1
|
Metwally SAH, Paruchuri SS, Yu L, Capuk O, Pennock N, Sun D, Song S. Pharmacological Inhibition of NHE1 Protein Increases White Matter Resilience and Neurofunctional Recovery after Ischemic Stroke. Int J Mol Sci 2023; 24:13289. [PMID: 37686096 PMCID: PMC10488118 DOI: 10.3390/ijms241713289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
To date, recanalization interventions are the only available treatments for ischemic stroke patients; however, there are no effective therapies for reducing stroke-induced neuroinflammation. We recently reported that H+ extrusion protein Na+/H+ exchanger-1 (NHE1) plays an important role in stroke-induced inflammation and white matter injury. In this study, we tested the efficacy of two potent NHE1 inhibitors, HOE642 and Rimeporide, with a delayed administration regimen starting at 24 h post-stroke in adult C57BL/6J mice. Post-stroke HOE642 and Rimeporide treatments accelerated motor and cognitive function recovery without affecting the initial ischemic infarct, neuronal damage, or reactive astrogliosis. However, the delayed administration of NHE1 blockers after ischemic stroke significantly reduced microglial inflammatory activation while enhanced oligodendrogenesis and white matter myelination, with an increased proliferation and decreased apoptosis of the oligodendrocytes. Our findings suggest that NHE1 protein plays an important role in microglia-mediated inflammation and white matter damage. The pharmacological blockade of NHE1 protein activity reduced microglia inflammatory responses and enhanced oligodendrogenesis and white matter repair, leading to motor and cognitive function recovery after stroke. Our study reveals the potential of targeting NHE1 protein as a therapeutic strategy for ischemic stroke therapy.
Collapse
Affiliation(s)
- Shamseldin Ayman Hassan Metwally
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (S.A.H.M.); (S.S.P.); (L.Y.); (O.C.); (N.P.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Satya Siri Paruchuri
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (S.A.H.M.); (S.S.P.); (L.Y.); (O.C.); (N.P.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lauren Yu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (S.A.H.M.); (S.S.P.); (L.Y.); (O.C.); (N.P.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Okan Capuk
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (S.A.H.M.); (S.S.P.); (L.Y.); (O.C.); (N.P.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Nicholas Pennock
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (S.A.H.M.); (S.S.P.); (L.Y.); (O.C.); (N.P.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (S.A.H.M.); (S.S.P.); (L.Y.); (O.C.); (N.P.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15213, USA
| | - Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (S.A.H.M.); (S.S.P.); (L.Y.); (O.C.); (N.P.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15213, USA
| |
Collapse
|
2
|
Ghaleh B, Barthélemy I, Wojcik J, Sambin L, Bizé A, Hittinger L, Tran TD, Thomé FP, Blot S, Su JB. Protective effects of rimeporide on left ventricular function in golden retriever muscular dystrophy dogs. Int J Cardiol 2020; 312:89-95. [PMID: 32199683 DOI: 10.1016/j.ijcard.2020.03.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/24/2020] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Alterations in intracellular Na+ and Ca2+ have been observed in patients with Duchenne muscular dystrophy (DMD) and in animal models of DMD, and inhibition of Na+-H+ exchanger 1 (NHE1) by rimeporide has previously demonstrated cardioprotective effects in animal models of myocardial ischemia and heart failure. Since heart failure is becoming a predominant cause of death in DMD patients, this study aimed to demonstrate a cardioprotective effect of chronic administration of rimeporide in a canine model of DMD. METHODS Golden retriever muscular dystrophy (GRMD) dogs were randomized to orally receive rimeporide (10 mg/kg, twice a day) or placebo from 2 months to 1 year of age. Left ventricular (LV) function was assessed by conventional and advanced echocardiography. RESULTS Compared with placebo-treated GRMD, LV function deterioration with age was limited in rimeporide-treated GRMD dogs as indicated by the preservation of LV ejection fraction as well as overall cardiac parameters different from placebo-treated dogs, as revealed by composite cardiac scores and principal component analysis. In addition, principal component analysis clustered rimeporide-treated GRMD dogs close to healthy control dogs. CONCLUSIONS Chronic administration of the NHE1 inhibitor rimeporide exerted a protective effect against LV function decline in GRMD dogs. This study provides proof of concept to explore the cardiac effects of rimeporide in DMD patients.
Collapse
Affiliation(s)
- Bijan Ghaleh
- U955-IMRB, Equipe 03, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Inès Barthélemy
- U955-IMRB, Equipe 10, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Jérôme Wojcik
- Translational Informatics & Biometrics Europe, Precision for Medicine, CH-1202 Geneva, Switzerland
| | - Lucien Sambin
- U955-IMRB, Equipe 03, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Alain Bizé
- U955-IMRB, Equipe 03, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Luc Hittinger
- U955-IMRB, Equipe 10, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France; AP-HP, Hôpitaux Universitaires Henri Mondor, Fédération de Cardiologie, F-94000 Créteil, France
| | - Thien Duc Tran
- EspeRare, Campus Biotech Innovation Park, Avenue de Secheron 15, 1202 Geneva, Switzerland
| | - Florence Porte Thomé
- EspeRare, Campus Biotech Innovation Park, Avenue de Secheron 15, 1202 Geneva, Switzerland
| | - Stéphane Blot
- U955-IMRB, Equipe 10, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Jin Bo Su
- U955-IMRB, Equipe 03, Inserm, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France.
