1
|
Nabeh OA, Saud AI, Amin B, Khedr AS, Amr A, Faoosa AM, Esmat E, Mahmoud YM, Hatem A, Mohamed M, Osama A, Soliman YMA, Elkorashy RI, Elmorsy SA. A Systematic Review of Novel Therapies of Pulmonary Arterial Hypertension. Am J Cardiovasc Drugs 2024; 24:39-54. [PMID: 37945977 PMCID: PMC10805839 DOI: 10.1007/s40256-023-00613-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a progressive, cureless disease, characterized by increased pulmonary vascular resistance and remodeling, with subsequent ventricular dilatation and failure. New therapeutic targets are being investigated for their potential roles in improving PAH patients' symptoms and reversing pulmonary vascular pathology. METHOD We aimed to address the available knowledge from the published randomized controlled trials (RCTs) regarding the role of Rho-kinase (ROCK) inhibitors, bone morphogenetic protein 2 (BMP2) inhibitors, estrogen inhibitors, and AMP-activated protein kinase (AMPK) activators on the PAH evaluation parameters. This systematic review (SR) was registered in the International Prospective Register of Systematic Reviews (PROSPERO) database (CDR42022340658) and followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS Overall, 5092 records were screened from different database and registries; 8 RCTs that met our inclusion criteria were included. The marked difference in the study designs and the variability of the selected outcome measurement tools among the studies made performing a meta-analysis impossible. However, the main findings of this SR relate to the powerful potential of the AMPK activator and the imminent antidiabetic drug metformin, and the BMP2 inhibitor sotatercept as promising PAH-modifying therapies. There is a need for long-term studies to evaluate the effect of the ROCK inhibitor fasudil and the estrogen aromatase inhibitor anastrozole in PAH patients. The role of tacrolimus in PAH is questionable. The discrepancy in the hemodynamic and clinical parameters necessitates defining cut values to predict improvement. The differences in the PAH etiologies render the judgment of the therapeutic potential of the tested drugs challenging. CONCLUSION Metformin and sotatercept appear as promising therapeutic drugs for PAH. CLINICAL TRIALS REGISTRATION This work was registered in PROSPERO (CDR42022340658).
Collapse
Affiliation(s)
- Omnia Azmy Nabeh
- Medical Pharmacology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Alaa I Saud
- Kasralainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Basma Amin
- Kasralainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Alaa Amr
- Kasralainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Eshraka Esmat
- Kasralainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Aya Hatem
- Kasralainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mariam Mohamed
- Kasralainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Alaa Osama
- Kasralainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Reem Ibrahim Elkorashy
- Pulmonology, Pulmonary Medicine Department, Kasr Alainy Hospital, Cairo University, Cairo, Egypt
| | - Soha Aly Elmorsy
- Medical Pharmacology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Chen CG, Yi CF, Chen CF, Tian LQ, Li LW, Yang L, Li ZM, He LQ. Inhibitory Effect of PPARδ Agonist GW501516 on Proliferation of Hypoxia-induced Pulmonary Arterial Smooth Muscle Cells by Regulating the mTOR Pathway. Curr Med Sci 2023; 43:979-987. [PMID: 37606736 DOI: 10.1007/s11596-023-2757-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/03/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVE This study aimed to investigate the effects of the peroxisome proliferator-activated receptor δ (PPARδ) agonist GW501516 on the proliferation of pulmonary artery smooth muscle cells (PASMCs) induced by hypoxia, in order to search for new drugs for the treatment and prevention of pulmonary vascular remodeling. METHODS PASMCs were incubated with different concentrations of GW501516 (10, 30, 100 nmol/L) under the hypoxic condition. The proliferation was determined by a CCK-8 assay. The cell cycle progression was analyzed by flow cytometry. The expression of PPARδ, S phase kinase-associated protein 2 (Skp2), and cell cycle-dependent kinase inhibitor p27 was detected by Western blotting. Then PASMCs were treated with 100 nmol/ L GW501516, 100 nmol/L mammalian target of rapamycin (mTOR) inhibitor rapamycin and/or 2 µmol/L mTOR activator MHY1485 to explore the molecular mechanisms by which GW501516 reduces the proliferation of PASMCs. RESULTS The presented data demonstrated that hypoxia reduced the expression of PPARδ in an oxygen concentration- and time-dependent manner, and GW501516 decreased the proliferation of PASMCs induced by hypoxia by blocking the progression through the G0/G1 to S phase of the cell cycle. In accordance with these findings, GW501516 downregulated Skp2 and upregulated p27 in hypoxia-exposed PASMCs. Further experiments showed that rapamycin had similar effects as GW501516 in inhibiting cell proliferation, arresting the cell cycle, regulating the expression of Skp2 and p27, and inactivating mTOR in hypoxia-exposed PASMCs. Moreover, MHY1485 reversed all the beneficial effects of GW501516 on hypoxia-stimulated PASMCs. CONCLUSION GW501516 inhibited the proliferation of PASMCs induced by hypoxia through blocking the mTOR/Skp2/p27 signaling pathway.
