (IC50 2.14 and 0.08 μΜ, respectively). The modular nature of FR-190997 allowed us to conduct a focused SAR study and discover compound 10 which exhibits subnanomolar antiproliferative activity (IC 50 0.06 nΜ) in the TNBC MDA-MBA-231 cell line. This performance surpasses, in most cases by several orders of magnitude, those of established anticancer agents and FDA-approved breast cancer drugs. In line with the established literature we suggest that this remarkable activity precipitates from a dual mode of action involving agonist-induced receptor internalization/degradation combined with sequestration of functional intracellular B2 receptors and inhibition of the associated endosomal signaling. The latter mode may be realized by appropriate ligands regardless of B2R agonist/antagonist designation which only relates to membrane residing GCPRs. Under this prism the controversy over the antiproliferative effects of B2 agonists and antagonists is potentially neutralized.
Collapse
Affiliation(s)
- Gerasimos Rassias
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, 26504, Patras, Greece.
| | - Sofia Leonardi
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, 26504, Patras, Greece
| | - Dionisia Rigopoulou
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, 26504, Patras, Greece
| | - Eleanna Vachlioti
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, 26504, Patras, Greece
| | - Konstantinos Afratis
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, 26504, Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504, Patras, Greece; Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Christos Koutsakis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504, Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504, Patras, Greece; Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Haralambos Gavras
- Hypertension and Atherosclerosis Section, Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Dionissios Papaioannou
- Laboratory of Synthetic Organic Chemistry, Department of Chemistry, University of Patras, 26504, Patras, Greece.
| |
Collapse
|
6
|
Lyu M, Zhou J, Chen H, Bai H, Song J, Liu T, Cheng Y, Ying B. The genetic variants in calcium signaling related genes influence anti-tuberculosis drug induced liver injury: A prospective study. Medicine (Baltimore) 2019; 98:e17821. [PMID: 31689868 PMCID: PMC6946452 DOI: 10.1097/md.0000000000017821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although many genetic variants related to anti-tuberculosis drug induced liver injury (ATDILI) have been identified, the prediction and personalized treatment of ATDILI have failed to achieve, indicating there remains an area for further exploration. This study aimed to explore the influence of single nucleotide polymorphisms (SNPs) in Bradykinin receptor B2 (BDKRB2), Teneurin transmembrane protein 2 (TENM2), transforming growth factor beta 2 (TGFB2), and solute carrier family 2 member 13 (SLC2A13) on the risk of ATDILI.The subjects comprised 746 Chinese tuberculosis (TB) patients. Custom-by-design 2x48-Plex SNPscanTM kit was employed to genotype 28 selected SNPs. The associations of SNPs with ATDILI risk and clinical phenotypes were analyzed according to the distributions of allelic and genotypic frequencies and different genetic models. The odds ratio (OR) with corresponding 95% confidence interval (CI) was calculated.Among subjects with successfully genotyped, 107 participants suffered from ATDILI during follow-up. In BDKRB2, patients with rs79280755 G allele or rs117806152 C allele were more vulnerable to ATDILI (PBonferronicorrection = .002 and .03, respectively). Rs79280755 increased the risk of ATDILI significantly whether in additive (OR = 3.218, 95% CI: 1.686-6.139, PBonferroni correction = .003) or dominant model (PBonferroni correction = .003), as well as rs117806152 (Additive model: PBonferroni correction = .05; dominant model: PBonferroni correction = .03). For TENM2, rs80003210 G allele contributed to the decreased risk of ATDILI (PBonferroni correction = .02), while rs2617972 A allele conferred susceptibility to ATDILI (PBonferroni correction = .01). Regarding rs2617972, significant findings were also observed in both additive (OR = 3.203, 95% CI: 1.487-6.896, PBonferroni correction = .02) and dominant model (PBonferroni correction = .02). Moreover, rs79280755 and rs117806152 in BDKRB2 significantly affected some laboratory indicators. However, no meaningful SNPs were observed in TGFB2 and SLC2A13.Our study revealed that both BDKRB2 and TENM2 genetic polymorphisms were interrogated in relation to ATDILI susceptibility and some laboratory indicators in the Western Chinese Han population, shedding a new light on exploring novel biomarkers and targets for ATDILI.
