1
|
Li Z, Shan L, Yu P. Preventive effect of tetramethylpyrazine on nitroglycerin-tolerance in rats by improving oxidative stress and ribosome homeostasis. Biochem Biophys Res Commun 2022; 618:141-147. [PMID: 35724458 DOI: 10.1016/j.bbrc.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/25/2022] [Accepted: 06/05/2022] [Indexed: 11/15/2022]
Abstract
Nitroglycerin (NTG) is recommended as the first-line drug in angina pectoris though its prolonged use impacts nitroglycerin tolerance. In this study, we investigated the preventive effect of Tetramethylpyrazine (TMP), a famous Chinese medicine used for cardiovascular diseases, on NTG-induced tolerance and further explained the underlying mechanism of its action. The results revealed that pretreatment of TMP improved NTG-induced tolerance in vitro thoracic aorta rings and in rats. Proteomic analysis showed oxidative stress and ribosome proteins dyshomeostasis in NTG-tolerance vessels. TMP attenuated the oxidative stress by enhancing the protein expression of ALDH2, Nrf2 and HO-1. In addition, TMP recovered the down-regulated expression of RpL10a induced by nitroglycerin. Therefore, TMP could prevent nitroglycerin tolerance in rats, which may be mediated by up-regulation of ALDH2 and Nrf2/HO-1 signaling pathway and involved in the restoration of ribosome homeostasis. These findings indicate the potential of TMP as a promising medicine for preventing the development of nitroglycerin-induced tolerance.
Collapse
Affiliation(s)
- Zixin Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Luchen Shan
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, 510632, China.
| | - Pei Yu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, 510632, China.
| |
Collapse
|
2
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:843-860. [DOI: 10.1093/jpp/rgac015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/19/2022] [Indexed: 12/07/2022]
|
3
|
Jia S, Chen Q, Wu J, Yao X, Shao J, Cheng X, Zhang C, Cen D, Wang Y, Shen Z, Shan L, Yao X. Danshensu derivative ADTM ameliorates CCl 4‑induced acute liver injury in mice through inhibiting oxidative stress and apoptosis. Pathol Res Pract 2021; 228:153656. [PMID: 34749210 DOI: 10.1016/j.prp.2021.153656] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/21/2022]
Abstract
Previous studies reported a novel danshensu derivative (R)-(3,5,6-Trimethylpyrazinyl) methyl-2-acetoxy-3-(3,4-diacetoxyphenyl) propanoate (ADTM), which conferred cardioprotective, neuroprotective and anti-thrombotic effects. Here we aim to investigate the hepatoprotective effect of ADTM on acute liver injury caused by carbon tetrachloride (CCl4) and the underlying molecular mechanisms. ADTM (30 and 60 mg/kg) was given to mice by gavage for two weeks. At the last day mice were injected with 0.3% CCl4, 10 mL/kg, ip for 24 h. Clinical and histological chemistry assays were performed to assess liver injury. Moreover, hepatic oxidative stress and apoptosis related markers were determined by western blotting. As a result, ADTM significantly protected against CCl4-induced liver injury by the decrease of elevated serum transaminases and liver index, and the attenuation of histopathological changes in mice. In addition, ADTM remarkably alleviated hepatic oxidative stress (MDA contents and SOD activity) and apoptosis. Further studies revealed that ADTM significantly inhibited the CCl4-induced upregulation of Bax/Bcl-2, increased the CCl4-induced decrease of AKT phosphorylation and inhibited the expression level of NF-κB p65 in CCl4-intoxicated mice. These findings suggest that ADTM possesses the potential protective effects against CCl4-induced liver injury in mice by exerting antioxidative stress and antiapoptosis.
Collapse
Affiliation(s)
- Shu Jia
- Faculty of Pharmacy, Zhejiang Pharmaceutical College, Ningbo 315100, PR China
| | - Qi Chen
- Ningbo Yinzhou No. 2 Hospital, Ningbo 315100, PR China
| | - Jingyi Wu
- Faculty of Pharmacy, Zhejiang Pharmaceutical College, Ningbo 315100, PR China
| | - Xiaokun Yao
- Faculty of Pharmacy, Zhejiang Pharmaceutical College, Ningbo 315100, PR China
| | - Jingping Shao
- Faculty of Pharmacy, Zhejiang Pharmaceutical College, Ningbo 315100, PR China
| | - Xiaoyan Cheng
- Beijing Center for Physical & Chemical Analysis, Beijing 100050, PR China
| | - Congcong Zhang
- Faculty of Pharmacy, Zhejiang Pharmaceutical College, Ningbo 315100, PR China
| | - Danwei Cen
- Faculty of Pharmacy, Zhejiang Pharmaceutical College, Ningbo 315100, PR China
| | - Yuqiang Wang
- Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, PR China
| | - Zhihong Shen
- Ningbo Yinzhou No. 2 Hospital, Ningbo 315100, PR China
| | - Luchen Shan
- Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, PR China.