Collapse
Affiliation(s)
- Chang-Gui Chen
- Department of Cardiology, Wuhan No. 1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, 430022, China
| | - Chun-Feng Yi
- Department of Cardiology, Wuhan No. 1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, 430022, China
| | - Chang-Fa Chen
- Shanghai Smartide Biotechnology Co. Ltd., Shanghai, 201203, China
| | - Li-Qun Tian
- Department of Cardiology, Wuhan No. 1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, 430022, China
| | - Li-Wei Li
- Department of Cardiology, Wuhan No. 1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, 430022, China
| | - Li Yang
- Department of Cardiology, Wuhan No. 1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, 430022, China
| | - Zuo-Min Li
- Department of Cardiology, Wuhan No. 1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, 430022, China
| | - Li-Qun He
- Department of Cardiology, Wuhan No. 1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, 430022, China.
| |
Collapse
|
3
|
Tompkins E, Mimic B, Penn RB, Pera T. The biased M3 mAChR ligand PD 102807 mediates qualitatively distinct signaling to regulate airway smooth muscle phenotype. J Biol Chem 2023; 299:105209. [PMID: 37660916 PMCID: PMC10520882 DOI: 10.1016/j.jbc.2023.105209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
Airway smooth muscle (ASM) cells attain a hypercontractile phenotype during obstructive airway diseases. We recently identified a biased M3 muscarinic acetylcholine receptor (mAChR) ligand, PD 102807, that induces GRK-/arrestin-dependent AMP-activated protein kinase (AMPK) activation to inhibit transforming growth factor-β-induced hypercontractile ASM phenotype. Conversely, the balanced mAChR agonist, methacholine (MCh), activates AMPK yet does not regulate ASM phenotype. In the current study, we demonstrate that PD 102807- and MCh-induced AMPK activation both depend on Ca2+/calmodulin-dependent kinase kinases (CaMKKs). However, MCh-induced AMPK activation is calcium-dependent and mediated by CaMKK1 and CaMKK2 isoforms. In contrast, PD 102807-induced signaling is calcium-independent and mediated by the atypical subtype protein kinase C-iota and the CaMKK1 (but not CaMKK2) isoform. Both MCh- and PD 102807-induced AMPK activation involve the AMPK α1 isoform. PD 102807-induced AMPK α1 (but not AMPK α2) isoform activation mediates inhibition of the mammalian target of rapamycin complex 1 (mTORC1) in ASM cells, as demonstrated by increased Raptor (regulatory-associated protein of mTOR) phosphorylation as well as inhibition of phospho-S6 protein and serum response element-luciferase activity. The mTORC1 inhibitor rapamycin and the AMPK activator metformin both mimic the ability of PD 102807 to attenuate transforming growth factor-β-induced α-smooth muscle actin expression (a marker of hypercontractile ASM). These data indicate that PD 102807 transduces a signaling pathway (AMPK-mediated mTORC1 inhibition) qualitatively distinct from canonical M3 mAChR signaling to prevent pathogenic remodeling of ASM, thus demonstrating PD 102807 is a biased M3 mAChR ligand with therapeutic potential for the management of obstructive airway disease.
Collapse
Affiliation(s)
- Eric Tompkins
- Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania, USA
| | - Bogdana Mimic
- Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania, USA
| | - Raymond B Penn
- Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania, USA
| | - Tonio Pera
- Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
4
|
Xiao Y, Zhu H, Lei J, Xie J, Wu K, Gu W, Ma J, wei D, Shu Z, Zhao L. MiR-182/Sestrin2 affects the function of asthmatic airway smooth muscle cells by the AMPK/mTOR pathway. J Transl Int Med 2023; 11:282-293. [PMID: 37662894 PMCID: PMC10474879 DOI: 10.2478/jtim-2023-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Background and Objectives Asthma is a chronic inflammatory airway disease and brings heavy economic and spiritual burdens to patients' families and the society. Airway smooth muscle cells (ASMCs) afect the development of asthma by secreting cytokines, growth factors, and prostates. The stress-inducing protein, Sestrin2, plays a vital role in antioxidant defense. The aim of this study is to investigate the role of Sestrin2 in asthma and its corresponding molecular mechanism. Materials and Methods Airway remodeling was induced by construction of asthma rat model. Primary ASMCs were isolated through combining tissue block adherence and enzymatic digestion and identified by immunofluorescence staining. Gene expression was measured by quantitative real-time PCR (qPCR) and western blot (WB) experiments. Cell viability, proliferation, migration, and calcium flow of ASMCs were measured by Cell Counting Kit-8 (CCK-8), 5-ethynyl-deoxyuridine (EdU), Transwell, and Fluo-3AM, respectively. The binding of miR-182 and Sestrin2 3'-untranslated region (3'-UTR) was measured by luciferase reporter system and RNA-binding protein immunoprecipitation (RIP) analysis. Results Sestrin2 expression was upregulated in asthma rat model and cell model. Overexpression of Sestrin2 enhanced the growth, migration, and calcium flow, and inversely, repression of Sestrin2 was reduced in ASMCs from the asthma group. MiR-182, one of the microRNAs (miRNAs) that possesses the potential to regulate Sestrin2, was downregulated in ASMCs from the asthma group. Further experiments revealed that Sestrin2 was inhibited by miR-182 and that overexpression of Sestrin2 reversed the miR-182-induced inhibition of the cellular progression of ASMCs from the asthma group. This study further investigated the downstream signaling pathway of Sestrin2 and found that increased expression of Sestrin2 activated 5'-adenosine monophosphate-activated protein kinase (AMPK), leading to the inactivation of mammalian target of rapamycin (mTOR) and thus promoting the growth, migration, and calcium flow of ASMCs from the asthma group. Conclusion This study investigated the role of Sestrin2 for the first time and further dissected the regulatory factor of Sestrin2, ultimately elucidating the downstream signaling pathway of Sestrin2 in asthma, providing a novel pathway, and improving the understanding of the development and progression of asthma.
