1
|
Wen J, Liu G, Liu M, Wang H, Wan Y, Yao Z, Gao N, Sun Y, Zhu L. Transforming growth factor-β and bone morphogenetic protein signaling pathways in pathological cardiac hypertrophy. Cell Cycle 2023; 22:2467-2484. [PMID: 38179789 PMCID: PMC10802212 DOI: 10.1080/15384101.2023.2293595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 01/06/2024] Open
Abstract
Pathological cardiac hypertrophy (referred to as cardiac hypertrophy) is a maladaptive response of the heart to a variety of pathological stimuli, and cardiac hypertrophy is an independent risk factor for heart failure and sudden death. Currently, the treatments for cardiac hypertrophy are limited to improving symptoms and have little effect. Elucidation of the developmental process of cardiac hypertrophy at the molecular level and the identification of new targets for the treatment of cardiac hypertrophy are crucial. In this review, we summarize the research on multiple active substances related to the pathogenesis of cardiac hypertrophy and the signaling pathways involved and focus on the role of transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) signaling in the development of cardiac hypertrophy and the identification of potential targets for molecular intervention. We aim to identify important signaling molecules with clinical value and hope to help promote the precise treatment of cardiac hypertrophy and thus improve patient outcomes.
Collapse
Affiliation(s)
- Jing Wen
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guixiang Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mingjie Liu
- Department of Lung Function, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huarui Wang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yunyan Wan
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhouhong Yao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Nannan Gao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuanyuan Sun
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ling Zhu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
2
|
Ji S, Guo Y, Li G, Sang N. NO 2 exposure contributes to cardiac hypertrophy in male mice through apoptosis signaling pathways. CHEMOSPHERE 2022; 309:136576. [PMID: 36155018 DOI: 10.1016/j.chemosphere.2022.136576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/06/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen dioxide (NO2) is one of the most common indoor and outdoor air pollutants. Inhalation of NO2 is associated with an increased risk of health problems, especially cardiovascular diseases. However, the underlying pathogenic mechanisms still remain unclear. In this study, we exposed C57BL/6J mice to NO2 (2.5 ppm, 5 h/d) for 28 days and found that NO2 inhalation induced cardiac dysfunction in male mice, but not in female mice, including left ventricular dilation and cardiac systolic dysfunction. Pathological staining showed that NO2 inhalation induced eccentric hypertrophy with enlarged individual cardiomyocytes, dilated left ventricle, and thinning of the left ventricular wall in male mice. The transcriptional analysis suggested that NO2 exposure could disrupt Ca2+ homeostasis, actin cytoskeletal reorganization, myocardial contractility, and vascular dilation in male mice. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that differentially expressed genes (DEGs) were closely associated with the apoptotic signaling pathways. These findings suggested that NO2 exposure caused cardiac eccentric hypertrophy and cardiac dysfunction through apoptotic signaling pathways, and contributed to cardiotoxicity.
Collapse
Affiliation(s)
- Shaoyang Ji
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Yuqiong Guo
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| |
Collapse
|
3
|
Xiao S, Zhou Y, Liu A, Wu Q, Hu Y, Liu J, Zhu H, Yin T, Pan D. Uncovering potential novel biomarkers and immune infiltration characteristics in persistent atrial fibrillation using integrated bioinformatics analysis. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:4696-4712. [PMID: 34198460 DOI: 10.3934/mbe.2021238] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. This study aimed to identify potential novel biomarkers for persistent AF (pAF) using integrated analyses and explore the immune cell infiltration in this pathological process. Three pAF datasets (GSE31821, GSE41177, and GSE79768) from the Gene Expression Omnibus (GEO) database were integrated with the elimination of batch effects. 264 differentially expressed genes (DEGs) were identified using Linear models for microarray data (LIMMA), 12 modules were screened out by weighted gene co-expression network analysis (WGCNA) in pAF compared with normal controls. Subsequently, common genes (CGs) were identified as the intersection of DEGs and genes in the most significant module. Functional enrichment analysis showed that CGs were mainly enriched in the "Calcineurin-NFAT (nuclear factor of activated T-cells)" signaling pathway, particularly regulator of calcineurin 1 (RCAN1), and protein phosphatase 3 regulatory subunit B, alpha (PPP3R1). Ulteriorly, the microRNA-transcription factor-mRNA network revealed that microRNA-34a-5p could target both RCAN1 and PPP3R1 in the pAF pathogenesis. Finally, immune infiltration analysis by CIBERSORT, a versatile computational method, displayed a higher level of monocytes, dendritic cells and neutrophils, as well as a lower level of CD8+ T cells and T cells regulatory (Tregs) in pAF compared with the control group. In conclusion, our present study revealed several novel pAF-associated genes, miRNAs, and pathways, including microRNA-34a-5p, which might target RCAN1 and PPP3R1 to regulate pAF through the calcineurin-NFAT signaling pathway. In addition, there was a difference in immune infiltration between patients with pAF and normal groups and immune cells might interact with specific genes in pAF.