| | - Xiaomin Yao
- Faculty of Pharmacy, Zhejiang Pharmaceutical College, Ningbo 315100, PR China.
| |
Collapse
|
4
|
Liu SH, Chen PS, Huang CC, Hung YT, Lee MY, Lin WH, Lin YC, Lee AYL. Unlocking the Mystery of the Therapeutic Effects of Chinese Medicine on Cancer. Front Pharmacol 2021; 11:601785. [PMID: 33519464 PMCID: PMC7843369 DOI: 10.3389/fphar.2020.601785] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022] Open
Abstract
Over the past decade, the rise of cancer immunotherapy has coincided with a remarkable breakthrough in cancer therapy, which attracted increased interests in public. The scientific community clearly showed that the emergence of immunotherapy is an inevitable outcome of a holistic approach for cancer treatment. It is well established that traditional Chinese medicine (TCM) utilizes the principle of homeostasis and balance to adjust the healthy status of body. TCM treatment toward cancer has a long history, and the diagnosis and treatment of tumors were discussed in the ancient and classical literatures of Chinese medicine, such as the Yellow Emperor’s Inner Canon. Precious heritage has laid the foundation for the innovation and development of cancer treatment with TCM. The modern study indicated that TCM facilitates the treatment of cancer and enhances the survival rate and life expectancy of patients. However, the pharmacological mechanisms underlying these effects are not yet completely understood. In addition, physicians cannot always explain why the TCM treatment is effective and the mechanism of action cannot be explained in scientific terms. Here, we attempted to provide insights into the development of TCM in the treatment and interpret how TCM practitioners treat cancer through six general principles of TCM by using modern scientific language and terms based on newly discovered evidence.
Collapse
Affiliation(s)
- Shao-Hsiang Liu
- Celgen Biotech, Taipei, Taiwan.,Taiwan Instrument Research Institute, National Applied Research Laboratories, Zhubei, Taiwan
| | | | - Chun-Chieh Huang
- Department of Chinese Medicine, Taitung Christian Hospital, Taitung, Taiwan
| | - Yi-Tu Hung
- HanPoo Chinese Medical Clinic, Taipei, Taiwan
| | - Mei-Ying Lee
- Chinese Medicine Women Doctors Association, Taipei, Taiwan
| | | | | | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
5
|
Huang Y, Ma S, Wang Y, Yan R, Wang S, Liu N, Chen B, Chen J, Liu L. The Role of Traditional Chinese Herbal Medicines and Bioactive Ingredients on Ion Channels: A Brief Review and Prospect. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:257-265. [PMID: 30370864 DOI: 10.2174/1871527317666181026165400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 12/18/2022]
Abstract
Traditional Chinese Medicines (TCMs), particularly the Chinese herbal medicines, are valuable sources of medicines and have been used for centuries. The term "TCMs" both represents to the single drug agent like Salvia miltiorrhiza, Ligusticum chuanxiong and Angelica sinensis, and those herbal formulas like Jingshu Keli, Wenxin Keli and Danzhen powder. In recent years, the researches of TCMs developed rapidly to understand the scientific basis of these herbs. In this review, we collect the studies of TCM and their containing bioactive compounds, and attempt to provide an overview for their regulatory effects on different ion channels including Ca2+, K+, Na+, Cl- channels and TRP, P2X receptors. The following conditions are used to limit the range of our review. (i) Only the herbal materials are included in this review and the animal- and mineral-original TCMs are excluded. (ii) The major discussions in this review focus on single TCM agent and the herbal formulas are only discussed for a little. (iii) Those most famous herbal medicines like Capsicum annuum (pepper), Curcuma longa (ginger) and Cannabis sativa (marijuana) are excluded. (iv) Only those TCM herbs with more than 5 research papers confirming their effects on ion channels are discussed in this review. Our review discusses recently available scientific evidences for TCMs and related bioactive compounds that have been reported with the modulatory effects on different ion channels, and thus provides a new ethnopharmacological approach to understand the usage of TCMs.
