1
|
Tiligada E, Stefanaki C, Ennis M, Neumann D. Opportunities and challenges in the therapeutic exploitation of histamine and histamine receptor pharmacology in inflammation-driven disorders. Pharmacol Ther 2024; 263:108722. [PMID: 39306197 DOI: 10.1016/j.pharmthera.2024.108722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/31/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Inflammation-driven diseases encompass a wide array of pathological conditions characterised by immune system dysregulation leading to tissue damage and dysfunction. Among the myriad of mediators involved in the regulation of inflammation, histamine has emerged as a key modulatory player. Histamine elicits its actions through four rhodopsin-like G-protein-coupled receptors (GPCRs), named chronologically in order of discovery as histamine H1, H2, H3 and H4 receptors (H1-4R). The relatively low affinity H1R and H2R play pivotal roles in mediating allergic inflammation and gastric acid secretion, respectively, whereas the high affinity H3R and H4R are primarily linked to neurotransmission and immunomodulation, respectively. Importantly, however, besides the H4R, both H1R and H2R are also crucial in driving immune responses, the H2R tending to promote yet ill-defined and unexploited suppressive, protective and/or resolving processes. The modulatory action of histamine via its receptors on inflammatory cells is described in detail. The potential therapeutic value of the most recently discovered H4R in inflammatory disorders is illustrated via a selection of preclinical models. The clinical trials with antagonists of this receptor are discussed and possible reasons for their lack of success described.
Collapse
Affiliation(s)
- Ekaterini Tiligada
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Charikleia Stefanaki
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; University Research Institute of Maternal and Child Health and Precision Medicine, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Madeleine Ennis
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast, UK
| | - Detlef Neumann
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Fiorani M, Del Vecchio LE, Dargenio P, Kaitsas F, Rozera T, Porcari S, Gasbarrini A, Cammarota G, Ianiro G. Histamine-producing bacteria and their role in gastrointestinal disorders. Expert Rev Gastroenterol Hepatol 2023; 17:709-718. [PMID: 37394958 DOI: 10.1080/17474124.2023.2230865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/22/2023] [Indexed: 07/04/2023]
Abstract
INTRODUCTION Gut microbiota produces thousands of metabolites, which have a huge impact on the host health. Specific microbial strains are able to synthesize histamine, a molecule with a crucial role in many physiologic and pathologic mechanisms of the host. This function is mediated by the histidine decarboxylase enzyme (HDC) that converts the amino acid histidine to histamine. AREAS COVERED This review summarizes the emerging data on histamine production by gut microbiota, and the effect of bacterial-derived histamine in different clinical contexts, including cancer, irritable bowel syndrome, and other gastrointestinal and extraintestinal pathologies. This review will also outline the impact of histamine on the immune system and the effect of probiotics that can secrete histamine. Search methodology: we searched the literature on PubMed up to February 2023. EXPERT OPINION The potential of modulating gut microbiota to influence histamine production is a promising area of research, and although our knowledge of histamine-secreting bacteria is still limited, recent advances are exploring their diagnostic and therapeutical potential. Diet, probiotics, and pharmacological treatments directed to the modulation of histamine-secreting bacteria may in the future potentially be employed in the prevention and management of several gastrointestinal and extraintestinal disorders.
Collapse
Affiliation(s)
- Marcello Fiorani
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Livio Enrico Del Vecchio
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Pasquale Dargenio
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Kaitsas
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Tommaso Rozera
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Serena Porcari
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| |
Collapse
|
3
|
Histamine Activates Human Eosinophils via H2R and H4R Predominantly in Atopic Dermatitis Patients. Int J Mol Sci 2022; 23:ijms231810294. [PMID: 36142206 PMCID: PMC9499661 DOI: 10.3390/ijms231810294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Atopic dermatitis (AD) is maintained by a variety of cells and inflammatory mediators, including eosinophils and histamine. We recently reported that eosinophils from AD patients highly express the H4R. However, its immunomodulatory function in eosinophils is still largely unexplored. In this study, transcriptome analysis of blood eosinophils from AD patients stimulated with histamine and the H4R agonist ST-1006 revealed several regulated genes (e.g., IL-18R, IL-1RL1, PDE4B, CXCR4) involved in inflammation. Subsequently, the impact of histamine on one of the strongly regulated genes, the IL-18 receptor (IL-18Rα), was investigated in detail. Stimulation with histamine induced the upregulation of IL-18Rα at mRNA and at the protein level in human eosinophils, which was more pronounced in cells from AD patients than in cells from healthy controls. IL-18 was upregulated via histamine as well. After pre-incubation with histamine and IFN-γ, subsequent stimulation with IL-18 resulted in an increased ECP mRNA expression. The activation of eosinophils by histamine, in combination with IFN-γ and IL-5, was also accompanied by an upregulation of CD69. Thus, our results indicate a crucial role of histamine in the upregulation of the IL-18/IL-18R axis and in the activation of human eosinophils from AD patients.