| |
Collapse
|
3
|
Kingma JG. Inhibition of Na +/H + Exchanger With EMD 87580 does not Confer Greater Cardioprotection Beyond Preconditioning on Ischemia-Reperfusion Injury in Normal Dogs. J Cardiovasc Pharmacol Ther 2018; 23:254-269. [PMID: 29562750 DOI: 10.1177/1074248418755120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Postischemic accumulation of intracellular Na+ promotes calcium overload and contributes to cellular necrosis. Cardioprotection afforded by pharmacologic blockade of the sodium-hydrogen exchanger subtype 1 (NHE1) is thought to be more remarkable than that obtained by ischemic conditioning (IC). The window of protection provided by IC pretreatment is maintained even when performed up to 48 hours before ischemia. In addition, the perception exists that combined NHE1 inhibition plus IC produces greater than additive protection against ischemic injury. The current study compared the efficacy of NHE1 blockade by N-[2-methyl-4,5-bis(methylsulfonyl)-benzoyl]-guanidine (EMD 87580 5 mg/kg) combined with first- or second-window IC on ischemic tolerance in dogs subject to 90-minute acute ischemia and 180-minute reperfusion. Infarct size (tetrazolium staining), vascular responses, and myocardial perfusion (microspheres) were assessed. EMD 87580 given before ischemia or before reperfusion did not reduce infarct size (compared to vehicle-treated group). Significant protection against tissue necrosis was obtained by both first- and second-window IC, but additive cardioprotection (ie, greater than that afforded by IC) was not observed by treatment with EMD 87580. Vascular reactivity in the infarct-related artery was not preserved after ischemia-reperfusion in any of the experimental groups. Likewise, either the pharmacologic or the nonpharmacologic interventions did not modify myocardial perfusion. These data demonstrate that EMD 87580 did not protect against ischemia-reperfusion injury regardless of the time of drug administration. Combined EMD 87580 and IC did not antagonize protection that was achieved by either first- or second-window IC alone; no additive protection beyond preconditioning was obtained. Further study is necessary to assess the value of NHE1 blockers as protective agents against myocardial injury.
Collapse
Affiliation(s)
- J G Kingma
- 1 Faculty of Medicine, Department of Medicine, Laval University, Québec City, Québec, Canada
| |
Collapse
|
4
|
González Arbeláez LF, Ciocci Pardo A, Fantinelli JC, Caldiz C, Ríos JL, Schinella GR, Mosca SM. Ex Vivo Treatment with a Polyphenol-Enriched Cocoa Extract Ameliorates Myocardial Infarct and Postischemic Mitochondrial Injury in Normotensive and Hypertensive Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5180-5187. [PMID: 27281548 DOI: 10.1021/acs.jafc.6b01669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Our objective was to determine the effects of a polyphenol-enriched cocoa extract (PCE) on myocardial postischemic alterations in normotensive (Wistar rats, W) and spontaneously hypertensive rats (SHR). Isolated hearts were submitted to 110 min of perfusion or 20 min stabilization, 30 min global ischemia, and 60 min reperfusion (R). Other hearts were treated with PCE at the onset of R. Infarct size, the reduced glutathione (GSH), and the expression of phospho-Akt, P-GSK-3β, and P-eNOS were assessed. In isolated mitochondria, the Ca(2+)-mediated response of mitochondrial permeability transition pore (mPTP), membrane potential (Δψm), and superoxide production were determined. PCE decreased infarct size, partly preserved GSH, increased the P-Akt, P-GSK-3β, and P-eNOS contents, improved mPTP response to Ca(2+), decreased the superoxide production, and restored Δψm. These data show that PCE decreases the cardiac postischemic damage in W rats and SHR and suggest that Akt/GSK-3β/eNOS dependent pathways are involved.
Collapse
Affiliation(s)
- Luisa F González Arbeláez
- Centro de Investigaciones Cardiovasculares CCT-CONICET, Universidad Nacional de La Plata , 60 y 120, 1900 La Plata, Argentina
| | - Alejandro Ciocci Pardo
- Centro de Investigaciones Cardiovasculares CCT-CONICET, Universidad Nacional de La Plata , 60 y 120, 1900 La Plata, Argentina
| | - Juliana C Fantinelli
- Centro de Investigaciones Cardiovasculares CCT-CONICET, Universidad Nacional de La Plata , 60 y 120, 1900 La Plata, Argentina
| | - Claudia Caldiz
- Centro de Investigaciones Cardiovasculares CCT-CONICET, Universidad Nacional de La Plata , 60 y 120, 1900 La Plata, Argentina
| | - José Luis Ríos
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València , 46010 València, Spain
| | - Guillermo R Schinella
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CIC , 1900 La Plata, Provincia de Buenos Aires, Argentina
| | - Susana M Mosca
- Centro de Investigaciones Cardiovasculares CCT-CONICET, Universidad Nacional de La Plata , 60 y 120, 1900 La Plata, Argentina
| |
Collapse
|