Collapse
Affiliation(s)
- Yian Huang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Shumei Ma
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Yan Wang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Renjie Yan
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Sheng Wang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Nan Liu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Ben Chen
- Laboratory of Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan.,Department of CNS Research, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., Tokushima 771-0192, Japan
| | - Jia Chen
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Li Liu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, China.,Shanghai Professional and Technical Service Center for Biological Material Drug-ability Evaluation, Shanghai 200437, China
| |
Collapse
|
6
|
Liu SP, Shibu MA, Tsai FJ, Hsu YM, Tsai CH, Chung JG, Yang JS, Tang CH, Wang S, Li Q, Huang CY. Tetramethylpyrazine reverses high-glucose induced hypoxic effects by negatively regulating HIF-1α induced BNIP3 expression to ameliorate H9c2 cardiomyoblast apoptosis. Nutr Metab (Lond) 2020; 17:12. [PMID: 32021640 PMCID: PMC6995207 DOI: 10.1186/s12986-020-0432-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/20/2020] [Indexed: 01/24/2023] Open
Abstract
Background Diabetic patients are highly vulnerable to hypoxic injury, which is associated with hypoxia induced BNIP3 expression that subsequently activate apoptosis. Our previous research show that Tetramethylpyrazine (TMP), a food flavoring agent, represses the hypoxia induced BNIP3 expression attenuate myocardial apoptosis. In this study, we evaluate the effect of TMP to provide protection against hypoxia aggravated high-glucose associated cellular apoptosis. Methods The cytoprotective effect of TMP against high glucose induced cellular damages was determined on embryo derived H9c2 cardiomyoblast cells that were subjected to 5% hypoxia for 24 h and subjected to different duration of 33 mM high glucose challenge. Further, the involvement of HIF-1α and BNIP3 in cellular damage and the mechanism of protection of TMP were determined by overexpression and silencing HIF-1α and BNIP3 protein expression. Results The results show that hypoxic effects on cell viability aggravates with high glucose challenge and this augmentative effect is mediated through BNIP3 in H9c2 cardiomyoblast cells. However, TMP administration effectively reversed the augmented HIF-1α levels and BNIP3 elevation. TMP improved the survival of H9c2 cells and effectively suppressed apoptosis in H9c2 cells. Further comparison on the effects of TMP on H9c2 cells challenged with high glucose and those challenged with hypoxia show that TMP precisely regulated the hypoxic intensified apoptotic effects in high-glucose condition. Conclusion The results clearly show that flavoring agent-TMP attenuates cytotoxicity amplified by hypoxia challenge in high glucose condition by destabilizing HIF-1α.
Collapse
Affiliation(s)
- Shih-Ping Liu
- 1Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Marthandam Asokan Shibu
- 2College of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - Fuu-Jen Tsai
- 3School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402 Taiwan.,4China Medical University Children's Hospital, China Medical University, Taichung, Taiwan
| | - Yuan-Man Hsu
- 5Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chang-Hai Tsai
- 4China Medical University Children's Hospital, China Medical University, Taichung, Taiwan
| | - Jing-Gung Chung
- 5Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Jai-Sing Yang
- 6Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- 7Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Shulin Wang
- 8Department of Cardiology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518 Guangdong China
| | - Qiaowen Li
- 8Department of Cardiology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518 Guangdong China
| | - Chih-Yang Huang
- 2College of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan.,7Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,9Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
7
|
Zhang J, Zhang Q, Liu G, Zhang N. Therapeutic potentials and mechanisms of the Chinese traditional medicine Danshensu. Eur J Pharmacol 2019; 864:172710. [PMID: 31586468 DOI: 10.1016/j.ejphar.2019.172710] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/23/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Abstract
Danshensu is a pure molecule derived from Danshen, which is the root of the herb Salvia miltiorrhiza. It has a clearly defined chemical structure and demonstrates therapeutic effects in cardiovascular diseases (e.g., myocardial ischemia and reperfusion, atherosclerosis, hypertension), cerebral lesions and disorders (e.g., ischemia, cognitive decline, and anxiety), and other health problems (e.g., thrombosis, tumorigenesis, pancreatitis). The mechanisms behind these effects include antioxidation, anti-apoptosis, vasodilation, inflammation regulation, lipidemia control, etc., through the PI3K/Akt-ERK1/2/Nrf2/HO-1, Bcl-2/Bax, eNOS and other molecular signaling pathways. Both Danshen and Danshensu might be more effective than classical cardiovascular drugs, and their combination yields improved therapeutic efficiency. Here, we provide an overview of these drugs for a better understanding of Danshensu as a promising Chinese traditional medicine.