Collapse
Affiliation(s)
- Yali Xiao
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou450003, Henan Province, China
| | - He Zhu
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou450003, Henan Province, China
| | - Jiahui Lei
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou450003, Henan Province, China
| | - Jing Xie
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou450003, Henan Province, China
| | - Ke Wu
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, Zhengzhou450003, Henan Province, China
| | - Wenbo Gu
- Department of Respiratory and Critical Care Medicine, Henan University of Traditional Chinese Medicine, Henan Provincial People’s Hospital, Zhengzhou450046, Henan Province, China
| | - Jinxin Ma
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou450003, Henan Province, China
| | - Dongxue wei
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou450003, Henan Province, China
| | - Zhenhui Shu
- Department of Respiratory and Critical Care Medicine, Henan University of Traditional Chinese Medicine, Henan Provincial People’s Hospital, Zhengzhou450046, Henan Province, China
| | - Limin Zhao
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou450003, Henan Province, China
| |
Collapse
|
5
|
Zhao Y, Zhang X, Wang G, Wu H, Chen R, Zhang Y, Yang S, Liu L. LXA4 inhibits TGF-β1-induced airway smooth muscle cells proliferation and migration by suppressing the Smad/YAP pathway. Int Immunopharmacol 2023; 118:110144. [PMID: 37030120 DOI: 10.1016/j.intimp.2023.110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/10/2023]
Abstract
The aims of the present study were to examine the signaling mechanisms for transforming growth factor-β1 (TGF-β1)-induced rat airway smooth muscle cells (ASMCs) proliferation and migration and to determine the effect of lipoxin A4 (LXA4) on TGF-β1-induced rat ASMCs proliferation and migration and its underlying mechanisms. TGF-β1 upregulated transcriptional coactivator Yes-associated protein (YAP) expression by activating Smad2/3 and then upregulated cyclin D1, leading to rat ASMCs proliferation and migration. This effect was reversed after treatment with the TGF-β1 receptor inhibitor SB431542. YAP is a critical mediator of TGF-β1-induced ASMCs proliferation and migration. Knockdown of YAP disrupted the pro-airway remodeling function of TGF-β1. Preincubation of rat ASMCs with LXA4 blocked TGF-β1-induced activation of Smad2/3 and changed its downstream targets, YAP and cyclin D1, resulting in the inhibition of rat ASMCs proliferation and migration. Our study suggests that LXA4 suppresses Smad/YAP signaling to inhibit rat ASMCs proliferation and migration and therefore has potential value in the prevention and treatment of asthma by negatively modulating airway remodeling.
Collapse
Affiliation(s)
- Yali Zhao
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, Shaanxi 710068, PR China
| | - Xiangli Zhang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, Shaanxi 710068, PR China
| | - Guizuo Wang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, Shaanxi 710068, PR China
| | - Hua Wu
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, Shaanxi 710068, PR China
| | - Ruilin Chen
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, Shaanxi 710068, PR China
| | - Yongqing Zhang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, Shaanxi 710068, PR China
| | - Shumei Yang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, Shaanxi 710068, PR China
| | - Lu Liu
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, Shaanxi 710068, PR China.
| |
Collapse
|
6
|
Wufuer D, Aierken H, Liang Z, Zheng JP, Li L. Association between comorbid asthma and depression and depression-related gene SNPs. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2023. [DOI: 10.1016/j.jrras.2022.100496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Ma W, Jin Q, Guo H, Han X, Xu L, Lu S, Wu C. Metformin Ameliorates Inflammation and Airway Remodeling of Experimental Allergic Asthma in Mice by Restoring AMPKα Activity. Front Pharmacol 2022; 13:780148. [PMID: 35153777 PMCID: PMC8830934 DOI: 10.3389/fphar.2022.780148] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022] Open
Abstract
Metformin has been involved in modulating inflammatory state and inhibiting cell proliferation and angiogenesis. This study aimed to determine whether metformin alleviates airway inflammation and remodeling of experimental allergic asthma and elucidate the underlying mechanism. We sensitized and challenged mice with ovalbumin (OVA) to induce allergic asthma. During the challenge period, metformin was administered by intraperitoneal injection. By histopathological and immunohistochemical analyses, metformin-treated mice showed a significant alleviation in airway inflammation, and in the parameters of airway remodeling including goblet cell hyperplasia, collagen deposition and airway smooth muscle hypertrophy compared to those in the OVA-challenged mice. We also observed elevated levels of multiple cytokines (IL-4, IL-5, IL-13, TNF-α, TGF-β1 and MMP-9) in the bronchoalveolar lavage fluid, OVA-specific IgE in the serum and angiogenesis-related factors (VEGF, SDF-1 and CXCR4) in the plasma from asthmatic mice, while metformin reduced all these parameters. Additionally, the activity of 5′-adenosine monophosphate-activated protein kinase a (AMPKα) in the lungs from OVA-challenged mice was remarkably lower than control ones, while after metformin treatment, the ratio of p-AMPKα to AMPKα was upregulated and new blood vessels in the sub-epithelial area as evidenced by CD31 staining were effectively suppressed. These results indicate that metformin ameliorates airway inflammation and remodeling in an OVA-induced chronic asthmatic model and its protective role could be associated with the restoration of AMPKα activity and decreased asthma-related angiogenesis.
