1
|
Razavi SM, Khayatan D, Najafi Arab Z, Hosseini Y, Khanahmadi M, Momtaz S, Jamialahmadi T, Johnston TP, Abdolghaffari AH, Sahebkar A. Protective effects of curcumin against spinal cord injury. JOR Spine 2024; 7:e1364. [PMID: 39144499 PMCID: PMC11322827 DOI: 10.1002/jsp2.1364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/07/2024] [Accepted: 07/20/2024] [Indexed: 08/16/2024] Open
Abstract
Background In parallel with population aging, the prevalence of neurological and neurodegenerative diseases has been dramatically increasing over the past few decades. Neurodegenerative diseases reduce the quality of life of patients and impose a high cost on the health system. These slowly progressive diseases can cause functional, perceptual, and behavioral deficits in patients. Therefore, neurodegenerative impairments have always been an interesting subject for scientists and clinicians. One of these diseases is spinal cord injury (SCI). SCI can lead to irreversible damage and is classified into two main subtypes: traumatic and non-traumatic, each with very different pathophysiological features. Aims This review aims to gather relevant information about the beneficial effects of curcumin (Cur), with specific emphasis on its anti-inflammatory properties towards spinal cord injury (SCI) patients. Materials & Methods The review collates data from extensive in-vitro, in-vivo, and clinical trials documenting the effects of CUR on SCI. It examines the modulation of pathophysiological pathways and regulation of the inflammatory cascades after CUR administration. Results Various pathophysiological processes involving the nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear factor kappa B (NF-kB), and transforming growth factor beta (TGF-β) signaling pathways have been suggested to exacerbate damages resulting from SCI. CUR administration showed to modulate these signaling pathways which lead to attenuation of SCI complications. Discussion Anti-inflammatory compounds, particularly CUR, can modulate these pathophysiological pathways and regulate the inflammatory cascades. CUR, a well-known natural product with significant anti-inflammatory effects, has been extensively documented in experimental and clinical trials. Conclusion Curcumin's potential to alter key steps in the Nrf2, NF-kB, and TGF-β signaling pathways suggests that it may play a role in attenuating SCI complications.
Collapse
Affiliation(s)
- Seyed Mehrad Razavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- GI Pharmacology Interest Group (GPIG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Danial Khayatan
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- GI Pharmacology Interest Group (GPIG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Zahra Najafi Arab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- GI Pharmacology Interest Group (GPIG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Yasamin Hosseini
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- GI Pharmacology Interest Group (GPIG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Maryam Khanahmadi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- GI Pharmacology Interest Group (GPIG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Saeideh Momtaz
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- GI Pharmacology Interest Group (GPIG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical SciencesMashhadIran
- Medical Toxicology Research Center, Mashhad University of Medical SciencesMashhadIran
| | - Thomas P. Johnston
- Division of Pharmacology and Pharmaceutical SciencesSchool of Pharmacy, University of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- GI Pharmacology Interest Group (GPIG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical SciencesMashhadIran
- Applied Biomedical Research Center, Mashhad University of Medical SciencesMashhadIran
| |
Collapse
|
2
|
Ding Y, Chen Q. Recent advances on signaling pathways and their inhibitors in spinal cord injury. Biomed Pharmacother 2024; 176:116938. [PMID: 38878684 DOI: 10.1016/j.biopha.2024.116938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Spinal cord injury (SCI) is a serious and disabling central nervous system injury. Its complex pathological mechanism can lead to sensory and motor dysfunction. It has been reported that signaling pathway plays a key role in the pathological process and neuronal recovery mechanism of SCI. Such as PI3K/Akt, MAPK, NF-κB, and Wnt/β-catenin signaling pathways. According to reports, various stimuli and cytokines activate these signaling pathways related to SCI pathology, thereby participating in the regulation of pathological processes such as inflammation response, cell apoptosis, oxidative stress, and glial scar formation after injury. Activation or inhibition of relevant pathways can delay inflammatory response, reduce neuronal apoptosis, prevent glial scar formation, improve the microenvironment after SCI, and promote neural function recovery. Based on the role of signaling pathways in SCI, they may be potential targets for the treatment of SCI. Therefore, understanding the signaling pathway and its inhibitors may be beneficial to the development of SCI therapeutic targets and new drugs. This paper mainly summarizes the pathophysiological process of SCI, the signaling pathways involved in SCI pathogenesis, and the potential role of specific inhibitors/activators in its treatment. In addition, this review also discusses the deficiencies and defects of signaling pathways in SCI research. It is hoped that this study can provide reference for future research on signaling pathways in the pathogenesis of SCI and provide theoretical basis for SCI biotherapy.
