1
|
Tough IR, Moodaley R, Cox HM. Enteroendocrine cell-derived peptide YY signalling is stimulated by pinolenic acid or Intralipid and involves coactivation of fatty acid receptors FFA1, FFA4 and GPR119. Neuropeptides 2024; 108:102477. [PMID: 39427565 DOI: 10.1016/j.npep.2024.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Long chain fatty acids are sensed by enteroendocrine L cells that express free-fatty acid receptors, including FFA1, FFA4 and the acylethanolamine receptor GPR119. Here we investigated the acute effects of single or multiple agonism at these G protein-coupled receptors in intestinal mucosae where L cell-derived peptide YY (PYY) is anti-secretory and acts via epithelial Y1 receptors. Mouse ileal or colonic mucosae were mounted in Ussing chambers, voltage-clamped and the resultant short-circuit current (Isc) recorded continuously. The agonists used were; FFA1, TAK-875 or AM-1638; for FFA4, Merck A; or for GPR119, AR231453, PSN632408 or AR440006. Their responses were compared with those of pinolenic acid (PA, a presumed dual FFA1/FFA4 agonist) and the lipid emulsion, Intralipid. The FFA1 agonist AM-1638 (EC50 = 38.2 nM) was more potent than TAK-875 (EC50 = 203.1 nM) but exhibited similar efficacy. GPR119 agonism (AR231453) pretreatment enhanced subsequent FFA1 (AM-1638 or TAK-875) and FFA4 (Merck A) signalling. PA (EC50 = 298.2 nM) co-activated epithelial FFA1 and FFA4 and involved endogenous PYY Y1/Y2-receptor mechanisms but desensitisation was observed between PA and high GPR119 agonist concentrations. Apical Intralipid co-activated FFA1, FFA4 and GPR119 with a residual component not being attributable to PYY, or this trio of fatty acid receptors.
Collapse
Affiliation(s)
- Iain R Tough
- King's College London, Wolfson Sensory, Pain and Regeneration Centre, Hodgkin Building, Guy's Campus, London SE1 1UL, UK.
| | - Runisha Moodaley
- King's College London, Wolfson Sensory, Pain and Regeneration Centre, Hodgkin Building, Guy's Campus, London SE1 1UL, UK.
| | - Helen M Cox
- King's College London, Wolfson Sensory, Pain and Regeneration Centre, Hodgkin Building, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
2
|
Structural identification of lysophosphatidylcholines as activating ligands for orphan receptor GPR119. Nat Struct Mol Biol 2022; 29:863-870. [PMID: 35970999 DOI: 10.1038/s41594-022-00816-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/04/2022] [Indexed: 12/16/2022]
Abstract
Lysophosphatidylcholine (LPC) is an essential mediator in human lipid metabolism and is associated with a variety of diseases, but the exact identity of LPC receptors remains controversial. Through extensive biochemical and structural analyses, we have identified the orphan receptor GPR119 as the receptor for LPC. The structure of the GPR119-G-protein complex without any added ligands reveals a density map that fits well with LPC, which is further confirmed by mass spectrometry and functional studies. As LPCs are abundant on the cell membrane, their preoccupancy in the receptor may lead to 'constitutive activity' of GPR119. The structure of GPR119 bound to APD668, a clinical drug candidate for type 2 diabetes, reveals an exceedingly similar binding mode to LPC. Together, these data highlight structural evidence for LPC function in regulating glucose-dependent insulin secretion through direct binding and activation of GPR119, and provide structural templates for drug design targeting GPR119.
