1
|
Seck I, Ndoye SF, Kapchoup MVK, Nguemo F, Ciss I, Ba LA, Ba A, Sokhna S, Seck M. Effects of plant extracts and derivatives on cardiac K +, Nav, and Ca v channels: a review. Nat Prod Res 2024:1-28. [PMID: 38586947 DOI: 10.1080/14786419.2024.2337112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/24/2024] [Indexed: 04/09/2024]
Abstract
Natural products (NPs) are endless sources of compounds for fighting against several pathologies. Many dysfunctions, including cardiovascular disorders, such as cardiac arrhythmias have their modes of action regulation of the concentration of electrolytes inside and outside the cell targeting ion channels. Here, we highlight plant extracts and secondary metabolites' effects on the treatment of related cardiac pathologies on hERG, Nav, and Cav of cardiomyocytes. The natural product's pharmacology of expressed receptors like alpha-adrenergic receptors causes an influx of Ca2+ ions through receptor-operated Ca2+ ion channels. We also examine the NPs associated with cardiac contractions such as myocardial contractility by reducing the L-type calcium current and decreasing the intracellular calcium transient, inhibiting the K+ induced contractions, decreasing amplitude of myocyte shortening and showed negative ionotropic and chronotropic effects due to decreasing cytosolic Ca2+. We examine whether the NPs block potassium channels, particular the hERG channel and regulatory effects on Nav1.7.
Collapse
Affiliation(s)
- Insa Seck
- Laboratoire de Chimie de Coordination Organique, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
- Laboratoire de Chimie Organique et Thérapeutique, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Samba Fama Ndoye
- Laboratoire de Chimie Organique et Thérapeutique, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | | | - Filomain Nguemo
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Ismaila Ciss
- Laboratoire de Chimie Organique et Thérapeutique, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Lalla Aicha Ba
- Laboratoire de Chimie Organique et Thérapeutique, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Abda Ba
- Laboratoire de Chimie Organique et Thérapeutique, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Seynabou Sokhna
- Laboratoire de Chimie Organique et Thérapeutique, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Matar Seck
- Laboratoire de Chimie Organique et Thérapeutique, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| |
Collapse
|
2
|
Tran QT, Pham TD, Nguyen TD, Luu VH, Nghi Do H, Duy Le X, Nguyen PH, Nguyen MC, Luu VC, Pham MQ, Huyen Vu T, Pham TN, Pham DTN. Optimization of Murrayafoline A ethanol extraction process from the roots of Glycosmis stenocarpa, and evaluation of its Tumorigenesis inhibition activity on Hep-G2 cells. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Glycosmis stenocarpa is a species of shrub found in the Northern provinces of Vietnam. Its roots contain different carbazolic derivatives, mainly Murrayafoline A (Mu-A), which exhibits valuable biological activities. In this study, we performed an extraction of Mu-A from the roots of G. stenocarpa and optimized this process using response surface methodology (RSM) according to a central composite design, with three independent parameters including extraction time (min), extraction temperature (°C), and solvent/material ratio (mL/g). Two dependent variables were the Mu-A content (mg/g raw materials) and extraction efficiency (%). The optimal conditions to extract Mu-A were found to be as follows: extraction temperature, 67°C; extraction time, 165 min; and solvent/material ratio, 5:1. Under these conditions, the Mu-A content and extraction efficiency were 38.94 ± 1.31 mg/g raw materials and 34.98 ± 1.18%, respectively. Mu-A exhibited antiproliferation and antitumor-promoting activity against the HepG-2 cell line. The present optimization work of Mu-A extraction from G. stenocarpa roots contributed to the attempt of designing a large-scale extraction process for the compound and further exploitation of its potential in vivo applications.