Collapse
Affiliation(s)
- Wenxian Ma
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Qiaoyan Jin
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Haiqin Guo
- Department of Pulmonary and Critical Care Medicine, Third Military Medical University Southwest Hospital, Chongqing, China
| | - Xinpeng Han
- Department of Pulmonary and Critical Care Medicine, Xi’an International Medical Center Hospital, Xi’an, China
| | - Lingbin Xu
- Department of Pulmonary and Critical Care Medicine, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- *Correspondence: Changgui Wu, ; Shemin Lu,
| | - Changgui Wu
- Department of Pulmonary and Critical Care Medicine, Xi’an International Medical Center Hospital, Xi’an, China
- *Correspondence: Changgui Wu, ; Shemin Lu,
| |
Collapse
|
8
|
Tseng CH. Metformin Is Associated with a Lower Incidence of Benign Brain Tumors: A Retrospective Cohort Study in Patients with Type 2 Diabetes Mellitus. Biomolecules 2021; 11:biom11101405. [PMID: 34680039 PMCID: PMC8533555 DOI: 10.3390/biom11101405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The risk of benign brain tumors (BBT) associated with metformin use has not received much attention. Therefore, a retrospective cohort study was designed to investigate such an association in patients with type 2 diabetes mellitus (T2DM). Methods: We used the database of Taiwan's National Health Insurance to enroll 152,176 ever users and 16,120 never users of metformin for the follow-up of incidence of BBT and a more specific outcome of cerebral meningioma. The patients were newly diagnosed with T2DM between 1999 and 2005; and they were followed up from 1 January 2006 until 31 December 2011. Hazard ratios were estimated by Cox regression incorporated with the inverse probability of treatment weighting using propensity score. Results: During follow-up, 111 never users and 557 ever users were diagnosed with BBT. For BBT, the respective incidence rates for never users and ever users were 153.95 per 100,000 person-years and 77.61 per 100,000 person-years. While ever users were compared to never users, the hazard ratio was 0.502 (95% confidence interval: 0.409-0.615). A dose-response pattern was seen when ever users were categorized into tertiles of cumulative duration of metformin therapy (cutoffs: <27.10 months, 27.10-58.27 months and >58.27 months) with respective hazard ratios of 0.910 (0.728-1.138), 0.475 (0.375-0.602) and 0.243 (0.187-0.315). For cerebral meningioma, the overall hazard ratio was 0.506 (0.317-0.808); and the hazard ratios comparing the respective tertiles to never users were 0.895 (0.531-1.508), 0.585 (0.346-0.988) and 0.196 (0.104-0.369). Conclusions: A reduced risk of BBT and cerebral meningioma is observed in metformin users in patients with T2DM.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 10051, Taiwan; ; Tel./Fax: +886-2-2388-3578
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan
- National Institute of Environmental Health Sciences, Zhunan 35053, Taiwan
| |
Collapse
|
9
|
MiR-182/Sestrin2 affects the function of asthmatic airway smooth muscle cells by the AMPK/mTOR pathway. J Transl Int Med 2021. [DOI: 10.2478/jtim-2021-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Background and Objectives
Asthma is a chronic inflammatory airway disease and brings heavy economic and spiritual burdens to patients’ families and the society. Airway smooth muscle cells (ASMCs) affect the development of asthma by secreting cytokines, growth factors, and prostates. The stress-inducing protein, Sestrin2, plays a vital role in antioxidant defense. The aim of this study is to investigate the role of Sestrin2 in asthma and its corresponding molecular mechanism.
Materials and Methods
Airway remodeling was induced by construction of asthma rat model. Primary ASMCs were isolated through combining tissue block adherence and enzymatic digestion and identified by immunofluorescence staining. Gene expression was measured by quantitative real-time PCR (qPCR) and western blot (WB) experiments. Cell viability, proliferation, migration, and calcium flow of ASMCs were measured by Cell Counting Kit-8 (CCK-8), 5-ethynyl-deoxyuridine (EdU), Transwell, and Fluo-3AM, respectively. The binding of miR-182 and Sestrin2 3′-untranslated region (3′-UTR) was measured by luciferase reporter system and RNA-binding protein immunoprecipitation (RIP) analysis.
Results
Sestrin2 expression was upregulated in asthma rat model and cell model. Overexpression of Sestrin2 enhanced the growth, migration, and calcium flow, and inversely, repression of Sestrin2 was reduced in ASMCs from the asthma group. MiR-182, one of the microRNAs (miRNAs) that possesses the potential to regulate Sestrin2, was downregulated in ASMCs from the asthma group. Further experiments revealed that Sestrin2 was inhibited by miR-182 and that overexpression of Sestrin2 reversed the miR-182–induced inhibition of the cellular progression of ASMCs from the asthma group. This study further investigated the downstream signaling pathway of Sestrin2 and found that increased expression of Sestrin2 activated 5′-adenosine monophosphate-activated protein kinase (AMPK), leading to the inactivation of mammalian target of rapamycin (mTOR) and thus promoting the growth, migration, and calcium flow of ASMCs from the asthma group.
Conclusion
This study investigated the role of Sestrin2 for the first time and further dissected the regulatory factor of Sestrin2, ultimately elucidating the downstream signaling pathway of Sestrin2 in asthma, providing a novel pathway, and improving the understanding of the development and progression of asthma.