Collapse
Affiliation(s)
- Jinli Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, PR China
| | - Qianqian Zhang
- Department of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, PR China
| | - Guang Liu
- Department of Cardiology, The Fourth Affiliated Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, PR China
| | - Ning Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, PR China.
| |
Collapse
|
8
|
Zhang X, Dong H, Liu Y, Han J, Tang S, Si J. Retracted: Tetramethylpyrazine partially relieves hypoxia-caused damage of cardiomyocytes H9c2 by downregulation of miR-449a. J Cell Physiol 2019; 234:15098-15107. [PMID: 30770559 DOI: 10.1002/jcp.28151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/02/2019] [Indexed: 01/24/2023]
Abstract
Inadequate oxygen supply is probably one of the most important pathophysiological mechanisms of cardiomyocyte damage in ischemic heart disease. Tetramethylpyrazine (TMP, also known as ligustrazine) is the main active ingredient isolated from the rhizome of Ligusticum chuanxiong Hort. A previous study reported that the TMP could exert cardioprotective activity. This study aimed to explore the molecular mechanism of the protective effects of TMP on cardiomyocyte damage caused by hypoxia. The viability and apoptosis of cardiomyocytes H9c2 were detected using cell counting kit-8 assay and annexin V-FITC/PI staining, respectively. Quantitative reverse transcription polymerase chain reaction was conducted to measure the expression level of microRNA-449a (miR-449a). Cell transfection was performed to upregulate the expression level of miR-449a or downregulate the expression level of sirtuin 1 (Sirt1). The protein expression levels of Sirt1 and key factors involved in cell apoptosis and phosphatidylinositol 3-kinase/protein kinase 3 (PI3K/AKT) pathway were evaluated using western blot analysis. We found that the hypoxia incubation inhibited H9c2 viability, induced cell apoptosis, and inactivated the PI3K/AKT pathway. TMP treatment partially relieved the hypoxia-caused H9c2 cell viability loss and apoptosis, as well as reversed the hypoxia-caused inactivation of the PI3K/AKT pathway. Moreover, TMP partially alleviated the upregulation of miR-449a in H9c2 cells caused by hypoxia. Overexpression of miR-449a weakened the effects of TMP on hypoxia-treated H9c2 cells. Furthermore, Sirt1 was a target gene of miR-449a. Knockdown of Sirt1 also weakened the effects of TMP on hypoxia-treated H9c2 cells. In conclusion, TMP partially relieved hypoxia-caused cardiomyocytes H9c2 viability loss and apoptosis at least through downregulating miR-499a, upregulating Sirt1, and then activating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Xuesong Zhang
- Department of Cardiology, Liaocheng People's Hospital, Liaocheng, China
| | - Huawei Dong
- Department of Cardiology, Liaocheng People's Hospital, Liaocheng, China
| | - Yong Liu
- Department of Cardiology, Liaocheng People's Hospital, Liaocheng, China
| | - Junxia Han
- Department of Cardiology, Heze Municipal Hospital, Heze, China
| | - Shouyi Tang
- Department of Cardiology, Heze Municipal Hospital, Heze, China
| | - Jingna Si
- Department of Cardiovascular Surgery, Heze Municipal Hospital, Heze, China
| |
Collapse
|
9
|
Dogan MF, Yildiz O, Arslan SO, Ulusoy KG. Potassium channels in vascular smooth muscle: a pathophysiological and pharmacological perspective. Fundam Clin Pharmacol 2019; 33:504-523. [PMID: 30851197 DOI: 10.1111/fcp.12461] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 12/23/2022]
Abstract
Potassium (K+ ) ion channel activity is an important determinant of vascular tone by regulating cell membrane potential (MP). Activation of K+ channels leads to membrane hyperpolarization and subsequently vasodilatation, while inhibition of the channels causes membrane depolarization and then vasoconstriction. So far five distinct types of K+ channels have been identified in vascular smooth muscle cells (VSMCs): Ca+2 -activated K+ channels (BKC a ), voltage-dependent K+ channels (KV ), ATP-sensitive K+ channels (KATP ), inward rectifier K+ channels (Kir ), and tandem two-pore K+ channels (K2 P). The activity and expression of vascular K+ channels are changed during major vascular diseases such as hypertension, pulmonary hypertension, hypercholesterolemia, atherosclerosis, and diabetes mellitus. The defective function of K+ channels is commonly associated with impaired vascular responses and is likely to become as a result of changes in K+ channels during vascular diseases. Increased K+ channel function and expression may also help to compensate for increased abnormal vascular tone. There are many pharmacological and genotypic studies which were carried out on the subtypes of K+ channels expressed in variable amounts in different vascular beds. Modulation of K+ channel activity by molecular approaches and selective drug development may be a novel treatment modality for vascular dysfunction in the future. This review presents the basic properties, physiological functions, pathophysiological, and pharmacological roles of the five major classes of K+ channels that have been determined in VSMCs.