Collapse
|
3
|
Duarte DA, Parreiras-E-Silva LT, Oliveira EB, Bouvier M, Costa-Neto CM. Angiotensin II Type 1 Receptor Tachyphylaxis Is Defined by Agonist Residence Time. Hypertension 2021; 79:115-125. [PMID: 34739768 DOI: 10.1161/hypertensionaha.121.17977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several GPCRs (G-protein-coupled receptors) have been reported to exhibit tachyphylaxis, which is an acute loss of functional receptor response after repeated stimuli with an agonist. GPCRs are important clinical targets for a wide range of disorders. Therefore, elucidation of the ligand features that contribute to receptor tachyphylaxis and signaling events underlying this phenomenon is important for drug discovery and development. In this study, we examined the role of ligand-binding kinetics in the tachyphylaxis of AT1R (angiotensin II type 1 receptor) using bioluminescence resonance energy transfer assays to monitor signaling events under both kinetic and equilibrium conditions. We investigated AT1R signal transduction and translocation promoted by the endogenous tachyphylactic agonist Ang II (angiotensin II) and its analogs, described previously for inducing reduced receptor tachyphylaxis. Estimation of binding kinetic parameters of the ligands revealed that the residence time of Ang II was higher than that of the analogs, resulting in more sustained Gq protein activation and recruitment of β-arrestin than that promoted by the analogs. Furthermore, we observed that Ang II led to more sustained internalization of the receptor, thereby retarding its recycling to the plasma membrane and preventing further receptor responses. These results show that the apparent lack of tachyphylaxis in the studied analogs resulted from their short residence time at the AT1R. In addition, our data highlight the relevance of complete characterization of novel GPCR drug candidates, taking into account their receptor binding kinetics as well.
Collapse
Affiliation(s)
- Diego A Duarte
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil (D.A.D., L.T.P.-e.-S., E.B.O., C.M.C.-N.)
| | - Lucas T Parreiras-E-Silva
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil (D.A.D., L.T.P.-e.-S., E.B.O., C.M.C.-N.)
| | - Eduardo B Oliveira
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil (D.A.D., L.T.P.-e.-S., E.B.O., C.M.C.-N.)
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, QC, Canada (M.B.)
| | - Claudio M Costa-Neto
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil (D.A.D., L.T.P.-e.-S., E.B.O., C.M.C.-N.)
| |
Collapse
|
4
|
Zhao J, Zhao Y, Hu Y, Peng J. Targeting the GPR119/incretin axis: a promising new therapy for metabolic-associated fatty liver disease. Cell Mol Biol Lett 2021; 26:32. [PMID: 34233623 PMCID: PMC8265056 DOI: 10.1186/s11658-021-00276-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022] Open
Abstract
In the past decade, G protein-coupled receptors have emerged as drug targets, and their physiological and pathological effects have been extensively studied. Among these receptors, GPR119 is expressed in multiple organs, including the liver. It can be activated by a variety of endogenous and exogenous ligands. After GPR119 is activated, the cell secretes a variety of incretins, including glucagon-like peptide-1 and glucagon-like peptide-2, which may attenuate the metabolic dysfunction associated with fatty liver disease, including improving glucose and lipid metabolism, inhibiting inflammation, reducing appetite, and regulating the intestinal microbial system. GPR119 has been a potential therapeutic target for diabetes mellitus type 2 for many years, but its role in metabolic dysfunction associated fatty liver disease deserves further attention. In this review, we discuss relevant research and current progress in the physiology and pharmacology of the GPR119/incretin axis and speculate on the potential therapeutic role of this axis in metabolic dysfunction associated with fatty liver disease, which provides guidance for transforming experimental research into clinical applications.
Collapse
Affiliation(s)
- Jianan Zhao
- Institute of Liver Diseases, Shuguang Hospital Affiliated To Shanghai, University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China
| | - Yu Zhao
- Institute of Liver Diseases, Shuguang Hospital Affiliated To Shanghai, University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China
| | - Yiyang Hu
- Institute of Clinical Pharmacology, Shuguang Hospital Affiliated To Shanghai, University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China. .,Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China. .,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China.
| | - Jinghua Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated To Shanghai, University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China. .,Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528 Zhangheng Road, Pudong District, Shanghai, 201203, China. .,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China.