Collapse
|
10
|
Adiponectin and Asthma: Knowns, Unknowns and Controversies. Int J Mol Sci 2021; 22:ijms22168971. [PMID: 34445677 PMCID: PMC8396527 DOI: 10.3390/ijms22168971] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
Adiponectin is an adipokine associated with the healthy obese phenotype. Adiponectin increases insulin sensitivity and has cardio and vascular protection actions. Studies related to adiponectin, a modulator of the innate and acquired immunity response, have suggested a role of this molecule in asthma. Studies based on various asthma animal models and on the key cells involved in the allergic response have provided important insights about this relation. Some of them indicated protection and others reversed the balance towards negative effects. Many of them described the cellular pathways activated by adiponectin, which are potentially beneficial for asthma prevention or for reduction in the risk of exacerbations. However, conclusive proofs about their efficiency still need to be provided. In this article, we will, briefly, present the general actions of adiponectin and the epidemiological studies supporting the relation with asthma. The main focus of the current review is on the mechanisms of adiponectin and the impact on the pathobiology of asthma. From this perspective, we will provide arguments for and against the positive influence of this molecule in asthma, also indicating the controversies and sketching out the potential directions of research to complete the picture.
Collapse
|
11
|
Liu B, Wang J, Ren Z. SKP2-Promoted Ubiquitination of FOXO3 Promotes the Development of Asthma. THE JOURNAL OF IMMUNOLOGY 2021; 206:2366-2375. [PMID: 33837090 DOI: 10.4049/jimmunol.2000387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/20/2020] [Indexed: 11/19/2022]
Abstract
Asthma is a respiratory disease with a dramatically increasing incidence globally. The present study explored the roles of S-phase kinase-associated protein 2 (SKP2) and forkhead box O3 (FOXO3) in asthma and their involvement in the Krüppel-like factor 15-lipoprotein receptor-related protein 5 (KLF15-LRP5) axis. SKP2 expression in patients with asthma and OVA-induced asthmatic Sprague Dawley rats was detected by reverse transcription quantitative PCR and Western blot assays. Alterations in SKP2 and LRP5 expression were evaluated in OVA-induced asthmatic rats, followed by measurement of inflammatory cytokines using ELISA and airway resistance using a methacholine challenge test. We applied TGF-β1 to establish the airway smooth muscle cell (ASMC) proliferation model of asthma. The FOXO3 ubiquitination and changes in cell biological behaviors were detected using immunoprecipitation, MTT, and Annexin V/propidium iodide assays. Flow cytometry was adopted to detect cell cycle, and ELISA was used to measure the concentrations of IL-4, IL-5, IL-13, and IgE in rat bronchoalveolar lavage fluid. SKP2 was highly expressed and FOXO3 was poorly expressed in patients with asthma and in OVA-induced asthmatic rats. SKP2 silencing decreased IL-4, IL-5, IL-13, and IgE expression in rat bronchoalveolar lavage fluid, whereas SKP2 enhanced FOXO3 ubiquitination to upregulate KLF15, which bound to the LRP5 promoter in TGF-β1-induced ASMCs and increased LRP5 expression. SKP2 enhanced airway hyperresponsiveness and inflammation in the OVA-induced rat model and augmented TGF-β1-induced ASMC proliferation by inhibiting the FOXO3/KLF15/LRP5 axis. Additionally, overexpressed SKP2 resulted in reduced numbers of ASMCs in the G1 phase but increased numbers in the G2/M phase. Collectively, we show that SKP2 promotes FOXO3 ubiquitination to suppress the KLF15-LRP5 axis, thereby exacerbating asthma.
Collapse
Affiliation(s)
- Bing Liu
- Department of Pediatrics, Linyi People's Hospital, Linyi 276000, People's Republic of China
| | - Junxia Wang
- The First Ward, Department of Pediatrics, Huantai People's Hospital, Zibo 256400, People's Republic of China; and
| | - Zhijuan Ren
- The 6th Department of Pediatrics, Linyi People's Hospital, Linyi 276000, People's Republic of China
| |
Collapse
|
12
|
Pan Y, Liu L, Zhang Q, Shi W, Feng W, Wang J, Wang Q, Li S, Li M. Activation of AMPK suppresses S1P-induced airway smooth muscle cells proliferation and its potential mechanisms. Mol Immunol 2020; 128:106-115. [PMID: 33126079 DOI: 10.1016/j.molimm.2020.09.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 01/13/2023]
Abstract
The aims of the present study were to investigate the signaling mechanisms for sphingosine-1-phosphate (S1P)-induced airway smooth muscle cells (ASMCs) proliferation and to explore the effect of activation of adenosine monophosphate-activated protein kinase (AMPK) on S1P-induced ASMCs proliferation and its underlying mechanisms. S1P phosphorylated signal transducer and activator of transcription 3 (STAT3) through binding to S1PR2/3, and this further sequentially up-regulated polo-like kinase 1 (PLK1) and inhibitor of differentiation 2 (ID2) protein expression. Pretreatment of cells with S1PR2 antagonist JTE-013, S1PR3 antagonist CAY-10444, knockdown of STAT3, PLK1 and ID2 attenuated S1P-triggered ASMCs proliferation. In addition, activation of AMPK by metformin inhibited S1P-induced ASMCs proliferation by suppressing STAT3 phosphorylation and therefore suppression of PLK1 and ID2 protein expression. Our study suggests that S1P promotes ASMCs proliferation by stimulating S1PR2/3/STAT3/PLK1/ID2 axis, and activation of AMPK suppresses ASMCs proliferation by targeting on STAT3 signaling pathway. Activation of AMPK might benefit asthma by inhibiting airway remodeling.