Collapse
Affiliation(s)
- Mengyuan Lyu
- Department of Laboratory Medicine, West China Hospital
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jian Zhou
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Hao Chen
- Department of Laboratory Medicine, West China Hospital
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Hao Bai
- Department of Laboratory Medicine, West China Hospital
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jiajia Song
- Department of Laboratory Medicine, West China Hospital
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Tangyuheng Liu
- Department of Laboratory Medicine, West China Hospital
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yuhui Cheng
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Protein kinase Cε regulates nuclear translocation of extracellular signal-regulated kinase, which contributes to bradykinin-induced cyclooxygenase-2 expression. Sci Rep 2018; 8:8535. [PMID: 29867151 PMCID: PMC5986758 DOI: 10.1038/s41598-018-26473-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/04/2018] [Indexed: 01/18/2023] Open
Abstract
The proinflammatory mediator bradykinin stimulated cyclooxygenase-2 (COX-2) expression and subsequently prostaglandin E2 synthesis in dermal fibroblasts. The involvement of B2 receptors and Gαq in the role of bradykinin was suggested by using pharmacological inhibitors. The PKC activator PMA stimulated COX-2 mRNA expression. Bradykinin failed to induce COX-2 mRNA expression in the presence of PKC inhibitors, whereas the effect of bradykinin was observed in the absence of extracellular Ca2+. Bradykinin-induced COX-2 mRNA expression was inhibited in cells transfected with PKCε siRNA. These observations suggest that the novel PKCε is concerned with bradykinin-induced COX-2 expression. Bradykinin-induced PKCε phosphorylation and COX-2 mRNA expression were inhibited by an inhibitor of 3-phosphoinositide-dependent protein kinase-1 (PDK-1), and bradykinin-induced PDK-1 phosphorylation was inhibited by phospholipase D (PLD) inhibitors, suggesting that PLD/PDK-1 pathway contributes to bradykinin-induced PKCε activation. Pharmacological and knockdown studies suggest that the extracellular signal-regulated kinase 1 (ERK1) MAPK signaling is involved in bradykinin-induced COX-2 expression. Bradykinin-induced ERK phosphorylation was attenuated in the cells pretreated with PKC inhibitors or transfected with PKCε siRNA. We observed the interaction between PKCε and ERK by co-immunoprecipitation experiments. These observations suggest that PKCε activation contributes to the regulation of ERK1 activation. Bradykinin stimulated the accumulation of phosphorylated ERK in the nuclear fraction, that was inhibited in the cells treated with PKC inhibitors or transfected with PKCε siRNA. Consequently, we concluded that bradykinin activates PKCε via the PLD/PDK-1 pathway, which subsequently induces activation and translocation of ERK1 into the nucleus, and contributes to COX-2 expression for prostaglandin E2 synthesis in dermal fibroblasts.
Collapse
|
8
|
Yoshino O, Yamada-Nomoto K, Kobayashi M, Andoh T, Hongo M, Ono Y, Hasegawa-Idemitsu A, Sakai A, Osuga Y, Saito S. Bradykinin system is involved in endometriosis-related pain through endothelin-1 production. Eur J Pain 2017; 22:501-510. [PMID: 29034546 DOI: 10.1002/ejp.1133] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Endometriosis is a gynaecological disease exhibiting severe pelvic pain, but the mechanism of pain production remains unknown. Bradykinin (BK) is known as an inflammatory mediator, and shows elevated levels in inflammatory diseases such as rheumatoid arthritis. In the present study, we evaluated whether BK is involved in endometriosis-related pain. METHODS Endometriotic lesions were used for immunohistochemistry. Primary cultures of endometriotic stromal cells (ESC) were stimulated with IL-1β and/or BK. Quantitative RT-PCR was used to evaluate the mRNA expressions of BK receptors (BKR) and endothelin-1 in ESC. The concentration of endothelin-1 in cystic fluid of endometrioma or non-endometrioma was measured with ELISA. The conditioned medium of ESC stimulated with IL-1β and/or BK was injected intraplantarly in mice, and evaluated whether pain-related licking behaviour was elicited. RESULTS The expressions of BK and BKR in endometriotic lesions were observed by immunohistochemistry. In vitro experiments showed that IL-1β induced BKR-B1 and B2 on ESC. Activation of these receptors by BK significantly induced endothelin-1 expression in ESC, which was negated completely by HOE-140, a BKR-B2 antagonist. The cystic fluid of endometrioma contained higher amount of endothelin-1 compared to non-endometrioma. Intraplantar injection of the conditioned medium of ESC treated with IL-1β and BK significantly induced licking behaviour, which was suppressed with BQ-123, an endothelin type-A receptor antagonist. CONCLUSIONS The present study demonstrated the presence and the function of the BK axis in endometriosis, and established a potential new therapy target for endometriosis-related pain. SIGNIFICANCE The present study demonstrated (1) the presence and the function of the BK system in endometriosis, (2) activation of BKR induced endothelin-1 in endometriotic lesion and (3) blocking endothelin-1 was effective to decrease pain.