Collapse
Affiliation(s)
- Yi Ding
- Department of Spine Surgery, Ganzhou People's Hospital,16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University),16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Qin Chen
- Department of Spine Surgery, Ganzhou People's Hospital,16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University),16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
3
|
Huang Y, Dou Y, Yang B, He B, Zhang X, Zhang K, Yang X. Nicotinamide mononucleotide supplementation mitigates osteopenia induced by modeled microgravity in rats. Cell Stress Chaperones 2023; 28:385-394. [PMID: 37195399 PMCID: PMC10352228 DOI: 10.1007/s12192-023-01356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023] Open
Abstract
Exposure to weightlessness causes severe osteopenia, resulting in raised fracture risk. The current study aimed to investigate whether nicotinamide mononucleotide (NMN) supplementation protected against the osteopenia in hindlimb unloading (HLU) rats in vivo and modeled microgravity-induced osteoblastic dysfunction in vitro. The 3-mo-old rats were exposed to HLU and intragastrically administered NMN every 3 days (500 mg/kg body weight) for 4 weeks. NMN supplementation mitigated HLU-induced bone loss, evidenced by greater bone mass and biomechanical properties and better trabecular bone structure. NMN supplementation mitigated HLU-induced oxidative stress, evidenced by greater levels of nicotinamide adenine dinucleotide and activities of superoxide dismutase 2 and lesser malondialdehyde levels. Modeled microgravity stimulation using rotary wall vessel bioreactor in MC3T3-E1 cells inhibited osteoblast differentiation, which was reversed by NMN treatment. Furthermore, NMN treatment mitigated microgravity-induced mitochondrial impairments, evidenced by lesser reactive oxygen species generation and greater adenosine triphosphate production, mtDNA copy number, and activities of superoxide dismutase 2 and Complex I and II. Additionally, NMN promoted activation of AMP-activated protein kinase (AMPK), evidenced by greater AMPKα phosphorylation. Our research suggested that NMN supplementation attenuated osteoblastic mitochondrial impairment and mitigated osteopenia induced by modeled microgravity.
Collapse
Affiliation(s)
- Yunfei Huang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.99 Yanxiang Road, Xi'an, 710054, Shaanxi Province, China
| | - Yusheng Dou
- Department of Should and Elbow Joint, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Bo Yang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.99 Yanxiang Road, Xi'an, 710054, Shaanxi Province, China
| | - Baorong He
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.99 Yanxiang Road, Xi'an, 710054, Shaanxi Province, China
| | - Xuefang Zhang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.99 Yanxiang Road, Xi'an, 710054, Shaanxi Province, China
| | - Ke Zhang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.99 Yanxiang Road, Xi'an, 710054, Shaanxi Province, China
| | - Xiaobin Yang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.99 Yanxiang Road, Xi'an, 710054, Shaanxi Province, China.
