1
|
Adverse effects of LPS on membrane proteins in lactating bovine mammary epithelial cells. Cell Tissue Res 2021; 384:435-448. [PMID: 33433684 DOI: 10.1007/s00441-020-03344-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/05/2020] [Indexed: 01/16/2023]
Abstract
Mastitis causes a decrease in milk yield and abnormalities in milk components from dairy cows. Escherichia coli and the E. coli lipopolysaccharide (LPS) cell wall component directly downregulate milk production in bovine mammary epithelial cells (BMECs). However, the detailed mechanism by which this occurs in BMECs remains unclear. Various membrane proteins, such as immune sensors (Toll-like receptors, TLR), nutrient transporters (glucose transporter and aquaporin), and tight junction proteins (claudin and occludin) are involved in the onset of mastitis or milk production in BMECs. In this study, we investigated the influence of LPS on membrane proteins using an in vitro culture model. This mastitis model demonstrated a loss of glucose transporter-1 and aquaporin-3 at lateral membranes and a decrease in milk production in response to LPS treatment. LPS disrupted the tight junction barrier and caused compositional changes in localization of claudin-3 and claudin-4, although tight junctions were maintained to separate the apical membrane domains and the basolateral membrane domains. LPS did not significantly affect the expression level and subcellular localization of epidermal growth factor receptor in lactating BMECs with no detectable changes in MEK1/2-ERK1/2 signaling. In contrast, NFκB was concurrently activated with temporal translocation of TLR-4 in the apical membranes, whereas TLR-2 was not significantly influenced by LPS treatment. These findings indicate the importance of investigating the subcellular localization of membrane proteins to understand the molecular mechanism of LPS in milk production in mastitis.
Collapse
|
2
|
Leppert U, Gillespie A, Orphal M, Böhme K, Plum C, Nagorsen K, Berkholz J, Kreutz R, Eisenreich A. The impact of α-Lipoic acid on cell viability and expression of nephrin and ZNF580 in normal human podocytes. Eur J Pharmacol 2017; 810:1-8. [PMID: 28606850 DOI: 10.1016/j.ejphar.2017.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 02/04/2023]
Abstract
Human podocytes (hPC) are essential for maintaining normal kidney function and dysfunction or loss of hPC play a pivotal role in the manifestation and progression of chronic kidney diseases including diabetic nephropathy. Previously, α-Lipoic acid (α-LA), a licensed drug for treatment of diabetic neuropathy, was shown to exhibit protective effects on diabetic nephropathy in vivo. However, the effect of α-LA on hPC under non-diabetic conditions is unknown. Therefore, we analyzed the impact of α-LA on cell viability and expression of nephrin and zinc finger protein 580 (ZNF580) in normal hPC in vitro. Protein analyses were done via Western blot techniques. Cell viability was determined using a functional assay. hPC viability was dynamically modulated via α-LA stimulation in a concentration-dependent manner. This was associated with reduced nephrin and ZNF580 expression and increased nephrin phosphorylation in normal hPC. Moreover, α-LA reduced nephrin and ZNF580 protein expression via 'kappa-light-chain-enhancer' of activated B-cells (NF-κB) inhibition. These data demonstrate that low α-LA had no negative influence on hPC viability, whereas, high α-LA concentrations induced cytotoxic effects on normal hPC and reduced nephrin and ZNF580 expression via NF-κB inhibition. These data provide first novel information about potential cytotoxic effects of α-LA on hPC under non-diabetic conditions.
Collapse
Affiliation(s)
- Ulrike Leppert
- Charité-Universitätsmedizin Berlin, CC02, Institut für Physiologie, Berlin, Germany
| | - Allan Gillespie
- Charité-Universitätsmedizin Berlin, CC04, Institut für Klinische Pharmakologie und Toxikologie, Berlin, Germany
| | - Miriam Orphal
- Charité-Universitätsmedizin Berlin, CC04, Institut für Klinische Pharmakologie und Toxikologie, Berlin, Germany
| | - Karen Böhme
- Charité-Universitätsmedizin Berlin, CC04, Institut für Klinische Pharmakologie und Toxikologie, Berlin, Germany
| | - Claudia Plum
- Charité-Universitätsmedizin Berlin, CC04, Institut für Klinische Pharmakologie und Toxikologie, Berlin, Germany
| | - Kaj Nagorsen
- Charité-Universitätsmedizin Berlin, CC02, Institut für Physiologie, Berlin, Germany
| | - Janine Berkholz
- Charité-Universitätsmedizin Berlin, CC02, Institut für Physiologie, Berlin, Germany
| | - Reinhold Kreutz
- Charité-Universitätsmedizin Berlin, CC04, Institut für Klinische Pharmakologie und Toxikologie, Berlin, Germany
| | - Andreas Eisenreich
- Charité-Universitätsmedizin Berlin, CC04, Institut für Klinische Pharmakologie und Toxikologie, Berlin, Germany.
| |
Collapse
|