Collapse
Affiliation(s)
- Muhammed Fatih Dogan
- Department of Pharmacology, Ankara Yildirim Beyazit University, Bilkent, Ankara, 06010, Turkey
| | - Oguzhan Yildiz
- Department of Pharmacology, Gulhane Faculty of Medicine, University of Health Sciences, Etlik, Ankara, 06170, Turkey
| | - Seyfullah Oktay Arslan
- Department of Pharmacology, Ankara Yildirim Beyazit University, Bilkent, Ankara, 06010, Turkey
| | - Kemal Gokhan Ulusoy
- Department of Pharmacology, Gulhane Faculty of Medicine, University of Health Sciences, Etlik, Ankara, 06170, Turkey
| |
Collapse
|
10
|
Liu C, Liu R, Tang M, Yang X, Gong X. Role and mechanism of nursing cooperation and tetramethylpyrazine application in post-operative pain in patients undergoing total knee arthroplasty. Exp Ther Med 2019; 17:2366-2372. [PMID: 30867722 DOI: 10.3892/etm.2019.7203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/22/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the effect of nursing cooperation on the post-operative complication of pain following total knee arthroplasty (TKA) and to explore the effects of tetramethylpyrazine (TMP) application on post-TKA pain. A total of 26 patients who received TKA between June 2014 and March 2016 were enrolled in this study. Nursing cooperation was provided to the patients during the TKA surgery, and pain was evaluated based on the visual analog scale (VAS). In addition, 40 male Sprague Dawley rats were used for the TKA model construction. The rats were randomly separated into 4 groups (sham, TKA, TKA+TMP and TKA+TMP+Interferon γ). Pain tolerance in rats was evaluated by mechanical stimulation. Inflammatory cytokine levels in TKA rat tissue were detected using ELISA. mRNA and protein expression of Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) was detected using reverse transcription-polymerase chain reaction and western blot analysis, respectively. The results indicated that nursing cooperation serves a critical function during TKA and was associated with a lower level of pain compared with the control (P<0.05). Furthermore, TMP treatment reduced the level of inflammatory cytokines in the rat tissues, including interleukin (IL)-6, IL-10 and tumor necrosis factor-α in post-TKA (P<0.01). TMP was indicated to alleviate pain in post-TKA through suppressing the JAK/STAT3 signaling pathway. The results of the present study suggest that nursing cooperation is critical to TKA, and TMP may alleviate post-TKA pain through inhibiting the JAK/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Chang Liu
- Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Rui Liu
- Department of Hyperbaric Oxygen Therapy, Harbin Children's Hospital, Harbin, Heilongjiang 150010, P.R. China
| | - Meiling Tang
- Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xinxin Yang
- Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiuping Gong
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
11
|
A novel Ca2+ current blocker promotes angiogenesis and cardiac healing after experimental myocardial infarction in mice. Pharmacol Res 2018; 134:109-117. [DOI: 10.1016/j.phrs.2018.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/24/2018] [Accepted: 06/05/2018] [Indexed: 12/28/2022]
|
12
|
Enhancement of brain-targeting delivery of danshensu in rat through conjugation with pyrazine moiety to form danshensu-pyrazine ester. Drug Deliv Transl Res 2018. [PMID: 29524164 DOI: 10.1007/s13346-018-0501-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tetramethylpyrazine was introduced to the structure of danshensu (DSS) as P-glycoprotein (P-gp)-inhibiting carrier, designing some novel brain-targeting DSS-pyrazine derivatives via prodrug delivery strategy. Following the virtual screening, three DSS-pyrazine esters (DT1, DT2, DT3) were selected because of their better prediction parameters related to brain-targeting. Among them, DT3 was thought to be a promising candidate due to its appropriate bioreversible property in vitro release assay. Further investigation with regard to DT3's brain-targeting effects in vivo was also reported in this study. High-performance liquid chromatography-diode array detection (HPLC-DAD) method was established for the quantitative determination of DT3 and DSS in rat plasma, brain homogenate after intravenous injection. In vivo metabolism of DT3 indicated that it was first converted into DT1, DT2, then the generation of DSS, which could be the result of carboxylesterase activity in rat blood and brain tissue. Moreover, the brain pharmacokinetics of DT3 was significantly altered with 2.16 times increase in half-life compared with that of DSS, and its drug targeting index (DTI) was up to 16.95. Above these data demonstrated that DT3 had better tendency of brain-targeting delivery, which would be positive for the treatment of brain-related disorders.