| |
Collapse
|
4
|
Ponzano M, Wiest MJ, Coleman A, Newton E, Pakosh M, Patsakos EM, Magnuson DSK, Giangregorio LM, Craven BC. The use of alkaline phosphatase as a bone turnover marker after spinal cord injury: A scoping review of human and animal studies. J Spinal Cord Med 2023; 46:167-180. [PMID: 34935593 PMCID: PMC9987745 DOI: 10.1080/10790268.2021.1977905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Serum alkaline phosphatase (ALP) is measured as an indicator of bone or liver disease. Bone-specific alkaline phosphatase (B-ALP) is an isoform of ALP found in the bone tissue which can predict fractures and heterotopic ossification. OBJECTIVE The aim of this scoping review was to explore the current use of ALP and B-ALP in studies using humans or animal models of SCI, and to identify ways to advance future research using ALP and B-ALP as a bone marker after SCI. RESULTS HUMAN STUDIES: 42 studies were included. The evidence regarding changes or differences in ALP levels in individuals with SCI compared to controls is conflicting. For example, a negative correlation between B-ALP and total femur BMD was observed in only one of three studies examining the association. B-ALP seemed to increase after administration of teriparatide, and to decrease after treatment with denosumab. The effects of exercise on ALP and B-ALP levels are heterogeneous and depend on the type of exercise performed. ANIMAL STUDIES: 11 studies were included. There is uncertainty regarding the response of ALP or B-ALP levels after SCI; levels increased after some interventions, including vibration protocols, curcumin supplementation, cycles in electromagnetic field or hyperbaric chamber. Calcitonin or bisphosphonate administration did not affect ALP levels. CONCLUSION Researchers are encouraged to measure the bone-specific isoform of ALP rather than total ALP in future studies in humans of animal models of SCI.
Collapse
Affiliation(s)
- Matteo Ponzano
- KITE - Toronto Rehabilitation Institute, University Health Network, Toronto, Canada.,Department of Kinesiology, University of Waterloo, Waterloo, Canada
| | - Matheus J Wiest
- KITE - Toronto Rehabilitation Institute, University Health Network, Toronto, Canada
| | - André Coleman
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Emily Newton
- KITE - Toronto Rehabilitation Institute, University Health Network, Toronto, Canada
| | - Maureen Pakosh
- Library & Information Services, University Health Network, Toronto Rehabilitation Institute, Toronto, Canada
| | - Eleni M Patsakos
- KITE - Toronto Rehabilitation Institute, University Health Network, Toronto, Canada.,Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - David S K Magnuson
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Lora M Giangregorio
- KITE - Toronto Rehabilitation Institute, University Health Network, Toronto, Canada.,Department of Kinesiology, University of Waterloo, Waterloo, Canada.,Schlegel-UW Research Institute for Aging, Waterloo, Canada
| | - B Catharine Craven
- KITE - Toronto Rehabilitation Institute, University Health Network, Toronto, Canada.,Department of Kinesiology, University of Waterloo, Waterloo, Canada.,Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.,Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Gu G, Ren J, Zhu B, Shi Z, Feng S, Wei Z. Multiple mechanisms of curcumin targeting spinal cord injury. Biomed Pharmacother 2023; 159:114224. [PMID: 36641925 DOI: 10.1016/j.biopha.2023.114224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/16/2023] Open
Abstract
Spinal cord injury (SCI) is an irreversible disease process with a high disability and mortality rate. After primary spinal cord injury, the secondary injury may occur in sequence, which is composed of ischemia and hypoxia, excitotoxicity, calcium overload, oxidative stress and inflammation, resulting in massive death of parenchymal cells in the injured area, followed by the formation of syringomyelia. Effectively curbing the process of secondary injury can promote nerve repair and improve functional prognosis. As the main active ingredient in turmeric, curcumin can play an important role in reducing inflammation and oxidation, protecting the neurons, and ultimately reducing spinal cord injury. This article reviews the effects of curcumin on the repair of nerve injury, with emphasis on the various mechanisms by which curcumin promotes the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Guangjin Gu
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Ren
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Zhu
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhongju Shi
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiqing Feng
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China.