Collapse
Affiliation(s)
- Quoc Toan Tran
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology , 18 Hoang Quoc Viet St., Cau Giay Dist. , Hanoi 10072 , Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology , Hanoi 10072 , Vietnam
| | - The Dan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST) , 18 Hoang Quoc Viet, Cau Giay , Hanoi , Vietnam
| | - Thanh Duong Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology , 18 Hoang Quoc Viet St., Cau Giay Dist. , Hanoi 10072 , Vietnam
| | - Van Huyen Luu
- Faculty of Environment, Hanoi University of Natural Resources and Environment , No 41A Phu Dien Road, Phu Dien Precinct, North-Tu Liem District , Hanoi , Vietnam
| | - Huu Nghi Do
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology , 18 Hoang Quoc Viet St., Cau Giay Dist. , Hanoi 10072 , Vietnam
| | - Xuan Duy Le
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology , 18 Hoang Quoc Viet St., Cau Giay Dist. , Hanoi 10072 , Vietnam
| | - Phi Hung Nguyen
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology , 18 Hoang Quoc Viet St., Cau Giay Dist. , Hanoi 10072 , Vietnam
| | - Manh Cuong Nguyen
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology , 18 Hoang Quoc Viet St., Cau Giay Dist. , Hanoi 10072 , Vietnam
| | - Van Chinh Luu
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology , 18 Hoang Quoc Viet St., Cau Giay Dist. , Hanoi 10072 , Vietnam
| | - Minh Quan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology , 18 Hoang Quoc Viet St., Cau Giay Dist. , Hanoi 10072 , Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology , Hanoi 10072 , Vietnam
| | - Thi Huyen Vu
- Faculty of Environment, Vietnam National University of Agriculture , Hanoi , Vietnam
| | - Tri Nhut Pham
- Center of Excellence for Biochemistry and Natural Products, Nguyen Tat Thanh University , Ho Chi Minh City , Vietnam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University , Ho Chi Minh City , Vietnam
| | - Dung Thuy Nguyen Pham
- Center of Excellence for Biochemistry and Natural Products, Nguyen Tat Thanh University , Ho Chi Minh City , Vietnam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University , Ho Chi Minh City , Vietnam
| |
Collapse
|
3
|
Zhou HS, Peng DW, Lai YY, Li Q, Zhao JF, Deng CY, Yang H, Li T, Wang ZY, Xu YW, Xue YM, Wu SL, Guo HM, Rao F. Activation of PKCα participates in the reduction of Ikur in atrial myocytes induced by tumour necrosis factor-α. Clin Exp Pharmacol Physiol 2021; 48:435-442. [PMID: 32966616 DOI: 10.1111/1440-1681.13407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 11/30/2022]
Abstract
The atrial-specific ultra-rapid delayed rectifier K+ current (Ikur) plays an important role in the progression of atrial fibrillation (AF). Because inflammation is known to lead to the onset of AF, we aimed to investigate whether tumour necrosis factor-α (TNF-α) played a role in regulating Ikur and the potential signalling pathways involved. Whole-cell patch-clamp and biochemical assays were used to study the regulation and expression of Ikur in myocytes and in tissues from left atrial appendages (LAAs) obtained from patients with sinus rhythm (SR) or AF, as well as in rat cardiomyocytes (H9c2 cells) and mouse atrial myocytes (HL-1 cells). Ikur current density was markedly reduced in atrial myocytes from AF patients compared with SR controls. Reduction of Kv1.5 protein levels was accompanied by increased expression of TNF-α and protein kinase C (PKC)α activation in AF patients. Treatment with TNF-α dose-dependently reduced Ikur and protein expression of Kv1.5 but not Kv3.1b in H9c2 cells and HL-1 cells. TNF-α also increased activity of PKCα. Specific PKCα inhibitor Gö6976 alleviated the reduction in Ikur induced by TNF-α, but not the reduction in Kv1.5 protein. TNF-α was involved in the electrical remodelling associated with AF, probably by depressing Ikur in atrial myocytes via activation of PKCα.
Collapse
Affiliation(s)
- Hui-Shan Zhou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Panyu Central Hospital, Guangzhou, China
| | - De-Wei Peng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Ying-Yu Lai
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Qian Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Jun-Fei Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chun-Yu Deng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Hui Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Teng Li
- Arrhythmia Department, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China
| | - Zhao-Yu Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Yu-Wen Xu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Yu-Mei Xue
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Shu-Lin Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Hui-Ming Guo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fang Rao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| |
Collapse
|
4
|
Protein kinase C-mediated calcium signaling as the basis for cardiomyocyte plasticity. Arch Biochem Biophys 2021; 701:108817. [PMID: 33626379 DOI: 10.1016/j.abb.2021.108817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/03/2021] [Accepted: 02/14/2021] [Indexed: 01/08/2023]
Abstract
Protein kinase C is the superfamily of intracellular effector molecules which control crucial cellular functions. Here, we for the first time did the percentage estimation of all known PKC and PKC-related isozymes at the individual cadiomyocyte level. Broad spectrum of PKC transcripts is expressed in the left ventricular myocytes. In addition to the well-known 'heart-specific' PKCα, cardiomyocytes have the high expression levels of PKCN1, PKCδ, PKCD2, PKCε. In general, we detected all PKC isoforms excluding PKCη. In cardiomyocytes PKC activity tonically regulates voltage-gated Ca2+-currents, intracellular Ca2+ level and nitric oxide (NO) production. Imidazoline receptor of the first type (I1R)-mediated induction of the PKC activity positively modulates Ca2+ release through ryanodine receptor (RyR), increasing the Ca2+ leakage in the cytosol. In cardiomyocytes with the Ca2+-overloaded regions of > 9-10 μm size, the local PKC-induced Ca2+ signaling is transformed to global accompanied by spontaneous Ca2+ waves propagation across the entire cell perimeter. Such switching of Ca2+ signaling in cardiac cells can be important for the development of several cardiovascular pathologies and/or myocardial plasticity at the cardiomyocyte level.
Collapse
|