Collapse
|
4
|
Zhou B, Li J, Liu R, Zhu L, Peng C. The Role of Crosstalk of Immune Cells in Pathogenesis of Chronic Spontaneous Urticaria. Front Immunol 2022; 13:879754. [PMID: 35711438 PMCID: PMC9193815 DOI: 10.3389/fimmu.2022.879754] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic spontaneous urticaria (CSU) is defined as recurrent episodes of spontaneous wheal development and/or angioedema for more than six weeks and at least twice a week. The core link in the pathogenesis of CSU is the activation of mast cells, T cells, eosinophils, and other immune cells infiltrating around the small venules of the lesion. Increased vascular permeability, vasodilatation, and recruitment of inflammatory cells directly depend on mast cell mediators’ release. Complex regulatory systems tightly influence the critical roles of mast cells in the local microenvironment. The bias toward Th2 inflammation and autoantibodies derived from B cells, histamine expressed by basophils, and initiation of the extrinsic coagulation pathway by eosinophils or monocytes exerts powerful modulatory influences on mast cells. Cell-to-cell interactions between mast cells and eosinophils/T cells also are regulators of their function and may involve CSU’s pathomechanism. This review summarizes up-to-date knowledge regarding the crosstalk between mast cells and other immune cells, providing the impetus to develop new research concepts and treatment strategies for CSU.
Collapse
Affiliation(s)
- Bingjing Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Runqiu Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Cong Peng,
| |
Collapse
|
5
|
Wang Y, Han Z, Wang Y, Yan Y, Pan Z, Zhu H, Li H, Tao C, Liu P, Wang Y, Tang C, Jin H, Du J. Risk factors of sitting-induced tachycardia syndrome in children and adolescents. PLoS One 2022; 17:e0265364. [PMID: 35303039 PMCID: PMC8932569 DOI: 10.1371/journal.pone.0265364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 03/01/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The study was designed to explore the risk factors for sitting-induced tachycardia syndrome (STS) in children and adolescents. METHODS AND RESULTS In this case-control study, 46 children with STS and 184 healthy children and adolescents were recruited. Demographic characteristics, lifestyle habits, allergy history, and family history were investigated using a questionnaire. The changes in heart rate and blood pressure from supine to sitting were monitored using a sitting test. The possible differences between STS patients and healthy children were analyzed using univariate analysis. Logistic regression analysis was used to explore the independent risk factors for STS. Univariate analysis showed that the daily sleeping time of the STS children were significantly shorter than that of the control group [(8.8 ± 1.2) hours/day vs. (9.3 ± 1.0) hours/day, P = 0.009], and the proportion of positive family history of syncope in the STS patients was higher than the controls (4/42 vs. 3/181, P = 0.044). Multivariate logistic regression studies showed that reduced daily sleeping time was an independent risk factor of STS in children (P = 0.006). Furthermore, when daily sleeping time was prolonged by 1 h, the risk of STS was decreased by 37.3%. CONCLUSION Reduced daily sleeping was an independent risk factor for STS in children and adolescents.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Zhenhui Han
- Department of Cardiology, Children’s Hospital of Kaifeng, Henan, China
| | - Yaru Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yongqiang Yan
- Department of Cardiology, Children’s Hospital of Kaifeng, Henan, China
| | - Zhitao Pan
- Department of Cardiology, Children’s Hospital of Kaifeng, Henan, China
| | - Hanwen Zhu
- Department of Pediatric Surgery, Children’s Hospital of Kaifeng, Henan, China
| | - Hongxia Li
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Chunyan Tao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ping Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuli Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Chaoshu Tang