Collapse
Affiliation(s)
- Yilin Pan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lu Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenhua Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wei Feng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shaojun Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
13
|
Zhu FF, Wang YM, He GZ, Chen YF, Gao YD. Different effects of acetyl-CoA carboxylase inhibitor TOFA on airway inflammation and airway resistance in a mice model of asthma. Pharmacol Rep 2020; 72:1011-1020. [PMID: 32048254 PMCID: PMC7223088 DOI: 10.1007/s43440-019-00027-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/14/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022]
Abstract
Background and objective Acetyl CoA carboxylase (ACC) regulates the differentiation of Th1, Th2, Th17 cells and Treg cells, which play a critical role in airway inflammation of asthma. Here we investigated the role of ACC in the pathogenesis of asthma. Methods Chicken Ovalbumin-sensitized and -challenged mice were divided into three groups, PBS group, DMSO (solvent of TOFA) group and ACC inhibitor 5-tetradecyloxy-2-furoic acid (TOFA) + DMSO group. Airway inflammation was assessed with histology, percentages of CD4+T cell subsets in lung and spleen was assessed with flow cytometry, and airway responsiveness was assessed with FinePointe RC system. The expression of characteristic transcription factors of CD4+T cell subsets was evaluated with real-time PCR. Cytokine levels in bronchoalveolar lavage fluid (BALF) and serum was determined with ELISA. Results In asthma mice, the expression of ACC increased, while the expression of phosphorylated ACC (pACC) decreased. TOFA had no significant effect on pACC expression. TOFA reduced serum IgE, airway inflammatory cells infiltration and goblet cell hyperplasia, but dramatically increased airway responsiveness. TOFA significantly reduced the percentages of Th1, Th2, Th17 cells in lung and spleen, the expression of GATA3 and RORγt in lung, and IFN-γ, IL-4, IL-17A levels in BALF and serum. TOFA had no significant effect on the percentage of Treg cells, IL-10 level and the expression of T-bet and Foxp3. Conclusion Acetyl-CoA carboxylase inhibitor TOFA might have a distinct effect on asthmatic airway inflammation and airway hyperresponsiveness.
Collapse
Affiliation(s)
- Fang-Fang Zhu
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi-Min Wang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, People's Republic of China
| | - Guang-Zhen He
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, People's Republic of China
| | - Yi-Fei Chen
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, People's Republic of China
| | - Ya-Dong Gao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, People's Republic of China.
| |
Collapse
|
14
|
Mi L, Zhou Y, Wu D, Tao Q, Wang X, Zhu H, Gao X, Wang J, Ling R, Deng J, Mao C, Chen D. ACSS2/AMPK/PCNA pathway‑driven proliferation and chemoresistance of esophageal squamous carcinoma cells under nutrient stress. Mol Med Rep 2019; 20:5286-5296. [PMID: 31638228 DOI: 10.3892/mmr.2019.10735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/08/2019] [Indexed: 11/09/2022] Open
Abstract
Although platinum‑based chemotherapy is the first‑line choice for locally advanced or metastatic esophageal squamous cell carcinoma (ESCC) patients, accelerated recurrence and chemoresistance remain inevitable. New evidence suggests that metabolism reprogramming under stress involves independent processes that are executed with a variety of proteins. This study investigated the functions of nutrient stress (NS)‑mediated acetyl‑CoA synthetase short‑chain family member 2 (ACSS2) in cell proliferation and cisplatin‑resistance and examined its combined effects with proliferating cell nuclear antigen (PCNA), a key regulator of DNA replication and repair. Here, it was demonstrated that under NS, when the AMP‑activated protein kinase (AMPK) pathway was activated, ESCC cells maintained proliferation and chemoresistance was distinctly upregulated as determined by CCK‑8 assay. As determined using immunoblotting and RT‑qPCR, compared with normal esophageal epithelial cells (Het‑1A), ESCC cells were less sensitive to NS and showed increased intracellular levels of ACSS2. Moreover, it was shown that ACSS2 inhibition by siRNA not only greatly interfered with proliferation under NS but also participated in DNA repair after cisplatin treatment via PCNA suppression, and the acceleration of cell death was dependent on the activation of the AMPK pathway as revealed by the Annexin V/PI and TUNEL assay results. Our study identified crosstalk between nutrient supply and chemoresistance that could be exploited therapeutically to target AMPK signaling, and the results suggest ACSS2 as a potential biomarker for identifying higher‑risk patients.