Collapse
Affiliation(s)
- Shengjue Xiao
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yufei Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ailin Liu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Qi Wu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yue Hu
- Department of General Practice, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jie Liu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Hong Zhu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ting Yin
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Defeng Pan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
4
|
Li X, Chu G, Zhu F, Zheng Z, Wang X, Zhang G, Wang F. Epoxyeicosatrienoic acid prevents maladaptive remodeling in pressure overload by targeting calcineurin/NFAT and Smad-7. Exp Cell Res 2020; 386:111716. [PMID: 31734152 DOI: 10.1016/j.yexcr.2019.111716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Emerging evidence demonstrates that epoxyeicosatrienoic acids (EETs) as important active eicosanoids that regulate cardiovascular homeostasis, but the mechanisms underlying its favorable anti-hypertrophic benefits in overpressure model remain obscure. METHODS AND RESULTS Four weeks after transverse aortic constriction (TAC), TAC mice developed maladaptive cardiac hypertrophy and consequent cardiac failure. Conversely, a cardiotropic adeno-associated viral vector (AAV9) encoding CYP2J2 prevented transverse aortic constriction-induced cardiac hypertrophy with preserved ejection fraction. EET also conferred protection against phenylephrine-induced hypertrophy in H9c2 cardiomyoblasts. Further investigations indicate CYP2J2/EET exerts protection against cardiac hypertrophy through opposing the increase of intracellular Ca2+ level and Ca2+-mediated calcineurin/NFATc3 signaling. Meanwhile, extended myocardial fibrosis in TAC mice was also effectively abolished with the administration of AAV9-2J2. Intriguingly, TAC mice display activated TGF-β/Samd-3 signaling with decreased Smad-7 expression, whereas AAV9-2J2 attenuated the phosphorylation of Smad-3 without altering TGF-β expression, whilst preservation of Smad-7. Subsequently, the differentiation of cardiac fibroblasts into myofibroblasts in the presence of TGF-β1 stimulation was significantly disrupted with EET treatment, accompanied by declined Smad-3 activation and collagen production, whereas inhibition of Smad-7 with SiRNA Smad-7 substantially abrogated these effects of EET on cardiac fibroblasts. CONCLUSIONS EET has synergistic actions on cardiomyocytes and cardiac fibroblasts, preventing cardiac hypertrophy through inhibition of Ca2+-mediated calcineurin/NFATc3 signaling cascades, and ameliorating myocardial fibrosis dependent on Smad-7. This work further extends the potential mechanisms of EET, providing a novel therapeutic approach for the treatment of pathological remodeling and heart failure.
Collapse
Affiliation(s)
- Xuguang Li
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, People's Republic of China
| | - Guang Chu
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, People's Republic of China
| | - Feng Zhu
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, People's Republic of China
| | - Zhifeng Zheng
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, People's Republic of China
| | - Xiang Wang
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, People's Republic of China
| | - Guobing Zhang
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, People's Republic of China
| | - Fang Wang
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
5
|
Wu H, Zhu H, Zhuang Y, Zhang J, Ding X, Zhan L, Luo S, Zhang Q, Sun F, Zhang M, Pan Z, Lu Y. LncRNA ACART protects cardiomyocytes from apoptosis by activating PPAR-γ/Bcl-2 pathway. J Cell Mol Med 2019; 24:737-746. [PMID: 31749326 PMCID: PMC6933347 DOI: 10.1111/jcmm.14781] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/18/2019] [Accepted: 09/26/2019] [Indexed: 11/30/2022] Open
Abstract
Cardiomyocyte apoptosis is an important process occurred during cardiac ischaemia‐reperfusion injury. Long non‐coding RNAs (lncRNA) participate in the regulation of various cardiac diseases including ischaemic reperfusion (I/R) injury. In this study, we explored the potential role of lncRNA ACART (anti‐cardiomyocyte apoptosis‐related transcript) in cardiomyocyte injury and the underlying mechanism for the first time. We found that ACART was significantly down‐regulated in cardiac tissue of mice subjected to I/R injury or cultured cardiomyocytes treated with hydrogen peroxide (H2O2). Knockdown of ACART led to significant cardiomyocyte injury as indicated by reduced cell viability and increased apoptosis. In contrast, overexpression of ACART enhanced cell viability and reduced apoptosis of cardiomyocytes treated with H2O2. Meanwhile, ACART increased the expression of the B cell lymphoma 2 (Bcl‐2) and suppressed the expression of Bcl‐2‐associated X (Bax) and cytochrome‐C (Cyt‐C). In addition, PPAR‐γ was up‐regulated by ACART and inhibition of PPAR‐γ abolished the regulatory effects of ACART on cell apoptosis and the expression of Bcl‐2, Bax and Cyt‐C under H2O2 treatment. However, the activation of PPAR‐γ reversed the effects of ACART inhibition. The results demonstrate that ACART protects cardiomyocyte injury through modulating the expression of Bcl‐2, Bax and Cyt‐C, which is mediated by PPAR‐γ activation. These findings provide a new understanding of the role of lncRNA ACART in regulation of cardiac I/R injury.