| |
Collapse
|
5
|
Manaithiya A, Alam O, Sharma V, Javed Naim M, Mittal S, Khan IA. GPR119 agonists: Novel therapeutic agents for type 2 diabetes mellitus. Bioorg Chem 2021; 113:104998. [PMID: 34048996 DOI: 10.1016/j.bioorg.2021.104998] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus type 2 (T2D) is a group of genetically heterogeneous metabolic disorders whose frequency has gradually risen worldwide. Diabetes mellitus Type 2 (T2D) has started to achieve a pandemic level, and it is estimated that within the next decade, cases of diabetes might get double due to increase in aging population. Diabetes is rightly called the 'silent killer' because it has emerged to be one of the major causes, leading to renal failure, loss of vision; besides cardiac arrest in India. Thus, a clinical requirement for the oral drug molecules monitoring glucose homeostasis appears to be unmet. GPR119 agonist, a family of G-protein coupled receptors, usually noticed in β-cells of pancreatic as well as intestinal L cells, drew considerable interest for type 2 diabetes mellitus (T2D). GPR119 monitors physiological mechanisms that enhance homeostasis of glucose, such as glucose-like peptide-1, gastrointestinal incretin hormone levels, pancreatic beta cell-dependent insulin secretion and glucose-dependent insulinotropic peptide (GIP). In this manuscript, we have reviewed the work done in the last five years (2015-2020) which gives an approach to design, synthesize, evaluate and study the structural activity relationship of novel GPR119 agonist-based lead compounds. Our article would help the researchers and guide their endeavours in the direction of strategy and development of innovative, effective GPR119 agonist-based compounds for the management of diabetes mellitus type 2.
Collapse
Affiliation(s)
- Ajay Manaithiya
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India.
| | - Vrinda Sharma
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohd Javed Naim
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Shruti Mittal
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Imran A Khan
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
6
|
Marty VN, Farokhnia M, Munier JJ, Mulpuri Y, Leggio L, Spigelman I. Long-Acting Glucagon-Like Peptide-1 Receptor Agonists Suppress Voluntary Alcohol Intake in Male Wistar Rats. Front Neurosci 2020; 14:599646. [PMID: 33424537 PMCID: PMC7785877 DOI: 10.3389/fnins.2020.599646] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/03/2020] [Indexed: 12/21/2022] Open
Abstract
Alcohol use disorder (AUD) is a chronic relapsing condition characterized by compulsive alcohol-seeking behaviors, with serious detrimental health consequences. Despite high prevalence and societal burden, available approved medications to treat AUD are limited in number and efficacy, highlighting a critical need for more and novel pharmacotherapies. Glucagon-like peptide-1 (GLP-1) is a gut hormone and neuropeptide involved in the regulation of food intake and glucose metabolism via GLP-1 receptors (GLP-1Rs). GLP-1 analogs are approved for clinical use for diabetes and obesity. Recently, the GLP-1 system has been shown to play a role in the neurobiology of addictive behaviors, including alcohol seeking and consumption. Here we investigated the effects of different pharmacological manipulations of the GLP-1 system on escalated alcohol intake and preference in male Wistar rats exposed to intermittent access 2-bottle choice of 10% ethanol or water. Administration of AR231453 and APD668, two different agonists of G-protein receptor 119, whose activation increases GLP-1 release from intestinal L-cells, did not affect voluntary ethanol intake. By contrast, injections of either liraglutide or semaglutide, two long-acting GLP-1 analogs, potently decreased ethanol intake. These effects, however, were transient, lasting no longer than 48 h. Semaglutide, but not liraglutide, also reduced ethanol preference on the day of injection. As expected, both analogs induced a reduction in body weight. Co-administration of exendin 9-39, a GLP-1R antagonist, did not prevent liraglutide- or semaglutide-induced effects in this study. Injection of exendin 9-39 alone, or blockade of dipeptidyl peptidase-4, an enzyme responsible for GLP-1 degradation, via injection of sitagliptin, did not affect ethanol intake or preference. Our findings suggest that among medications targeting the GLP-1 system, GLP-1 analogs may represent novel and promising pharmacological tools for AUD treatment.
Collapse
Affiliation(s)
- Vincent N Marty
- Laboratory of Neuropharmacology, Section of Oral Biology, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Bethesda, MD, United States.,Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD, United States.,Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Joseph J Munier
- Laboratory of Neuropharmacology, Section of Oral Biology, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yatendra Mulpuri
- Laboratory of Neuropharmacology, Section of Oral Biology, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Bethesda, MD, United States.,Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD, United States.,Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, United States.,Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, United States.,Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Igor Spigelman
- Laboratory of Neuropharmacology, Section of Oral Biology, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
7
|
Lobingier BT, von Zastrow M. When trafficking and signaling mix: How subcellular location shapes G protein-coupled receptor activation of heterotrimeric G proteins. Traffic 2019; 20:130-136. [PMID: 30578610 DOI: 10.1111/tra.12634] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) physically connect extracellular information with intracellular signal propagation. Membrane trafficking plays a supportive role by "bookending" signaling events: movement through the secretory pathway delivers GPCRs to the cell surface where receptors can sample the extracellular environment, while endocytosis and endolysosomal membrane trafficking provide a versatile system to titrate cellular signaling potential and maintain homeostatic control. Recent evidence suggests that, in addition to these important effects, GPCR trafficking actively shapes the cellular signaling response by altering the location and timing of specific receptor-mediated signaling reactions. Here, we review key experimental evidence underlying this expanding view, focused on GPCR signaling mediated through activation of heterotrimeric G proteins located in the cytoplasm. We then discuss lingering and emerging questions regarding the interface between GPCR signaling and trafficking.