Collapse
Affiliation(s)
- Lei Mi
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yuepeng Zhou
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Dan Wu
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Qing Tao
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Xuefeng Wang
- Central Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Haitao Zhu
- Department of Medical Imaging, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Xingyu Gao
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Jingzhi Wang
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Rui Ling
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Jing Deng
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Chaoming Mao
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Deyu Chen
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
15
|
Shaik FA, Chelikani P. Differential effects of membrane sphingomyelin and cholesterol on agonist-induced bitter taste receptor T2R14 signaling. Mol Cell Biochem 2019; 463:57-66. [DOI: 10.1007/s11010-019-03628-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 09/12/2019] [Indexed: 01/15/2023]
|
16
|
Wei YY, Xuan XC, Zhang XY, Guo TT, Dong DL. Niclosamide ethanolamine induces trachea relaxation and inhibits proliferation and migration of trachea smooth muscle cells. Eur J Pharmacol 2019; 853:229-235. [PMID: 30935895 DOI: 10.1016/j.ejphar.2019.03.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/18/2019] [Accepted: 03/26/2019] [Indexed: 01/05/2023]
Abstract
Our previous study found that the anthelmintic drug niclosamide relaxed the constricted arteries and inhibited proliferation and migration of vascular smooth muscle cells. Here, we investigated the effect of niclosamide ethanolamine (NEN) on trachea function and the proliferation and migration of trachea smooth muscle cells. Isometric tension of trachea was recorded by multi-channel myograph system. The cell proliferation was detected by using BrdU cell proliferation assay. The cell migration ability was evaluated by using scratch assay. The protein level was measured by using western blot technique. Acute treatment with NEN dose-dependently relaxed acetylcholine chloride (Ach)- and High K+ physiological salt solution (KPSS)-induced constriction of mice trachea. Pre-treatment with NEN inhibited Ach- and KPSS-induced constriction of mice trachea. NEN treatment inhibited proliferation of human bronchial smooth muscle cells (HBSMCs), inhibited migration of HBSMCs and rat primary trachea smooth muscle cells. NEN treatment activated adenosine monophosphate activated protein kinase (AMPK) activity and inhibited signal transducer and activator of transcription 3 (STAT3) activity in HBSMCs. In conclusion, niclosamide ethanolamine induces trachea relaxation and inhibits proliferation and migration of trachea smooth muscle cells, indicating that niclosamide might be a potential drug for chronic asthma treatment.
Collapse
Affiliation(s)
- Yuan-Yuan Wei
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China
| | - Xiu-Chen Xuan
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China
| | - Xi-Yue Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China
| | - Ting-Ting Guo
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China
| | - De-Li Dong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, PR China.
| |
Collapse
|
17
|
Wos M, Komiażyk M, Pikula S, Tylki-Szymanska A, Bandorowicz-Pikula J. Activation of mammalian terget of rapamycin kinase and glycogen synthase kinase-3β accompanies abnormal accumulation of cholesterol in fibroblasts from Niemann-Pick type C patients. J Cell Biochem 2018; 120:6580-6588. [PMID: 30390318 DOI: 10.1002/jcb.27951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 10/02/2018] [Indexed: 11/07/2022]
Abstract
BACKGROUND Niemann Pick type C (NPC) lysosomal disorder is linked to the disruption of cholesterol transport. Recent data suggest that the molecular background of this disease is more complex. It was found that accumulation of cholesterol and glycolipids in the late endosomal/lysosomal compartment of NPC1 cells may affect mitochondrial functions. MATERIALS AND METHODS In this study, primary skin fibroblasts derived from skin biopsies of two anonymous patients with NPC-carrying mutations in the NPC1 gene, characterized by a high total cholesterol content, as well as two healthy donors were used. The presence of signaling proteins in the whole cell lysates and mitochondrial fractions were examined by Western blotting assay. RESULTS In this report, we provide experimental evidence that in NPC1 cells, dysfunction of mitochondria and cellular metabolism, as reported by Wos et al in 2016, coexist with alterations in signal transduction pathways, such as the mammalian target of rapamycin, AKT, phosphoinositide-dependent protein kinase-1, glycogen synthase kinase-3 β, and Jun amino-terminal kinase, leading to abnormal cholesterol accumulation and distribution. CONCLUSION Differences in signal transduction between control and NPC1 cells may suggest that the latter cells experienced significant alterations in the complex molecular mechanisms that control cellular energy metabolism and vesicular transport.
Collapse
Affiliation(s)
- Marcin Wos
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Komiażyk
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Slawomir Pikula
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Anna Tylki-Szymanska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| | | |
Collapse
|
18
|
Liu L, Pan Y, Zhai C, Zhu Y, Ke R, Shi W, Wang J, Yan X, Su X, Song Y, Gao L, Li M. Activation of peroxisome proliferation-activated receptor-γ inhibits transforming growth factor-β1-induced airway smooth muscle cell proliferation by suppressing Smad-miR-21 signaling. J Cell Physiol 2018; 234:669-681. [PMID: 30132829 DOI: 10.1002/jcp.26839] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/10/2018] [Indexed: 12/15/2022]
Abstract
The aims of the current study were to examine the signaling mechanisms for transforming growth factor-β1 (TGF-β1)-induced rat airway smooth muscle cell (ASMC) proliferation and to determine the effect of activation of peroxisome proliferation-activated receptor-γ (PPAR-γ) on TGF-β1-induced rat ASMC proliferation and its underlying mechanisms. TGF-β1 upregulated microRNA 21 (miR-21) expression by activating Smad2/3, and this in turn downregulated forkhead box O1 (FOXO1) mRNA expression. In addition, TGF-β1-Smad-miR-21 signaling also downregulated phosphatase and tensin homolog deleted on chromosome ten (PTEN) expression and thus de-repressed the PI3K-Akt pathway. Depletion of PTEN reduced the nuclear FOXO1 protein level without affecting its mRNA level. Inhibition of the PI3K-Akt pathway or proteasome function reversed PTEN knockdown-induced nuclear FOXO1 protein reduction. Our study further showed that loss of FOXO1 increased cyclin D1 expression, leading to rat ASMC proliferation. Preincubation of rat ASMCs with pioglitazone, a PPAR-γ activator, blocked TGF-β1-induced activation of Smad2/3 and its downstream targets changes of miR-21, PTEN, Akt, FOXO1, and cyclin D1, resulting in the inhibition of rat ASMC proliferation. Our study suggests that the activation of PPAR-γ inhibits rat ASMC proliferation by suppressing Smad-miR-21 signaling and therefore has a potential value in the prevention and treatment of asthma by negatively modulating airway remodeling.