Collapse
Affiliation(s)
- Hao Wu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Haixia Zhu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuting Zhuang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jifan Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xin Ding
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Linfeng Zhan
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shenjian Luo
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Qi Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Fei Sun
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Mingyu Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhenwei Pan
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yanjie Lu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Zhang Y, Yan W, Ji X, Yue H, Li G, Sang N. Maternal NO2 exposure induces cardiac hypertrophy in male offspring via ROS-HIF-1α transcriptional regulation and aberrant DNA methylation modification of Csx/Nkx2.5. Arch Toxicol 2018; 92:1563-1579. [DOI: 10.1007/s00204-018-2166-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 01/17/2018] [Indexed: 12/12/2022]
|
7
|
Inhibition of nuclear factor of activated T cells (NFAT) c3 activation attenuates acute lung injury and pulmonary edema in murine models of sepsis. Oncotarget 2018. [PMID: 29535830 PMCID: PMC5828182 DOI: 10.18632/oncotarget.24320] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Specific therapies targeting cellular and molecular events of sepsis induced Acute Lung Injury (ALI) pathogenesis are lacking. We have reported a pivotal role for Nuclear Factors of Activated T cells (NFATc3) in regulating macrophage phenotype during sepsis induced ALI and subsequent studies demonstrate that NFATc3 transcriptionally regulates macrophage CCR2 and TNFα gene expression. Mouse pulmonary microvascular endothelial cell monolayer maintained a tighter barrier function when co-cultured with LPS stimulated NFATc3 deficient macrophages whereas wild type macrophages caused leaky monolayer barrier. More importantly, NFATc3 deficient mice showed decreased neutrophilic lung inflammation, improved alveolar capillary barrier function, arterial oxygen saturation and survival benefit in lethal CLP sepsis mouse models. In addition, survival of wild type mice subjected to the lethal CLP sepsis was not improved with broad-spectrum antibiotics, whereas the survival of NFATc3 deficient mice was improved to 40–60% when treated with imipenem. Passive adoptive transfer of NFATc3 deficient macrophages conferred protection against LPS induced ALI in wild type mice. Furthermore, CP9-ZIZIT, a highly potent, cell-permeable peptide inhibitor of Calcineurin inhibited NFATc3 activation. CP9-ZIZIT effectively reduced sepsis induced inflammatory cytokines and pulmonary edema in mice. Thus, this study demonstrates that inhibition of NFATc3 activation by CP9-ZIZIT provides a potential therapeutic option for attenuating sepsis induced ALI/pulmonary edema.
Collapse
|
8
|
Garcia MI, Boehning D. Cardiac inositol 1,4,5-trisphosphate receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:907-914. [PMID: 27884701 DOI: 10.1016/j.bbamcr.2016.11.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
Abstract
Calcium is a second messenger that regulates almost all cellular functions. In cardiomyocytes, calcium plays an integral role in many functions including muscle contraction, gene expression, and cell death. Inositol 1,4,5-trisphosphate receptors (IP3Rs) are a family of calcium channels that are ubiquitously expressed in all tissues. In the heart, IP3Rs have been associated with regulation of cardiomyocyte function in response to a variety of neurohormonal agonists, including those implicated in cardiac disease. Notably, IP3R activity is thought to be essential for mediating the hypertrophic response to multiple stimuli including endothelin-1 and angiotensin II. In this review, we will explore the functional implications of IP3R activity in the heart in health and disease.
Collapse
Affiliation(s)
- M Iveth Garcia
- Cell Biology Graduate Program, University of Texas Medical Branch, Galveston, TX 77555, United States; Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, Houston, TX 77030, United States
| | - Darren Boehning
- Department of Biochemistry and Molecular Biology, McGovern Medical School at UTHealth, Houston, TX 77030, United States.
| |
Collapse
|