Collapse
|
13
|
Wang L, Zhang X, Cui G, Chan JYW, Wang L, Li C, Shan L, Xu C, Zhang Q, Wang Y, Di L, Lee SMY. A novel agent exerts antitumor activity in breast cancer cells by targeting mitochondrial complex II. Oncotarget 2017; 7:32054-64. [PMID: 27081033 PMCID: PMC5077996 DOI: 10.18632/oncotarget.8410] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/02/2016] [Indexed: 12/24/2022] Open
Abstract
The mitochondrial respiratory chain, including mitochondrial complex II, has emerged as a potential target for cancer therapy. In the present study, a novel conjugate of danshensu (DSS) and tetramethylpyrazine (TMP), DT-010, was synthesized. Our results showed that DT-010 is more potent than its parental compounds separately or in combination, in inhibiting the proliferation of MCF-7 and MDA-MB-231 cells by inducing cytotoxicity and promoting cell cycle arrest. It also inhibited the growth of 4T1 breast cancer cells in vivo. DT-010 suppressed the fundamental parameters of mitochondrial function in MCF-7 cells, including basal respiration, ATP turnover, maximal respiration. Treatment with DT-010 in MCF-7 and MDA-MB-231 cells resulted in the loss of mitochondrial membrane potential and decreased ATP production. DT-010 also promoted ROS generation, while treatment with ROS scavenger, NAC (N-acetyl-L-cysteine), reversed DT-010-induced cytotoxicity. Further study showed that DT-010 suppressed succinate-induced mitochondrial respiration and impaired mitochondrial complex II enzyme activity indicating that DT-010 may inhibit mitochondrial complex II. Overall, our results suggested that the antitumor activity of DT-010 is associated with inhibition of mitochondrial complex II, which triggers ROS generation and mitochondrial dysfunction in breast cancer cells.
Collapse
Affiliation(s)
- Liang Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiaojing Zhang
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Guozhen Cui
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Judy Yuet-Wa Chan
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Li Wang
- Faculty of Health Sciences, University of Macau, Macao, China
| | - Chuwen Li
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Luchen Shan
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Changjiang Xu
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Qingwen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yuqiang Wang
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Lijun Di
- Faculty of Health Sciences, University of Macau, Macao, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
14
|
Xu B, Deng H, Zhang X, Luo J, Zhang G, Zhang Z, Wang Y, Shan L. A novel Danshensu/tetramethylpyrazine derivative induces vasorelaxation on rat aorta and exerts cardioprotection in dogs. Eur J Pharmacol 2017; 818:158-166. [PMID: 29066416 DOI: 10.1016/j.ejphar.2017.10.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 11/26/2022]
Abstract
ADTM, a previously reported novel Danshensu (DSS)/tetramethylpyrazine (TMP) derivative with cardioprotective and antiplatelet aggregative effects, is a promising therapeutic candidate for ischemic heart diseases. In the present study, ADTM increased coronary blood flow and protected myocardium against ischemic injury in dogs. In addition, the relaxing effect of ADTM on rat thoracic aorta and its underlying mechanisms were examined. ADTM relaxed KCl- and phenylephrine-precontracted arotic rings in a concentration-dependent manner. The relaxation by ADTM was greater than that by DSS, TMP and the mixture of DSS and TMP. ADTM induced endothelium-independent relaxation, which couldn't be abolished by removal of endothelium and the preincubation with inhibitors of nitric oxide synthase (L-NAME) and guanylate cyclase (ODQ). Potassium channel blockers including tetraethylammonium, BaCl2 and glibenclamide failed to inhibit the relaxation by ADTM. In addition, cyclooxygenase (COX), muscarine receptor and β-adrenoceptor were not involved in ADTM-induced vasorelaxation. ADTM inhibited contraction induced by CaCl2 and phenylephrine in Ca2+-free buffer, suggesting that ADTM inhibited both extracellular Ca2+ influx and intracellular Ca2+ release. Taken together, the vasorelaxation of ADTM may be possibly involved in its cardioprotection. ADTM may serve as a promising candidate for the treatment of ischemic heart diseases.
