1
|
Kutzsche J, Guzman GA, Willuweit A, Kletke O, Wollert E, Gering I, Jürgens D, Breitkreutz J, Stark H, Beck-Sickinger AG, Klöcker N, Hidalgo P, Willbold D. An orally available Ca v2.2 calcium channel inhibitor for the treatment of neuropathic pain. Br J Pharmacol 2024; 181:1734-1756. [PMID: 38157867 DOI: 10.1111/bph.16309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/29/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND PURPOSE Neuropathic pain affects up to 10% of the global population and is caused by an injury or a disease affecting the somatosensory, peripheral, or central nervous system. NP is characterized by chronic, severe and opioid-resistant properties. Therefore, its clinical management remains very challenging. The N-type voltage-gated calcium channel, Cav2.2, is a validated target for therapeutic intervention in chronic and neuropathic pain. The conotoxin ziconotide (Prialt®) is an FDA-approved drug that blocks Cav2.2 channel but needs to be administered intrathecally. Thus, although being principally efficient, the required application route is very much in disfavour. EXPERIMENTAL APPROACH AND KEY RESULTS Here, we describe an orally available drug candidate, RD2, which competes with ziconotide binding to Cav2.2 at nanomolar concentrations and inhibits Cav2.2 almost completely reversible. Other voltage-gated calcium channel subtypes, like Cav1.2 and Cav3.2, were affected by RD2 only at concentrations higher than 10 μM. Data from sciatic inflammatory neuritis rat model demonstrated the in vivo proof of concept, as low-dose RD2 (5 mg·kg-1) administered orally alleviated neuropathic pain compared with vehicle controls. High-dose RD2 (50 mg·kg-1) was necessary to reduce pain sensation in acute thermal response assessed by the tail flick test. CONCLUSIONS AND IMPLICATIONS Taken together, these results demonstrate that RD2 has antiallodynic properties. RD2 is orally available, which is the most convenient application form for patients and caregivers. The surprising and novel result from standard receptor screens opens the room for further optimization into new promising drug candidates, which address an unmet medical need.
Collapse
Affiliation(s)
- Janine Kutzsche
- Institute of Biological Information Processing 7, Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Gustavo A Guzman
- Institute of Biological Information Processing 7, Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine, Medical Imaging Physics, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Olaf Kletke
- Institute of Neuro- und Sensory Physiology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Esther Wollert
- Institute of Biological Information Processing 7, Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ian Gering
- Institute of Biological Information Processing 7, Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dagmar Jürgens
- Institute of Biological Information Processing 7, Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Holger Stark
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | - Nikolaj Klöcker
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Patricia Hidalgo
- Institute of Biological Information Processing 1, Molecular and Cellular Physiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dieter Willbold
- Institute of Biological Information Processing 7, Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Dong FW, Jiang HH, Yang L, Gong Y, Zi CT, Yang D, Ye CJ, Li H, Yang J, Nian Y, Zhou J, Hu JM. Valepotriates From the Roots and Rhizomes of Valeriana jatamansi Jones as Novel N-Type Calcium Channel Antagonists. Front Pharmacol 2018; 9:885. [PMID: 30150936 PMCID: PMC6099110 DOI: 10.3389/fphar.2018.00885] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/20/2018] [Indexed: 12/24/2022] Open
Abstract
The roots and rhizomes of Valeriana jatamansi have long been used as folk medicine in Asia and usually named as “Zhizhuxiang” in Chinese for the treatment of abdominal distention and pain. However, its active ingredients and molecular targets for treatment of abdominal pain remain unrevealed. Inhibitors of Cav2.2 N-type voltage-gated calcium channels (VGCCs) are actively sought after for their potential in treating pain, especially chronic pain. As far as we know, the method used for seeking analgesic active ingredient from plant material has rarely been reported. The analgesic potentials of the EtOH extract (0.01 mg/ml) of the roots and rhizomes of V. jatamansi and its EtOAc, n-BuOH and H2O soluble parts (0.01 mg/ml, respectively) were tested herein on Cav2.2, using whole-oocyte recordings in vitro by tow-electrode voltage clamp. The results indicated that the EtOAc-soluble part exhibited the most potent inhibition of Cav2.2 peak current (20 mv). The EtOAc-soluble part was then subjected to silica gel column chromatography (CC) and giving 9 fractions. Phytochemical studies were carried out by repeated CC and extensive spectroscopic analyses after the fraction (0.01 mg/ml) was identified to be active and got seventeen compounds (1–17). All isolates were then sent for further bioactive verification (1 and 3 at concentration of 10 μM, others at 30 μM). In addition, the selectivity of the active compounds 1 and 3 were tested on various ion channels including Cav1.2, Cav2.1 and Cav3.1 VGCCs and Kv1.2, Kv2.1, Kv3.1 and BK potassium channels. The results indicated that compound 1 and 3 (an abundant compound) inhibited Cav2.2 with an EC50 of 3.3 and 4.8 μM, respectively, and had weaker or no effect on Cav1.2, Cav2.1 and Cav3.1 VGCCs and Kv1.2, Kv2.1, Kv3.1 and BK potassium channels. Compounds 1 and 3 appear to act as allosteric modulators rather than pore blockers of Cav2.2, which may play crucial role in attenuating nociception. The results of present research indicated that the ethnopharmacological utilization of V. jatamansi for relieving the abdominal distention and pain may mediate through Cav2.2 channel. Our work is the first demonstration of inhibition of Cav2.2 by iridoids, which may provide a fresh source for finding new analgesics.
Collapse
Affiliation(s)
- Fa-Wu Dong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,Faculty of Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - He-Hai Jiang
- Key Laboratory of Bioactive Peptides of Yunnan Province, Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Liu Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ye Gong
- Key Laboratory of Bioactive Peptides of Yunnan Province, Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Cheng-Ting Zi
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Dan Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Chen-Jun Ye
- Key Laboratory of Bioactive Peptides of Yunnan Province, Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Huan Li
- Key Laboratory of Bioactive Peptides of Yunnan Province, Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jian Yang
- Key Laboratory of Bioactive Peptides of Yunnan Province, Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Yin Nian
- Key Laboratory of Bioactive Peptides of Yunnan Province, Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Ion Channel Research and Drug Development Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jun Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jiang-Miao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|