Collapse
Affiliation(s)
- Braden T Lobingier
- Department of Psychiatry and Department of Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, California
| | - Mark von Zastrow
- Department of Psychiatry and Department of Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, California
| |
Collapse
|
8
|
Tadaki H, Sasase T, Fukuda S, Toriniwa Y, Harada K, Ohta T, Yamada T. Chronic treatment of
JTP
‐109192, a novel G‐protein coupled receptor 119 agonist, improves metabolic abnormalities in Zucker Fatty rats. Clin Exp Pharmacol Physiol 2019; 46:910-919. [DOI: 10.1111/1440-1681.13152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/18/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Hironobu Tadaki
- Central Pharmaceutical Research Institute Japan Tobacco Inc. Osaka Japan
- Graduate School of Science and Technology Niigata University Niigata Japan
| | - Tomohiko Sasase
- Central Pharmaceutical Research Institute Japan Tobacco Inc. Osaka Japan
| | - Sumiaki Fukuda
- Central Pharmaceutical Research Institute Japan Tobacco Inc. Osaka Japan
| | - Yasufumi Toriniwa
- Central Pharmaceutical Research Institute Japan Tobacco Inc. Osaka Japan
| | - Kazuhito Harada
- Central Pharmaceutical Research Institute Japan Tobacco Inc. Osaka Japan
| | - Takeshi Ohta
- Laboratory of Animal Physiology and Functional Anatomy Graduate School of Agriculture Kyoto University Kyoto Japan
| | - Takahisa Yamada
- Graduate School of Science and Technology Niigata University Niigata Japan
| |
Collapse
|
9
|
Long residence time adenosine A1 receptor agonists produce sustained wash-resistant antilipolytic effect in rat adipocytes. Biochem Pharmacol 2019; 164:45-52. [DOI: 10.1016/j.bcp.2019.03.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023]
|
10
|
Han T, Lee BM, Park YH, Lee DH, Choi HH, Lee T, Kim H. YH18968, a Novel 1,2,4-Triazolone G-Protein Coupled Receptor 119 Agonist for the Treatment of Type 2 Diabetes Mellitus. Biomol Ther (Seoul) 2018; 26:201-209. [PMID: 29495245 PMCID: PMC5839499 DOI: 10.4062/biomolther.2018.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 11/29/2022] Open
Abstract
G protein-coupled receptor 119 (GPR119) is expressed in the pancreas and gastrointestinal tract, and its activation promotes insulin secretion in the beta cells of the pancreatic islets as well as the secretion of glucagon-like peptide-1 (GLP-1) in intestinal L cells, consequently improving glucose-stimulated insulin secretion. Due to this dual mechanism of action, the development of small-molecule GPR119 agonists has received significant interest for the treatment of type 2 diabetes. We newly synthesized 1,2,4-triazolone derivatives of GPR119 agonists, which demonstrated excellent outcomes in a cyclic adenosine monophosphate (cAMP) assay. Among the synthesized derivatives, YH18968 showed cAMP=2.8 nM; in GLUTag cell, GLP-1secretion=2.3 fold; in the HIT-T15 cell, and insulin secretion=1.9 fold. Single oral administration of YH18968 improved glucose tolerance and combined treatment with a dipeptidyl peptidase 4 (DPP-4) inhibitor augmented the glucose lowering effect as well as the plasma level of active GLP-1 in normal mice. Single oral administration of YH18968 improved glucose tolerance in a diet induced obese mice model. This effect was maintained after repeated dosing for 4 weeks. The results indicate that YH18968 combined with a DPP-4 inhibitor may be an effective therapeutic candidate for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Taedong Han