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
- Department of Physiology and Pathophysiology, Health Science Centre, Peking University, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| |
Collapse
|
6
|
Identification of inflammatory markers in eosinophilic cells of the immune system: fluorescence, Raman and CARS imaging can recognize markers but differently. Cell Mol Life Sci 2021; 79:52. [PMID: 34936035 PMCID: PMC8739296 DOI: 10.1007/s00018-021-04058-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/23/2021] [Accepted: 12/21/2021] [Indexed: 11/04/2022]
Abstract
Eosinophils (Eos) play an important role in the immune system’s response releasing several inflammatory factors and contributing to allergic rhinitis, asthma, or atopic dermatitis. Since Eos have a relatively short lifetime after isolation from blood, usually eosinophilic cell line (EoL-1) is used to study mechanisms of their activation and to test therapies. In particular, EoL-1 cells are examined in terms of signalling pathways of the inflammatory response manifested by the presence of lipid bodies (LBs). Here we examined the differences in response to inflammation modelled by various factors, between isolated human eosinophils and EoL-1 cells, as manifested in the number and chemical composition of LBs. The analysis was performed using fluorescence, Raman, and coherent anti-Stokes Raman scattering (CARS) microscopy, which recognised the inflammatory process in the cells, but it is manifested slightly differently depending on the method used. We showed that unstimulated EoL-1 cells, compared to isolated eosinophils, contained more LBs, displayed different nucleus morphology and did not have eosinophilic peroxidase (EPO). In EoL-1 cells stimulated with various proinflammatory agents, including butyric acid (BA), liposaccharide (LPS), or cytokines (IL-1β, TNF-α), an increased production of LBs with a various degree of lipid unsaturation was observed in spontaneous Raman spectra. Furthermore, stimulation of EoL-1 cells resulted in alterations of the LBs morphology. In conclusion, a level of lipid unsaturation and eosinophilic peroxidase as well as LBs distribution among cell population mainly accounted for the biochemistry of eosinophils upon inflammation.
Collapse
|
7
|
The Function of the Histamine H4 Receptor in Inflammatory and Inflammation-Associated Diseases of the Gut. Int J Mol Sci 2021; 22:ijms22116116. [PMID: 34204101 PMCID: PMC8200986 DOI: 10.3390/ijms22116116] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Histamine is a pleiotropic mediator involved in a broad spectrum of (patho)-physiological processes, one of which is the regulation of inflammation. Compounds acting on three out of the four known histamine receptors are approved for clinical use. These approved compounds comprise histamine H1-receptor (H1R) antagonists, which are used to control allergic inflammation, antagonists at H2R, which therapeutically decrease gastric acid release, and an antagonist at H3R, which is indicated to treat narcolepsy. Ligands at H4R are still being tested pre-clinically and in clinical trials of inflammatory diseases, including rheumatoid arthritis, asthma, dermatitis, and psoriasis. These trials, however, documented only moderate beneficial effects of H4R ligands so far. Nevertheless, pre-clinically, H4R still is subject of ongoing research, analyzing various inflammatory, allergic, and autoimmune diseases. During inflammatory reactions in gut tissues, histamine concentrations rise in affected areas, indicating its possible biological effect. Indeed, in histamine-deficient mice experimentally induced inflammation of the gut is reduced in comparison to that in histamine-competent mice. However, antagonists at H1R, H2R, and H3R do not provide an effect on inflammation, supporting the idea that H4R is responsible for the histamine effects. In the present review, we discuss the involvement of histamine and H4R in inflammatory and inflammation-associated diseases of the gut.