| | - Zhijian Wei
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
6
|
Carnovali M, Ramoni G, Banfi G, Mariotti M. Herbal Preparation (Bromelain, Papain, Curcuma, Black Pepper) Enhances Mineralization and Reduces Glucocorticoid-Induced Osteoporosis in Zebrafish. Antioxidants (Basel) 2021; 10:antiox10121987. [PMID: 34943090 PMCID: PMC8750159 DOI: 10.3390/antiox10121987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/03/2021] [Accepted: 12/12/2021] [Indexed: 11/30/2022] Open
Abstract
Natural foods with antioxidant properties, such as curcuma, papain, bromelain and black pepper, have been indicated as a potential natural therapeutic approach against osteoporosis. Zebrafish are an excellent animal model to study the effects of herbal preparations on osteogenesis and bone metabolism, both in physiological and in pathological conditions. Our study was aimed at evaluating whether curcuma-bromelain-papain-pepper herbal preparation (CHP) administered in embryos and adult fish is capable of promoting bone wellness in physiological and osteoporotic conditions. The effect of CHP has been studied in embryonic osteogenesis and glucocorticoid-induced osteoporosis (GIOP) in an adult fish model in which drug treatment induces a bone-loss phenotype in adult scales very similar to that which characterizes the bones of human patients. CHP prevented the onset of the osteoporotic phenotype in the scales of GIOP in adult zebrafish, with the osteoblastic and osteoclastic metabolic activity maintaining unaltered. CHP is also able to attenuate an already established GIOP phenotype, even if the alteration is in an advanced phase, partially restoring the normal balance of the bone markers alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) and stimulating anabolic reparative processes. The results obtained indicated CHP as a potential integrative antioxidant therapy in human bone-loss diseases.
Collapse
Affiliation(s)
- Marta Carnovali
- IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20161 Milan, Italy;
| | - Gina Ramoni
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Commenda 10, 20122 Milan, Italy; (G.R.); (G.B.)
| | - Giuseppe Banfi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Commenda 10, 20122 Milan, Italy; (G.R.); (G.B.)
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Massimo Mariotti
- IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20161 Milan, Italy;
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Commenda 10, 20122 Milan, Italy; (G.R.); (G.B.)
- Correspondence:
| |
Collapse
|
7
|
Liu X, Liu M, Turner R, Iwaniec U, Kim H, Halloran B. Dried plum mitigates spinal cord injury-induced bone loss in mice. JOR Spine 2020; 3:e1113. [PMID: 33392451 PMCID: PMC7770201 DOI: 10.1002/jsp2.1113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 11/07/2022] Open
Abstract
Spinal cord injury (SCI) is accompanied by rapid loss of bone and increased risk of low impact fractures. Current pharmacological treatment approaches have proven to be relatively ineffective in preventing or treating bone loss after SCI. Dietary supplementation with dried plum (DP) has been shown to have dramatic effects on bone in various other disease models. In this study, we tested the efficacy of DP in preventing bone loss after SCI and restoring bone that has already been lost in response to SCI. Male C57BL/6J mice (3-month-old) underwent SCI and were fed a diet containing 25% DP by weight or a control diet for up to 4 weeks to assess whether DP can prevent bone loss. To determine whether DP could restore bone already lost due to SCI, mice were put on a control diet for 2 weeks (to allow bone loss) and then shifted to a DP supplemented diet for an additional 2 weeks. The skeletal responses to SCI and dietary supplementation with DP were assessed using microCT analysis, bone histomorphometry and strength testing. Dietary supplementation with DP completely prevented the loss of bone and bone strength induced by SCI in acutely injured mice. DP also could restore a fraction of the bone lost and attenuate the loss of bone strength after SCI. These results suggest that dietary supplementation with DP or factors derived from DP may prove to be an effective treatment for the loss of bone in patients with SCI.