- Department of Applied Chemistry and Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin 17104, Republic of Korea.,Yuhan R&D Institute, Yongin 17084, Republic of Korea
| | | | - Yoo Hoi Park
- Yuhan R&D Institute, Yongin 17084, Republic of Korea
| | - Dong Hoon Lee
- Yuhan R&D Institute, Yongin 17084, Republic of Korea
| | - Hyun Ho Choi
- Yuhan R&D Institute, Yongin 17084, Republic of Korea
| | - Taehoon Lee
- Department of Applied Chemistry and Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hakwon Kim
- Department of Applied Chemistry and Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
11
|
Tyurenkov IN, Ozerov AA, Kurkin DV, Logvinova EO, Bakulin DA, Volotova EV, Borodin DD. Structure and biological activity of endogenous and synthetic agonists of GPR119. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A G-protein-coupled receptor, GPR119, is a promising pharmacological target for a new class of hypoglycaemic drugs with an original mechanism of action, namely, increase in the glucose-dependent incretin and insulin secretion. In 2005, the first ligands were found and in the subsequent years, a large number of GPR119 agonists were synthesized in laboratories in various countries; the safest and most promising agonists have entered phase I and II clinical trials as agents for the treatment of type 2 diabetes mellitus and obesity. The review describes the major endogenous GPR119 agonists and the main trends in the design and modification of synthetic structures for increasing the hypoglycaemic activity. The data on synthetic agonists are arranged according to the type of the central core of the molecules.
The bibliography includes 104 references.
Collapse
|
12
|
Tyurenkov IN, Kurkin DV, Bakulin DA, Volotova EV, Morkovin EI, Chafeev MA, Karapetian RN. Chemistry and Hypoglycemic Activity of GPR119 Agonist ZB-16. Front Endocrinol (Lausanne) 2018; 9:543. [PMID: 30283402 PMCID: PMC6156125 DOI: 10.3389/fendo.2018.00543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022] Open
Abstract
This article is to highlight the chemical properties and primary pharmacology of novel GPR119 agonist ZB-16 and its analogs, which were rejected during the screening. Experiments were performed in vitro (specific activity, metabolism and cell toxicity) and in vivo (hypoglycemic activity and pharmacokinetics). ZB-16 exhibits nanomolar activity (EC50 = 7.3-9.7 nM) on target receptor GPR119 in vitro associated with hypoglycemic activity in vivo. In animals with streptozotocin-nicotinamide induced type 2 diabetes mellitus (STZ-NA T2D) daily oral dose of ZB-16 (1 mg/kg) or sitagliptin (10 mg/kg) for 28 days resulted in the reduction of blood glucose levels. The effects of ZB-16 were comparable to the hypoglycemic action of sitagliptin. ZB-16 demonstrated relatively low plasma exposition, high distribution volume, mild clearance and a prolonged half-life (more than 12 h). The present study demonstrates that the targeted search for selective GPR119 receptor agonists is a well-founded approach for developing novel drugs for the therapy of T2D. Based on the combination of high in vitro activity (compared to competitor standards), a useful ADME profile, distinct hypoglycemic activity which is comparable to the efficacy of sitagliptin in rats with experimental T2D, and the acceptable pharmacokinetic profile, we recommend the ZB-16 compound for further research.