Collapse
Affiliation(s)
- O Yoshino
- Department of Obstetrics and Gynecology, University of Toyama, Japan
| | - K Yamada-Nomoto
- Department of Obstetrics and Gynecology, University of Toyama, Japan
| | - M Kobayashi
- Department of Obstetrics and Gynecology, University of Toyama, Japan
| | - T Andoh
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - M Hongo
- Department of Obstetrics and Gynecology, University of Toyama, Japan
| | - Y Ono
- Department of Obstetrics and Gynecology, University of Toyama, Japan
| | | | - A Sakai
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Y Osuga
- Department of Obstetrics and Gynecology, University of Tokyo, Japan
| | - S Saito
- Department of Obstetrics and Gynecology, University of Toyama, Japan
| |
Collapse
|
9
|
Cerrato BD, Carretero OA, Janic B, Grecco HE, Gironacci MM. Heteromerization Between the Bradykinin B2 Receptor and the Angiotensin-(1-7) Mas Receptor: Functional Consequences. Hypertension 2016; 68:1039-48. [PMID: 27550920 DOI: 10.1161/hypertensionaha.116.07874] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/26/2016] [Indexed: 12/20/2022]
Abstract
Bradykinin B2 receptor (B2R) and angiotensin-(1-7) Mas receptor (MasR)-mediated effects are physiologically interconnected. The molecular basis for such cross talk is unknown. It is hypothesized that the cross talk occurs at the receptor level. We investigated B2R-MasR heteromerization and the functional consequences of such interaction. B2R fused to the cyan fluorescent protein and MasR fused to the yellow fluorescent protein were transiently coexpressed in human embryonic kidney293T cells. Fluorescence resonance energy transfer analysis showed that B2R and MasR formed a constitutive heteromer, which was not modified by their agonists. B2R or MasR antagonists decreased fluorescence resonance energy transfer efficiency, suggesting that the antagonist promoted heteromer dissociation. B2R-MasR heteromerization induced an 8-fold increase in the MasR ligand-binding affinity. On agonist stimulation, the heteromer was internalized into early endosomes with a slower sequestration rate from the plasma membrane, compared with single receptors. B2R-MasR heteromerization induced a greater increase in arachidonic acid release and extracellular signal-regulated kinase phosphorylation after angiotensin-(1-7) stimulation, and this effect was blocked by the B2R antagonist. Concerning serine/threonine kinase Akt activity, a significant bradykinin-promoted activation was detected in B2R-MasR but not in B2R-expressing cells. Angiotensin-(1-7) and bradykinin elicited antiproliferative effects only in cells expressing B2R-MasR heteromers, but not in cells expressing each receptor alone. Proximity ligation assay confirmed B2R-MasR interaction in human glomerular endothelial cells supporting the interaction between both receptors in vivo. Our findings provide an explanation for the cross talk between bradykinin B2R and angiotensin-(1-7) MasR-mediated effects. B2R-MasR heteromerization induces functional changes in the receptor that may lead to long-lasting protective properties.
Collapse
Affiliation(s)
- Bruno D Cerrato
- From the Departamento de Química Biológica, IQUIFIB-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina (B.D.C., M.M.G.); Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI (O.A.C., B.J.); and Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA-CONICET, Argentina (H.E.G)
| | - Oscar A Carretero
- From the Departamento de Química Biológica, IQUIFIB-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina (B.D.C., M.M.G.); Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI (O.A.C., B.J.); and Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA-CONICET, Argentina (H.E.G)
| | - Brana Janic
- From the Departamento de Química Biológica, IQUIFIB-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina (B.D.C., M.M.G.); Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI (O.A.C., B.J.); and Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA-CONICET, Argentina (H.E.G)
| | - Hernán E Grecco
- From the Departamento de Química Biológica, IQUIFIB-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina (B.D.C., M.M.G.); Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI (O.A.C., B.J.); and Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA-CONICET, Argentina (H.E.G)
| | - Mariela M Gironacci
- From the Departamento de Química Biológica, IQUIFIB-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina (B.D.C., M.M.G.); Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI (O.A.C., B.J.); and Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA-CONICET, Argentina (H.E.G).