Collapse
|
8
|
Grosicki M, Adami M, Micheloni C, Głuch-Lutwin M, Siwek A, Latacz G, Łażewska D, Więcek M, Reiner-Link D, Stark H, Chlopicki S, Kieć-Kononowicz K. Eosinophils adhesion assay as a tool for phenotypic drug screening - The pharmacology of 1,3,5 - Triazine and 1H-indole like derivatives against the human histamine H 4 receptor. Eur J Pharmacol 2020; 890:173611. [PMID: 33017589 DOI: 10.1016/j.ejphar.2020.173611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 11/18/2022]
Abstract
Histamine is a pleiotropic biogenic amine, having affinity towards four distinct histamine receptors. The existing pharmacological studies suggest the usefulness of histamine H4 receptor ligands in the treatment of many inflammatory and immunomodulatory diseases, including allergic rhinitis, asthma, atopic dermatitis, colitis or pruritus. Up to date, several potent histamine H4 receptor ligands were developed, none of which was registered as a drug yet. In this study, a series of potent indole-like and triazine derivatives were tested, in radioligand displacement and functional assays at histamine H4 receptor, as well as in human eosinophils adhesion assay to endothelium. For selected compounds permeability, cytotoxicity, metabolic and in vivo studies were conducted. Adhesion assay differentiated the activity of different groups of compounds with a known affinity towards the histamine H4 receptor. Most of the tested compounds downregulated the number of adherent cells. However, adhesion assay revealed additional properties of tested compounds that had not been detected in radioligand displacement and aequorin-based functional assays. Furthermore, for some tested compounds, these abnormal effects were confirmed during the in vivo studies. In conclusion, eosinophils adhesion assay uncovered pharmacological activity of histamine H4 receptor ligands that has been later confirmed in vivo, underscoring the value of well-suited cell-based phenotypic screening approach in drug discovery.
Collapse
Key Words
- 1,3,5 – Triazine derivatives
- 1H-Indole like derivatives
- 1H-indole like derivatives
- Adhesion
- Endothelium
- Eosinophils
- Histamine
- Histamine receptors
- JN-25 (4-[(E)-2-(3-chlorophenyl)ethenyl]-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine)
- JN-35 (4-(4-methylpiperazin-1-yl)-6-(3-phenylpropyl)-1,3,5-triazin-2-amine)
- JNJ10191584 (5-chloro-1H-benzo[d]imidazol-2-yl)(4-methylpiperazin-1-yl)methanone) Pub- Chem CID: 10446295)
- JNJ7777120 (5-chloro-1H-indol-2-yl)(4-methylpiperazin-1-yl)methanone) Pub- Chem CID: 4908365)
- KP-9D (2-(4-chlorophenyl)-4-(4-methylpiperazin-1-yl)-1,3,5-triazine)
- MWJ-3 (5-chloro-7-nitro-1H-indol-2-yl)(4-methylpiperazin-1-yl)methanone Pub- Chem CID: 70692530)
- TR-18 (4-(4-bromophenyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine)
- TR-7 (4-(4-chlorophenyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine)
- TR-AF-45 (4-(4-methylpiperazin-1-yl)-6-neopentyl-1,3,5-triazin-2-amine)
- TR-AF-49 (4-(cyclohexylmethyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine)
- TR-DL-20 (4-(1-cyclohexenylmethyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine)
Collapse
Affiliation(s)
- Marek Grosicki
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9, 30-688, Kraków, Poland; Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzyńskiego 14, 30-348, Krakow, Poland
| | - Maristella Adami
- University of Parma, Department of Medicine and Surgery, Via Gramsci 14, 43126, Parma, Italy
| | - Cristina Micheloni
- University of Parma, Department of Medicine and Surgery, Via Gramsci 14, 43126, Parma, Italy
| | - Monika Głuch-Lutwin
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacobiology, Medyczna 9, 30-688, Kraków, Poland
| | - Agata Siwek
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacobiology, Medyczna 9, 30-688, Kraków, Poland
| | - Gniewomir Latacz
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9, 30-688, Kraków, Poland
| | - Dorota Łażewska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9, 30-688, Kraków, Poland
| | - Małgorzata Więcek
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9, 30-688, Kraków, Poland
| | - David Reiner-Link
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitätsstraße 1, 40225, Duesseldorf, Germany
| | - Holger Stark
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitätsstraße 1, 40225, Duesseldorf, Germany
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzyńskiego 14, 30-348, Krakow, Poland; Chair of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, 31-531, Krakow, Poland
| | - Katarzyna Kieć-Kononowicz
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9, 30-688, Kraków, Poland.