Collapse
Affiliation(s)
| | | | - Dmitry A. Bakulin
- Volgograd State Medical University, Volgograd, Russia
- *Correspondence: Dmitry A. Bakulin
| | | | - Evgeny I. Morkovin
- Volgograd State Medical University, Volgograd, Russia
- Volgograd Medical Research Center, Volgograd, Russia
| | | | | |
Collapse
|
13
|
Pradeepkumar P, Govindaraj D, Jeyaraj M, Munusamy MA, Rajan M. Assembling of multifunctional latex-based hybrid nanocarriers from Calotropis gigantea for sustained (doxorubicin) DOX releases. Biomed Pharmacother 2017; 87:461-470. [DOI: 10.1016/j.biopha.2016.12.133] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/31/2016] [Accepted: 12/31/2016] [Indexed: 11/15/2022] Open
|
14
|
Hothersall JD, Guo D, Sarda S, Sheppard RJ, Chen H, Keur W, Waring MJ, IJzerman AP, Hill SJ, Dale IL, Rawlins PB. Structure-Activity Relationships of the Sustained Effects of Adenosine A2A Receptor Agonists Driven by Slow Dissociation Kinetics. Mol Pharmacol 2016; 91:25-38. [PMID: 27803241 PMCID: PMC5198511 DOI: 10.1124/mol.116.105551] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/28/2016] [Indexed: 12/02/2022] Open
Abstract
The duration of action of adenosine A2A receptor (A2A) agonists is critical for their clinical efficacy, and we sought to better understand how this can be optimized. The in vitro temporal response profiles of a panel of A2A agonists were studied using cAMP assays in recombinantly (CHO) and endogenously (SH-SY5Y) expressing cells. Some agonists (e.g., 3cd; UK-432,097) but not others (e.g., 3ac; CGS-21680) demonstrated sustained wash-resistant agonism, where residual receptor activation continued after washout. The ability of an antagonist to reverse pre-established agonist responses was used as a surrogate read-out for agonist dissociation kinetics, and together with radioligand binding studies suggested a role for slow off-rate in driving sustained effects. One compound, 3ch, showed particularly marked sustained effects, with a reversal t1/2 > 6 hours and close to maximal effects that remained for at least 5 hours after washing. Based on the structure-activity relationship of these compounds, we suggest that lipophilic N6 and bulky C2 substituents can promote stable and long-lived binding events leading to sustained agonist responses, although a high compound logD is not necessary. This provides new insight into the binding interactions of these ligands and we anticipate that this information could facilitate the rational design of novel long-acting A2A agonists with improved clinical efficacy.
Collapse
Affiliation(s)
- J Daniel Hothersall
- AstraZeneca, Discovery Sciences, Alderley Park, United Kingdom (J.D.H., S.S.); AstraZeneca, Oncology, Cambridge, United Kingdom (R.J.S.); AstraZeneca, Discovery Sciences, Mölndal, Sweden (H.C.); AstraZeneca, Discovery Sciences, Cambridge Science Park, United Kingdom (I.L.D., P.B.R.); AstraZeneca, Oncology, Alderley Park, United Kingdom (M.J.W.); Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, The Netherlands (D.G., W.K., A.P.I.J.); and University of Nottingham, School of Life Sciences, United Kingdom (S.J.H.)
| | - Dong Guo
- AstraZeneca, Discovery Sciences, Alderley Park, United Kingdom (J.D.H., S.S.); AstraZeneca, Oncology, Cambridge, United Kingdom (R.J.S.); AstraZeneca, Discovery Sciences, Mölndal, Sweden (H.C.); AstraZeneca, Discovery Sciences, Cambridge Science Park, United Kingdom (I.L.D., P.B.R.); AstraZeneca, Oncology, Alderley Park, United Kingdom (M.J.W.); Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, The Netherlands (D.G., W.K., A.P.I.J.); and University of Nottingham, School of Life Sciences, United Kingdom (S.J.H.)
| | - Sunil Sarda
- AstraZeneca, Discovery Sciences, Alderley Park, United Kingdom (J.D.H., S.S.); AstraZeneca, Oncology, Cambridge, United Kingdom (R.J.S.); AstraZeneca, Discovery Sciences, Mölndal, Sweden (H.C.); AstraZeneca, Discovery Sciences, Cambridge Science Park, United Kingdom (I.L.D., P.B.R.); AstraZeneca, Oncology, Alderley Park, United Kingdom (M.J.W.); Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, The Netherlands (D.G., W.K., A.P.I.J.); and University of Nottingham, School of Life Sciences, United Kingdom (S.J.H.)
| | - Robert J Sheppard
- AstraZeneca, Discovery Sciences, Alderley Park, United Kingdom (J.D.H., S.S.); AstraZeneca, Oncology, Cambridge, United Kingdom (R.J.S.); AstraZeneca, Discovery Sciences, Mölndal, Sweden (H.C.); AstraZeneca, Discovery Sciences, Cambridge Science Park, United Kingdom (I.L.D., P.B.R.); AstraZeneca, Oncology, Alderley Park, United Kingdom (M.J.W.); Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, The Netherlands (D.G., W.K., A.P.I.J.); and University of Nottingham, School of Life Sciences, United Kingdom (S.J.H.)