| |
Collapse
|
10
|
Wierzbicka JM, Żmijewski MA, Antoniewicz J, Sobjanek M, Slominski AT. Differentiation of Keratinocytes Modulates Skin HPA Analog. J Cell Physiol 2016; 232:154-66. [PMID: 27061711 DOI: 10.1002/jcp.25400] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 04/04/2016] [Indexed: 12/16/2022]
Abstract
It is well established, that epidermal keratinocytes express functional equivalent of hypothalamus-pituitary-adrenal axis (HPA) in order to respond to changing environment and maintain internal homeostasis. We are presenting data indicating that differentiation of primary neonatal human keratinocytes (HPEKp), induced by prolonged incubation or calcium is accompanied by significant changes in the expression of the elements of skin analog of HPA (sHPA). Expression of CRF, UCN1-3, POMC, ACTH, CRFR1, CRFR2, MC1R, MC2R, and GR (coded by NR3C1 gene) were observed on gene/protein levels along differentiation of keratinocytes in culture with similar pattern seen by immunohistochemistry on full thickness skin biopsies. Expression of CRF was more pronounced in less differentiated keratinocytes, which corresponded to the detection of CRF immunoreactivity preferentially in the stratum basale. POMC expression was enhanced in more differentiated keratinocytes, which corresponded to detection of ACTH immunoreactivity, predominantly in the stratum spinosum and stratum granulosum. Expression of urocortins was also affected by induction of HPEKp differentiation. Immunohistochemical studies showed high prevalence of CRFR1 in well differentiated keratinocytes, while smaller keratinocytes showed predominantly CRFR2 immunoreactivity. MC2R mRNA levels were elevated from days 4 to 8 of in vitro incubation, while MC2R immunoreactivity was the highest in the upper layers of epidermis. Similar changes in mRNA/protein levels of sHPA elements were observed in HPEKp keratinocytes treated with calcium. Summarizing, preferential expression of CRF and POMC (ACTH) by populations of keratinocytes on different stage of differentiation resembles organization of central HPA axis suggesting their distinct role in physiology and pathology of the epidermis. J. Cell. Physiol. 232: 154-166, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | - Jakub Antoniewicz
- Department of Histology, Medical University of Gdańsk, Gdańsk, Poland
| | - Michal Sobjanek
- Department of Dermatology, Venereology and Allergology, Medical University of Gdańsk, Gdańsk, Poland
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama Birmingham, Birmingham, Alabama.,VA Medical Center, Birmingham, Alabama
| |
Collapse
|
11
|
Voronina L, Masson A, Kamrath M, Schubert F, Clemmer D, Baldauf C, Rizzo T. Conformations of Prolyl–Peptide Bonds in the Bradykinin 1–5 Fragment in Solution and in the Gas Phase. J Am Chem Soc 2016; 138:9224-33. [DOI: 10.1021/jacs.6b04550] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Liudmila Voronina
- Laboratoire
de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Antoine Masson
- Laboratoire
de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Michael Kamrath
- Laboratoire
de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Franziska Schubert
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, D-14195 Berlin, Germany
| | - David Clemmer
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Carsten Baldauf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, D-14195 Berlin, Germany
| | - Thomas Rizzo
- Laboratoire
de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Cattaneo F, Parisi M, Fioretti T, Sarnataro D, Esposito G, Ammendola R. Nuclear localization of Formyl-Peptide Receptor 2 in human cancer cells. Arch Biochem Biophys 2016; 603:10-9. [PMID: 27177968 DOI: 10.1016/j.abb.2016.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/06/2016] [Accepted: 05/06/2016] [Indexed: 12/20/2022]
Abstract
Current models of G protein-coupled receptors (GPCRs) signaling describe binding of external agonists to cell surface receptors which, in turn, trigger several biological responses. New paradigms indicate that GPCRs localize to and signal at the nucleus, thus regulating distinct signaling cascades. The formyl-peptide receptor FPR2 belongs to the GPCR super-family and is coupled to PTX-sensitive Gi proteins. We show by western blot analysis, immunofluorescence experiments and radioligand binding assays that FPR2 is expressed at nuclear level in CaLu-6 and AGS cells. Nuclear FPR2 is a functional receptor, since it participates in intra-nuclear signaling, as assessed by decreased G protein-FPR2 association and enhanced ERK2, c-Jun and c-Myc phosphorylation upon stimulation of intact nuclei with the FPR2 agonist, WKYMVm. We analyzed FPR2 sequence for the search of a nuclear localization sequence (NLS) and we found a stretch of basic aminoacids (227-KIHKK-231) in the third cytoplasmic loop of the receptor. We performed single (K230A) and multiple (H229A/K230A/K231A) mutagenesis of NLS. The constructs were individually overexpressed in HEK293 cells and immunofluorescence and western blot analysis showed that nuclear localization or translocation of FPR2 depends on the integrity of the H(229) and K(231) residues within the NLS.