| |
Collapse
|
9
|
Eosinophils and Neutrophils-Molecular Differences Revealed by Spontaneous Raman, CARS and Fluorescence Microscopy. Cells 2020; 9:cells9092041. [PMID: 32906767 PMCID: PMC7563840 DOI: 10.3390/cells9092041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
Leukocytes are a part of the immune system that plays an important role in the host’s defense against viral, bacterial, and fungal infections. Among the human leukocytes, two granulocytes, neutrophils (Ne) and eosinophils (EOS) play an important role in the innate immune system. For that purpose, eosinophils and neutrophils contain specific granules containing protoporphyrin-type proteins such as eosinophil peroxidase (EPO) and myeloperoxidase (MPO), respectively, which contribute directly to their anti-infection activity. Since both proteins are structurally and functionally different, they could potentially be a marker of both cells’ types. To prove this hypothesis, UV−Vis absorption spectroscopy and Raman imaging were applied to analyze EPO and MPO and their content in leukocytes isolated from the whole blood. Moreover, leukocytes can contain lipidic structures, called lipid bodies (LBs), which are linked to the regulation of immune responses and are considered to be a marker of cell inflammation. In this work, we showed how to determine the number of LBs in two types of granulocytes, EOS and Ne, using fluorescence and coherent anti-Stokes Raman scattering (CARS) microscopy. Spectroscopic differences of EPO and MPO can be used to identify these cells in blood samples, while the detection of LBs can indicate the cell inflammation process.
Collapse
|
10
|
Mehta P, Miszta P, Rzodkiewicz P, Michalak O, Krzeczyński P, Filipek S. Enigmatic Histamine Receptor H 4 for Potential Treatment of Multiple Inflammatory, Autoimmune, and Related Diseases. Life (Basel) 2020; 10:E50. [PMID: 32344736 PMCID: PMC7235846 DOI: 10.3390/life10040050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
The histamine H4 receptor, belonging to the family of G-protein coupled receptors, is an increasingly attractive drug target. It plays an indispensable role in many cellular pathways, and numerous H4R ligands are being studied for the treatment of several inflammatory, allergic, and autoimmune disorders, including pulmonary fibrosis. Activation of H4R is involved in cytokine production and mediates mast cell activation and eosinophil chemotaxis. The importance of this receptor has also been shown in inflammatory models: peritonitis, respiratory tract inflammation, colitis, osteoarthritis, and rheumatoid arthritis. Recent studies suggest that H4R acts as a modulator in cancer, neuropathic pain, vestibular disorders, and type-2 diabetes, however, its role is still not fully understood.
Collapse
Affiliation(s)
- Pakhuri Mehta
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland or (P.M.); (P.M.)
| | - Przemysław Miszta
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland or (P.M.); (P.M.)
| | - Przemysław Rzodkiewicz
- Department of General and Experimental Pathology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Olga Michalak
- Łukasiewicz Research Network-Pharmaceutical Research Institute, 01-793 Warsaw, Poland; (O.M.); (P.K.)
| | - Piotr Krzeczyński
- Łukasiewicz Research Network-Pharmaceutical Research Institute, 01-793 Warsaw, Poland; (O.M.); (P.K.)
| | - Sławomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland or (P.M.); (P.M.)
| |
Collapse
|
11
|
Rygula A, Fernandes RF, Grosicki M, Kukla B, Leszczenko P, Augustynska D, Cernescu A, Dorosz A, Malek K, Baranska M. Raman imaging highlights biochemical heterogeneity of human eosinophils versus human eosinophilic leukaemia cell line. Br J Haematol 2019; 186:685-694. [PMID: 31134616 DOI: 10.1111/bjh.15971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/19/2019] [Indexed: 01/21/2023]
Abstract
Eosinophils are acidophilic granulocytes that develop in the bone marrow. Although their population contributes only to approximately 1-6% of all leucocytes present in the human blood, they possess a wide range of specific functions. They play a key role in inflammation-regulating processes, when their numbers can increased to above 5 × 109 /l of peripheral blood. Their characteristic feature is the presence of granules containing eosinophil peroxidase (EPO), the release of which can trigger a cascade of events promoting oxidative stress, apoptosis or necrosis, leading finally to cell death. Raman spectroscopy is a powerful technique to detect EPO, which comprises a chromophore protoporphyrin IX. Another cell structure associated with inflammation processes are lipid bodies (lipid-rich organelles), also well recognized and imaged using high resolution confocal Raman spectroscopy. In this work, eosinophils isolated from the blood of a human donor were analysed versus their model, EoL-1 human eosinophilic leukaemia cell line, by Raman spectroscopic imaging. We showed that EPO was present only in primary cells and not found in the cell line. Eosinophils were activated using phorbol 12-myristate 13-acetate, which resulted in lipid bodies formation. An effect of cells stimulation was studied and compared for eosinophils and EoL-1.