| | - Hongming Chen
- AstraZeneca, Discovery Sciences, Alderley Park, United Kingdom (J.D.H., S.S.); AstraZeneca, Oncology, Cambridge, United Kingdom (R.J.S.); AstraZeneca, Discovery Sciences, Mölndal, Sweden (H.C.); AstraZeneca, Discovery Sciences, Cambridge Science Park, United Kingdom (I.L.D., P.B.R.); AstraZeneca, Oncology, Alderley Park, United Kingdom (M.J.W.); Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, The Netherlands (D.G., W.K., A.P.I.J.); and University of Nottingham, School of Life Sciences, United Kingdom (S.J.H.)
| | - Wesley Keur
- AstraZeneca, Discovery Sciences, Alderley Park, United Kingdom (J.D.H., S.S.); AstraZeneca, Oncology, Cambridge, United Kingdom (R.J.S.); AstraZeneca, Discovery Sciences, Mölndal, Sweden (H.C.); AstraZeneca, Discovery Sciences, Cambridge Science Park, United Kingdom (I.L.D., P.B.R.); AstraZeneca, Oncology, Alderley Park, United Kingdom (M.J.W.); Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, The Netherlands (D.G., W.K., A.P.I.J.); and University of Nottingham, School of Life Sciences, United Kingdom (S.J.H.)
| | - Michael J Waring
- AstraZeneca, Discovery Sciences, Alderley Park, United Kingdom (J.D.H., S.S.); AstraZeneca, Oncology, Cambridge, United Kingdom (R.J.S.); AstraZeneca, Discovery Sciences, Mölndal, Sweden (H.C.); AstraZeneca, Discovery Sciences, Cambridge Science Park, United Kingdom (I.L.D., P.B.R.); AstraZeneca, Oncology, Alderley Park, United Kingdom (M.J.W.); Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, The Netherlands (D.G., W.K., A.P.I.J.); and University of Nottingham, School of Life Sciences, United Kingdom (S.J.H.)
| | - Adriaan P IJzerman
- AstraZeneca, Discovery Sciences, Alderley Park, United Kingdom (J.D.H., S.S.); AstraZeneca, Oncology, Cambridge, United Kingdom (R.J.S.); AstraZeneca, Discovery Sciences, Mölndal, Sweden (H.C.); AstraZeneca, Discovery Sciences, Cambridge Science Park, United Kingdom (I.L.D., P.B.R.); AstraZeneca, Oncology, Alderley Park, United Kingdom (M.J.W.); Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, The Netherlands (D.G., W.K., A.P.I.J.); and University of Nottingham, School of Life Sciences, United Kingdom (S.J.H.)
| | - Stephen J Hill
- AstraZeneca, Discovery Sciences, Alderley Park, United Kingdom (J.D.H., S.S.); AstraZeneca, Oncology, Cambridge, United Kingdom (R.J.S.); AstraZeneca, Discovery Sciences, Mölndal, Sweden (H.C.); AstraZeneca, Discovery Sciences, Cambridge Science Park, United Kingdom (I.L.D., P.B.R.); AstraZeneca, Oncology, Alderley Park, United Kingdom (M.J.W.); Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, The Netherlands (D.G., W.K., A.P.I.J.); and University of Nottingham, School of Life Sciences, United Kingdom (S.J.H.)
| | - Ian L Dale
- AstraZeneca, Discovery Sciences, Alderley Park, United Kingdom (J.D.H., S.S.); AstraZeneca, Oncology, Cambridge, United Kingdom (R.J.S.); AstraZeneca, Discovery Sciences, Mölndal, Sweden (H.C.); AstraZeneca, Discovery Sciences, Cambridge Science Park, United Kingdom (I.L.D., P.B.R.); AstraZeneca, Oncology, Alderley Park, United Kingdom (M.J.W.); Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, The Netherlands (D.G., W.K., A.P.I.J.); and University of Nottingham, School of Life Sciences, United Kingdom (S.J.H.)
| | - Philip B Rawlins
- AstraZeneca, Discovery Sciences, Alderley Park, United Kingdom (J.D.H., S.S.); AstraZeneca, Oncology, Cambridge, United Kingdom (R.J.S.); AstraZeneca, Discovery Sciences, Mölndal, Sweden (H.C.); AstraZeneca, Discovery Sciences, Cambridge Science Park, United Kingdom (I.L.D., P.B.R.); AstraZeneca, Oncology, Alderley Park, United Kingdom (M.J.W.); Leiden Academic Centre for Drug Research, Division of Medicinal Chemistry, The Netherlands (D.G., W.K., A.P.I.J.); and University of Nottingham, School of Life Sciences, United Kingdom (S.J.H.)