Collapse
Affiliation(s)
- Xuhui Liu
- San Francisco Veterans Affairs Medical CenterDepartment of Veterans AffairsSan FranciscoCaliforniaUSA
- Department of Orthopedic SurgeryUniversity of California at San FranciscoSan FranciscoCaliforniaUSA
| | - Mengyao Liu
- San Francisco Veterans Affairs Medical CenterDepartment of Veterans AffairsSan FranciscoCaliforniaUSA
- Department of Orthopedic SurgeryUniversity of California at San FranciscoSan FranciscoCaliforniaUSA
| | - Russell Turner
- Skeletal Biology Laboratory, College of Public Health and Human ScienceOregon State UniversityCorvallisOregonUSA
| | - Urszula Iwaniec
- Skeletal Biology Laboratory, College of Public Health and Human ScienceOregon State UniversityCorvallisOregonUSA
| | - Hubert Kim
- San Francisco Veterans Affairs Medical CenterDepartment of Veterans AffairsSan FranciscoCaliforniaUSA
- Department of Orthopedic SurgeryUniversity of California at San FranciscoSan FranciscoCaliforniaUSA
| | - Bernard Halloran
- San Francisco Veterans Affairs Medical CenterDepartment of Veterans AffairsSan FranciscoCaliforniaUSA
- Department of MedicineUniversity of California at San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
8
|
Li H, Yue L, Xu H, Li N, Li J, Zhang Z, Zhao RC. Curcumin suppresses osteogenesis by inducing miR-126a-3p and subsequently suppressing the WNT/LRP6 pathway. Aging (Albany NY) 2019; 11:6983-6998. [PMID: 31480018 PMCID: PMC6756869 DOI: 10.18632/aging.102232] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 08/18/2019] [Indexed: 12/15/2022]
Abstract
Curcumin, a natural phenolic biphenyl compound derived from the plant Curcuma longa, modulates multiple steps of carcinogenesis partly by affecting the expression of miRNAs. Interestingly, cancer development shares many of the same signalling pathways with bone formation. Reduced bone mass creates favourable conditions for tumor metastasis. However, the effects and mechanism of curcumin on bone formation and osteogenesis are relatively unknown and controversial. We demonstrated that curcumin inhibited osteogenesis of human adipose-derived mesenchymal stem cells (hADSCs) in a concentration-dependent manner. In hADSCs, curcumin modulates the expression of a series of miRNAs, including miR-126a-3p, during osteogenesis. Overexpression or inhibition of miR-126a-3p is required for the effect of curcumin on osteogenesis. Further investigation indicated that miR-126a-3p directly targets and inhibits LRP6 through binding to its 3’-UTR, and then blocks WNT activation. Our findings suggest that the use of curcumin as an anti-tumor agent may lead to decreased bone mass through the suppression of osteogenesis. Knowing whether the long-term or high doses use of curcumin will cause decreased bone mass and bone density, which might increase the potential threat of tumor metastasis, also requires a neutral assessment of the role of curcumin in both regulating bone formation and bone absorption.
Collapse
Affiliation(s)
- Hongling Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing 100005, China
| | - Lifeng Yue
- Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Haoying Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing 100005, China
| | - Na Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing 100005, China
| | - Jing Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing 100005, China
| | - Zhiguo Zhang
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing 100005, China
| |
Collapse
|
9
|
Li C, Miao X, Li F, Adhikari BK, Liu Y, Sun J, Zhang R, Cai L, Liu Q, Wang Y. Curcuminoids: Implication for inflammation and oxidative stress in cardiovascular diseases. Phytother Res 2019; 33:1302-1317. [PMID: 30834628 DOI: 10.1002/ptr.6324] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/28/2018] [Accepted: 01/31/2019] [Indexed: 01/04/2023]
Abstract
It has been extensively verified that inflammation and oxidative stress play important roles in the pathogenesis of cardiovascular diseases (CVDs). Curcuminoids, from the plant Curcuma longa, have three major active ingredients, which include curcumin (curcumin I), demethoxycurcumin, and bisdemethoxycurcumin. Curcuminoids have been used in traditional medicine for CVDs' management and other comorbidities for centuries. Numerous studies had delineated their anti-inflammatory, antioxidative, and other medicinally relevant properties. Animal experiments and clinical trials have also demonstrated that turmeric and curcuminoids can effectively reduce atherosclerosis, cardiac hypertrophy, hypertension, ischemia/reperfusion injury, and diabetic cardiovascular complications. In this review, we introduce and summarize curcuminoids' molecular and biological significance, while focusing on their mechanistic anti-inflammatory/antioxidative involvements in CVDs and preventive effects against CVDs, and, finally, discuss relevant clinical applications.