Collapse
Affiliation(s)
- Anna Rygula
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Rafaella F Fernandes
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Marek Grosicki
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland.,Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Bozena Kukla
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | | | - Dominika Augustynska
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | | | - Aleksandra Dorosz
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland.,Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland.,Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland.,Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| |
Collapse
|
12
|
VAS2870 Inhibits Histamine-Induced Calcium Signaling and vWF Secretion in Human Umbilical Vein Endothelial Cells. Cells 2019; 8:cells8020196. [PMID: 30813397 PMCID: PMC6406370 DOI: 10.3390/cells8020196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/15/2019] [Accepted: 02/22/2019] [Indexed: 12/15/2022] Open
Abstract
In this study, we investigated the effects of NAD(P)H oxidase (NOX) inhibitor VAS2870 (3-benzyl-7-(2-benzoxazolyl)thio-1,2,3-triazolo[4,5-d]pyrimidine) on the histamine-induced elevation of free cytoplasmic calcium concentration ([Ca2+]i) and the secretion of von Willebrand factor (vWF) in human umbilical vein endothelial cells (HUVECs) and on relaxation of rat aorta in response to histamine. At 10 μM concentration, VAS2870 suppressed the [Ca2+]i rise induced by histamine. Inhibition was not competitive, with IC50 3.64 and 3.22 μM at 1 and 100 μM concentrations of histamine, respectively. There was no inhibition of [Ca2+]i elevation by VAS2870 in HUVECs in response to the agonist of type 1 protease-activated receptor SFLLRN. VAS2870 attenuated histamine-induced secretion of vWF and did not inhibit basal secretion. VAS2870 did not change the degree of histamine-induced relaxation of rat aortic rings constricted by norepinephrine. We suggest that NOX inhibitors might be used as a tool for preventing thrombosis induced by histamine release from mast cells without affecting vasorelaxation.
Collapse
|
13
|
Histamine and diabetic nephropathy: an up-to-date overview. Clin Sci (Lond) 2019; 133:41-54. [PMID: 30606813 DOI: 10.1042/cs20180839] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/22/2018] [Accepted: 12/10/2018] [Indexed: 01/10/2023]
Abstract
The classification of diabetic nephropathy (DN) as a vascular complication of diabetes makes the possible involvement of histamine, an endogenous amine that is well known for its vasoactive properties, an interesting topic for study. The aim of the present review is to provide an extensive overview of the possible involvement of histamine in the onset and progression of DN. The evidence collected on the role of histamine in kidney function together with its well-known pleiotropic action suggest that this amine may act simultaneously on glomerular hyperfiltration, tubular inflammation, fibrosis development and tubular hypertrophy.
Collapse
|
14
|
Tiligada E, Ennis M. Histamine pharmacology: from Sir Henry Dale to the 21st century. Br J Pharmacol 2018; 177:469-489. [PMID: 30341770 DOI: 10.1111/bph.14524] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/30/2018] [Accepted: 10/08/2018] [Indexed: 12/28/2022] Open
Abstract
Histamine has been one of the most studied substances in medicine, playing a major role in diverse (patho)physiological processes. It elicits its multifaceted modulatory functions by activating four types of GPCRs, designated as H1-4 . Despite the heterogeneity and the complexity of histamine receptor pharmacology, many discoveries over the past 100 years resulted in the development of H1 antihistamines and H2 -targeting 'blockbuster' therapeutics for the management of allergies and gastrointestinal disorders respectively. Recently, a first-in-class H3 inverse agonist was approved for the treatment of narcolepsy, whereas H4 antagonists are under clinical evaluation for their potential therapeutic exploitation in immune-related diseases. This review critically presents the past successes and drawbacks in histamine research, complemented by the modern conceptual innovations in molecular and receptor pharmacology. It targets both young and experienced researchers in an ongoing effort to stimulate novel insights for the dissection of the translational potential of histamine pharmacology. LINKED ARTICLES: This article is part of a themed section on New Uses for 21st Century. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.3/issuetoc.
Collapse
Affiliation(s)
- Ekaterini Tiligada
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Madeleine Ennis
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|