| |
Collapse
|
15
|
Cvijanovic N, Isaacs NJ, Rayner CK, Feinle-Bisset C, Young RL, Little TJ. Duodenal fatty acid sensor and transporter expression following acute fat exposure in healthy lean humans. Clin Nutr 2016; 36:564-569. [PMID: 26926575 DOI: 10.1016/j.clnu.2016.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND & AIMS Free fatty acids (FFAs) and their derivatives are detected by G-protein coupled receptors (GPRs) on enteroendocrine cells, with specific transporters on enterocytes. It is unknown whether acute fat exposure affects FFA sensors/transporters, and whether this relates to hormone secretion and habitual fat intake. METHODS We studied 20 healthy participants (10M, 10F; BMI: 22 ± 1 kg/m2; age: 28 ± 2 years), after an overnight fast, on 2 separate days. On the first day, duodenal biopsies were collected endoscopically before, and after, a 30-min intraduodenal (ID) infusion of 10% Intralipid®, and relative transcript expression of FFA receptor 1 (FFAR1), FFA receptor 4 (FFAR4), GPR119 and the FFA transporter, cluster of differentiation-36 (CD36) was quantified from biopsies. On the second day, ID Intralipid® was infused for 120-min, and plasma concentrations of cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1) evaluated. Habitual dietary intake was assessed using food frequency questionnaires (FFQs). RESULTS ID Intralipid® increased expression of GPR119, but not FFAR1, FFAR4 and CD36, and stimulated CCK and GLP-1 secretion. Habitual polyunsaturated fatty acid (PUFA) consumption was negatively associated with basal GPR119 expression. CONCLUSIONS GPR119 is an early transcriptional responder to duodenal lipid in lean humans, although this response appeared reduced in individuals with high PUFA intake. These observations may have implications for downstream regulation of gut hormone secretion and appetite. This study was registered as a clinical trial with the Australia and New Zealand Clinical Trial Registry (Trial number: ACTRN12612000376842).
Collapse
Affiliation(s)
- Nada Cvijanovic
- University of Adelaide Discipline of Medicine, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia; NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Nicole J Isaacs
- University of Adelaide Discipline of Medicine, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Christopher K Rayner
- University of Adelaide Discipline of Medicine, Adelaide, Australia; NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia; Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia
| | - Christine Feinle-Bisset
- University of Adelaide Discipline of Medicine, Adelaide, Australia; NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Richard L Young
- University of Adelaide Discipline of Medicine, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia; NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Tanya J Little
- University of Adelaide Discipline of Medicine, Adelaide, Australia; NHMRC Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
16
|
Hothersall JD, Brown AJ, Dale I, Rawlins P. Can residence time offer a useful strategy to target agonist drugs for sustained GPCR responses? Drug Discov Today 2015; 21:90-96. [PMID: 26226643 DOI: 10.1016/j.drudis.2015.07.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/24/2015] [Accepted: 07/21/2015] [Indexed: 01/28/2023]
Abstract
Residence time describes the how long a ligand is bound to its target, and is attracting interest in drug discovery as a potential means of improving clinical efficacy by increasing target coverage. This concept, as originally applied to antagonists, is more complicated for G-protein-coupled receptor (GPCR) agonists because of the transiency of receptor responses (via desensitization and internalization). However, in some cases sustained GPCR agonist responses have been observed, with evidence consistent with a role for slow binding kinetics. We propose a model to explain our understanding of how residence time and rebinding might influence sustained signaling by internalized receptors. We also highlight the anticipated benefit for drug discovery of fully understanding and exploiting these phenomena to target desirable receptor response profiles selectively.
Collapse
Affiliation(s)
| | | | - Ian Dale
- AstraZeneca, Discovery Sciences, Cambridge Science Park, Cambridge CB4 0WG, UK
| | - Philip Rawlins
- AstraZeneca, Discovery Sciences, Cambridge Science Park, Cambridge CB4 0WG, UK.
| |
Collapse
|