Collapse
Affiliation(s)
- Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
| | - Melania Parisi
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
| | - Tiziana Fioretti
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy; IRCCS SDN, Via E. Gianturco 113, Naples 80143, Italy
| | - Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy; CEINGE-Biotecnologie Avanzate s.c.a.r.l., Via G. Salvatore 486, Naples 80145, Italy
| | - Gabriella Esposito
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy; CEINGE-Biotecnologie Avanzate s.c.a.r.l., Via G. Salvatore 486, Naples 80145, Italy
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy.
| |
Collapse
|
13
|
Zmijewski P, Grenda A, Leońska-Duniec A, Ahmetov I, Orysiak J, Cięszczyk P. Effect of BDKRB2 Gene -9/+9 Polymorphism on Training Improvements in Competitive Swimmers. J Strength Cond Res 2016; 30:665-71. [PMID: 26907838 DOI: 10.1519/jsc.0000000000001145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of the study was to investigate the possible association between the BDKRB2 gene and training-induced improvements in swimming performance in well-trained swimmers. One hundred Polish swimmers (52 men and 48 women, aged 18.1 ± 1.9 years), who competed in national and international competitions at middle- (200 m) and long-distance events (≥400 m), were included in the study. Athletes' genotype and allele distributions were analyzed in comparison to 230 unrelated sedentary subjects, who served as controls, with the χ test. All samples were genotyped for the BDKRB2 -9/+9 polymorphism by polymerase chain reaction. The effects of genotype on swimming performance improvements were analyzed with two-way (3 × 2; genotype × time) analysis of variance with metric age as a covariate. The training period of 1.9 ± 0.4 years had a significant (p < 0.01) effect on swimming performance, both in female and male athletes. Both in female and male athletes, the BDKRB2 gene -9/+9 polymorphism had no significant effect on swimming performance. An interaction effect of BDKRB2 gene -9/+9 polymorphism × time was found for swimming performance only in male athletes. Post hoc analyses showed that swimmers with the +9/+9 BDKRB2 genotype had a greater improvement in swimming performance than swimmers with the -9/+9 polymorphism (p ≤ 0.05). No interaction effects for gender × BDKRB2 gene -9/+9 polymorphism were found for either swimming performance or improvement in swimming performance. These results suggest that the response to long-term exercise training could be modulated by the BDKRB2 gene -9/+9 polymorphism in male athletes. In well-trained swimmers, BDKRB2 gene variation was not found to be an independent determinant of swimming performance.
Collapse
Affiliation(s)
- Piotr Zmijewski
- 1Department of Physiology, Institute of Sport, Warsaw, Poland;2Department of Physical Education and Sport, West Pomeranian Technological University, Szczecin, Poland;3Faculty of Physical Culture and Health Promotion, University of Szczecin, Szczecin, Poland;4Faculty of Tourism and Recreation, Academy of Physical Education and Sport, Gdansk, Poland;5Sport Technology Research Centre, Volga Region State Academy of Physical Culture, Sport and Tourism, Kazan, Russia; and6Department of Physiology of Nutrition, Institute of Sport, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
According to the standard model of G protein-coupled receptor (GPCR) signaling, GPCRs are localized to the cell membrane where they respond to extracellular signals. Stimulation of GPCRs leads to the activation of heterotrimeric G proteins and their intracellular signaling pathways. However, this model fails to accommodate GPCRs, G proteins, and their downstream effectors that are found on the nuclear membrane or in the nucleus. Evidence from isolated nuclei indicates the presence of GPCRs on the nuclear membrane that can activate similar G protein-dependent signaling pathways in the nucleus as at the cell surface. These pathways also include activation of cyclic adenosine monophosphate, calcium and nitric oxide synthase signaling in cardiomyocytes. In addition, a number of distinct heterotrimeric and monomeric G proteins have been found in the nucleus of various cell types. This review will focus on understanding the function of nuclear G proteins with a focus on cardiac signaling where applicable.