Collapse
Affiliation(s)
- Cheng Li
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiao Miao
- Department of ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Fengsheng Li
- General Hospital of the PLA Rocket Force, Beijing, China
| | - Binay Kumar Adhikari
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yucheng Liu
- A.T. Still University School of Osteopathic Medicine in Arizona, Mesa, AZ, USA
| | - Jian Sun
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Rong Zhang
- General Hospital of the PLA Rocket Force, Beijing, China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, Radiation Oncology, Pharmacology & Toxicology, The University of Louisville, Louisville, KY, USA
| | - Quan Liu
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yonggang Wang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
10
|
Torre E. Molecular signaling mechanisms behind polyphenol-induced bone anabolism. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2017; 16:1183-1226. [PMID: 29200988 PMCID: PMC5696504 DOI: 10.1007/s11101-017-9529-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/20/2017] [Indexed: 05/08/2023]
Abstract
For millennia, in the different cultures all over the world, plants have been extensively used as a source of therapeutic agents with wide-ranging medicinal applications, thus becoming part of a rational clinical and pharmacological investigation over the years. As bioactive molecules, plant-derived polyphenols have been demonstrated to exert many effects on human health by acting on different biological systems, thus their therapeutic potential would represent a novel approach on which natural product-based drug discovery and development could be based in the future. Many reports have provided evidence for the benefits derived from the dietary supplementation of polyphenols in the prevention and treatment of osteoporosis. Polyphenols are able to protect the bone, thanks to their antioxidant properties, as well as their anti-inflammatory actions by involving diverse signaling pathways, thus leading to bone anabolic effects and decreased bone resorption. This review is meant to summarize the research works performed so far, by elucidating the molecular mechanisms of action of polyphenols in a bone regeneration context, aiming at a better understanding of a possible application in the development of medical devices for bone tissue regeneration.
Collapse
Affiliation(s)
- Elisa Torre
- Nobil Bio Ricerche srl, Via Valcastellana, 26, 14037 Portacomaro, AT Italy
| |
Collapse
|
11
|
Yang X, Hao D, Zhang H, Liu B, Yang M, He B. Treatment with hydrogen sulfide attenuates sublesional skeletal deterioration following motor complete spinal cord injury in rats. Osteoporos Int 2017; 28:687-695. [PMID: 27591786 DOI: 10.1007/s00198-016-3756-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/23/2016] [Indexed: 11/28/2022]
Abstract
UNLABELLED Treatment with hydrogen sulfide mitigates spinal cord injury-induced sublesional bone loss, possibly through abating oxidative stress, suppressing MMP activity, and activating Wnt/β-catenin signaling. INTRODUCTION Spinal cord injury (SCI)-induced sublesional bone loss represents the most severe osteoporosis and is resistant to available treatments to data. The present study was undertaken to explore the therapeutic potential of hydrogen sulfide (H2S) against osteoporosis in a rodent model of motor complete SCI. METHODS SCI was generated by surgical transaction of the cord at the T3-T4 levels in rats. Treatment with NaHS was initiated through intraperitoneal injection of 0.1 ml/kg/day of 0.28 mol/l NaHS from 12 h following the surgery and over 14 subsequent days. RESULTS H2S levels in plasma of SCI rats were lower, which was restored by treatment with exogenous H2S. Treatment of SCI rats with exogenous H2S had no significant effect on body mass but increased bone mineral density in femurs and tibiae, increased BV/TV, Tb.Th, and Tb.N and reduced Tb.Sp in proximal tibiae, and increased mineral apposition rate (MAR), bone formation rate (BFR), and osteoblast surface and reduced eroded surface and osteoclast surface in proximal tibiae. More importantly, H2S treatment led to a significant enhancement in ultimate load, stiffness, and energy to max force of femoral diaphysis. Treatment of SCI rats with exogenous H2S reduced malondialdehyde (MDA) levels in serum and femurs, decreased hydroxyproline levels, suppressed activities of matrix metallopeptidase 9 (MMP9), and upregulated Wnt3a, Wnt6, Wnt10, and ctnnb1 expression in femurs. CONCLUSION Treatment with H2S mitigates SCI-induced sublesional bone loss, possibly through abating oxidative stress, suppressing MMP activity, and activating Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- X Yang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Youyi East Road 555, Xi'an, 710054, China
| | - D Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Youyi East Road 555, Xi'an, 710054, China
| | - H Zhang
- Diagnostic Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| | - B Liu
- Diagnostic Center, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710054, China
| | - M Yang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Youyi East Road 555, Xi'an, 710054, China
| | - B He
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Youyi East Road 555, Xi'an, 710054, China.
| |
Collapse
|