Collapse
Affiliation(s)
- Benhong Xu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Huixing Deng
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Xiaojing Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Jingxiong Luo
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Gaoxiao Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Zaijun Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China.
| | - Yuqiang Wang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China
| | - Luchen Shan
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, China.
| |
Collapse
|
15
|
Cui G, Shan L, Chen Y, Zhou H, Wang Y, Lee SMY. A New Danshensu Derivative Protects Against 6-Hydroxydopamine-Induced NeurotoxicityIn VitroandIn Vivo. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1349-1361. [DOI: 10.1142/s0192415x16500750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We previously reported a novel danshensu derivative ([Formula: see text])-(3,5,6-Trimethylpyrazinyl) methyl-2-acetoxy-3-(3,4-diacetoxyphenyl) propanoate (ADTM), which conferred cardioprotective and anti-thrombotic effects in vitro and in vivo. Here, we examined the neuroprotective actions of ADTM on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in PC12 cells 1 in vitro and zebrafish in vivo. Pretreatment with ADTM significantly inhibited 6-OHDA-induced cytotoxicity and production of reactive oxygen species (ROS) in PC12 cells through Akt signaling. Moreover, treatment with ADTM also inhibited expression of inducible nitric oxide synthase (iNOS) and production of intracellular nitric oxide (NO), which are associated with inflammation. In addition, ADTM exhibited significant protection against 6-OHDA-induced loss of tyrosine hydroxylase-positive dopaminergic neurons in a zebrafish model. Taken together, our findings suggest that ADTM is also a potential effective therapeutic agent for neurodegenerative conditions such as Parkinson’s disease (PD) through anti-oxidant cytoprotective and anti-inflammatory actions.
Collapse
Affiliation(s)
- Guozhen Cui
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, P.R. China
- Zhuhai Key Laboratory of Basic and Applied Research in Chinese Medicine, Department of Bioengineering, Zhuhai Campus of Zunyi Medical College, Zhuhai, P.R. China
| | - Luchen Shan
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, P.R. China
| | - Yang Chen
- Zhuhai Key Laboratory of Basic and Applied Research in Chinese Medicine, Department of Bioengineering, Zhuhai Campus of Zunyi Medical College, Zhuhai, P.R. China
| | - Hefeng Zhou
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, P.R. China
| | - Yuqiang Wang
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, P.R. China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, P.R. China
| |
Collapse
|
16
|
Overview of Antagonists Used for Determining the Mechanisms of Action Employed by Potential Vasodilators with Their Suggested Signaling Pathways. Molecules 2016; 21:495. [PMID: 27092479 PMCID: PMC6274436 DOI: 10.3390/molecules21040495] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/23/2016] [Accepted: 03/28/2016] [Indexed: 01/04/2023] Open
Abstract
This paper is a review on the types of antagonists and the signaling mechanism pathways that have been used to determine the mechanisms of action employed for vasodilation by test compounds. Thus, we exhaustively reviewed and analyzed reports related to this topic published in PubMed between the years of 2010 till 2015. The aim of this paperis to suggest the most appropriate type of antagonists that correspond to receptors that would be involved during the mechanistic studies, as well as the latest signaling pathways trends that are being studied in order to determine the route(s) that atest compound employs for inducing vasodilation. The methods to perform the mechanism studies were included. Fundamentally, the affinity, specificity and selectivity of the antagonists to their receptors or enzymes were clearly elaborated as well as the solubility and reversibility. All the signaling pathways on the mechanisms of action involved in the vascular tone regulation have been well described in previous review articles. However, the most appropriate antagonists that should be utilized have never been suggested and elaborated before, hence the reason for this review.
Collapse
|