Collapse
|
15
|
Anti-inflammatory and antinociceptive effects of racemic goniothalamin, a styryl lactone. Life Sci 2015; 139:83-90. [PMID: 26297443 DOI: 10.1016/j.lfs.2015.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/18/2015] [Accepted: 08/11/2015] [Indexed: 02/06/2023]
Abstract
AIMS The present study aimed to further investigate the anti-inflammatory activity of goniothalamin (GTN), a styryl lactone, as well as its antinociceptive effects. MAIN METHODS The anti-inflammatory activity was evaluated in models of paw edema induced by different mediators in mice and carrageenan-induced peritonitis. Evaluation of the antinociceptive effect was performed through acetic acid-induced writhing test and formalin test. Activity of GTN on gene expression levels of interleukin-1beta (IL-1β), induced nitric oxidase synthase (iNOS) and cyclooxygenase-2 (COX-2) were evaluated in vitro in lipopolysaccharide (LPS)-stimulated macrophage (RAW 264.7), as well as gene expression and protein levels of tumor necrosis factor-alpha (TNF-α). KEY FINDINGS Pretreatment with GTN (300 mg/kg) significantly reduced paw edema induced by compound 48/80, prostaglandin E2, phospholipase A2 and bradykinin. GTN (10, 30 and 100mg/kg) inhibited leukocyte migration in the peritonitis model and gene expression levels of IL-1β, iNOS and TNF-α, as well as TNF-α protein levels, in LPS-stimulated macrophages, without affecting COX-2 gene expression levels. GTN inhibited nociception induced by acetic acid in the writhing model and in the formalin test, when both neurogenic and inflammatory phases were inhibited. SIGNIFICANCE For the first time the acute anti-inflammatory profile of GTN is characterized and its antinociceptive activity reported. The current study shows that GTN inhibits both vascular and cellular phases of inflammation, with bradykinin and PLA2 induced inflammation being the most affected by GTN. Its anti-inflammatory effects also involved the in vitro inhibition of gene expression of alarm cytokines and mediators as IL-1β, iNOS and TNF-α.
Collapse
|
16
|
Nascimento IC, Glaser T, Nery AA, Pillat MM, Pesquero JB, Ulrich H. Kinin-B1 and B2 receptor activity in proliferation and neural phenotype determination of mouse embryonic stem cells. Cytometry A 2015; 87:989-1000. [PMID: 26243460 DOI: 10.1002/cyto.a.22726] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The kinins bradykinin and des-arg(9) -bradykinin cleaved from kininogen precursors by kallikreins exert their biological actions by stimulating kinin-B2 and B1 receptors, respectively. In vitro models of neural differentiation such as P19 embryonal carcinoma cells and neural progenitor cells have suggested the involvement of B2 receptors in neural differentiation and phenotype determination; however, the involvement of B1 receptors in these processes has not been established. Here, we show that B1 and B2 receptors are differentially expressed in mouse embryonic E14Tg2A stem cells undergoing neural differentiation. Proliferation and differentiation assays, performed in the presence of receptor subtype-selective agonists and antagonists, revealed that B1 receptor activity is required for the proliferation of embryonic and differentiating cells as well as for neuronal maturation at later stages of differentiation, while the B2 receptor acts on neural phenotype choice, promoting neurogenesis over gliogenesis. Besides the elucidation of bradykinin functions in an in vitro model reflecting early embryogenesis and neurogenesis, this study contributes to the understanding of B1 receptor functions in this process.
Collapse
Affiliation(s)
- Isis C Nascimento
- Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Talita Glaser
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Arthur A Nery
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Micheli M Pillat
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - João B Pesquero
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|