Collapse
Affiliation(s)
- Lu Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yilin Pan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Cui Zhai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanting Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rui Ke
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wenhua Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Yan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaofan Su
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Song
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Gao
- Division of Allergy and Clinical Immunology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
19
|
Liu L, Zhai C, Pan Y, Zhu Y, Shi W, Wang J, Yan X, Su X, Song Y, Gao L, Li M. Sphingosine-1-phosphate induces airway smooth muscle cell proliferation, migration, and contraction by modulating Hippo signaling effector YAP. Am J Physiol Lung Cell Mol Physiol 2018; 315:L609-L621. [PMID: 29999407 DOI: 10.1152/ajplung.00554.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sphingosine-1-phosphate (S1P), a bioactive lipid, has been shown to be elevated in the airways of individuals with asthma and modulates the airway smooth muscle cell (ASMC) functions, yet its underlying molecular mechanisms are not completely understood. The aim of the present study is to address this issue. S1P induced yes-associated protein (YAP) dephosphorylation and nuclear localization via the S1PR2/3/Rho-associated protein kinase (ROCK) pathway, and this in turn increased forkhead box M1 (FOXM1) and cyclin D1 expression leading to ASMC proliferation, migration, and contraction. Pretreatment of cells with S1PR2 antagonist JTE013, S1PR3 antagonist CAY10444, or ROCK inhibitor Y27632 blocked S1P-induced alterations of YAP, FOXM1, cyclin D1, and ASMC proliferation, migration, and contraction. In addition, prior silencing of YAP or FOXM1 with siRNA reversed the effect of S1P on ASMC functions. Taken together, our study indicates that S1P stimulates ASMC proliferation, migration, and contraction by binding to S1PR2/3 and modulating ROCK/YAP/FOXM1 axis and suggests that targeting this pathway might have potential value in the management of asthma.
Collapse
Affiliation(s)
- Lu Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Cui Zhai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Yilin Pan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Yanting Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Wenhua Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Xin Yan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Xiaofan Su
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Yang Song
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Li Gao
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| |
Collapse
|
20
|
Yao X, Ei-Samahy MA, Fan L, Zheng L, Jin Y, Pang J, Zhang G, Liu Z, Wang F. In vitro influence of selenium on the proliferation of and steroidogenesis in goat luteinized granulosa cells. Theriogenology 2018; 114:70-80. [PMID: 29602134 DOI: 10.1016/j.theriogenology.2018.03.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/02/2018] [Accepted: 03/13/2018] [Indexed: 11/17/2022]
Abstract
In this study, we investigated the effects of Selenium (Se) on the proliferation of and steroidogenesis in goat luteinized granulosa cells (LGCs) and elucidated the mechanisms underlying these effects. Our results showed that proliferating cell nuclear antigen (PCNA), Akt, and phosphoinositide 3-kinase (PI3K) were expressed mainly in ovarian oocytes and granulosa cells (GCs). We observed that 5 ng/mL Se significantly stimulated LGC proliferation, which could be attributed to increases in PCNA, cyclin-dependent kinase 1 (CDK1), phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK; Thr172), and phosphorylated Akt (p-Akt; Ser473) and decreases in p21 (P < 0.05). Se treatment also significantly increased estradiol (E2) production, which could be, at least partially, due to increased levels of 3β-hydroxysteroid dehydrogenase(3β-HSD), steroidogenic acute regulatory protein (StAR), p-Akt (Ser473), and cyclic adenosine monophosphate (cAMP) (P < 0.05); however, follicle-stimulating hormone (FSH) significantly enhanced the production of E2, progesterone (P4) and cAMP (P < 0.05). Moreover, Se treatment stimulated proliferation and the synthesis of E2 and cAMP in the presence of FSH (P < 0.05). Additionally, the expression of antioxidant-related genes [glutathione peroxidase (GSH-Px) and superoxide dismutase 2 (SOD2)] and the activity of GSH-Px and SOD were progressively elevated by Se treatment (P < 0.05). These data suggested that Se plays an important role in the proliferation of and steroidogenesis in LGC by activating the PI3K/Akt and AMPK pathways, thereby increasing the expression of its downstream cell-cycle- and steroid-synthesis-related genes, as well as regulating cellular oxidative stress.
Collapse
Affiliation(s)
- Xiaolei Yao
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - M A Ei-Samahy
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Lijie Fan
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Linfeng Zheng
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yuyue Jin
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jing Pang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Guomin Zhang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Zifei Liu
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Feng Wang
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
21
|
Activation of AMPK inhibits TGF-β1-induced airway smooth muscle cells proliferation and its potential mechanisms. Sci Rep 2018; 8:3624. [PMID: 29483552 PMCID: PMC5827654 DOI: 10.1038/s41598-018-21812-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 02/09/2018] [Indexed: 02/08/2023] Open
Abstract
The aims of the present study were to examine signaling mechanisms underlying transforming growth factor β1 (TGF-β1)-induced airway smooth muscle cells (ASMCs) proliferation and to determine the effect of adenosine monophosphate-activated protein kinase (AMPK) activation on TGF-β1-induced ASMCs proliferation and its potential mechanisms. TGF-β1 reduced microRNA-206 (miR-206) level by activating Smad2/3, and this in turn up-regulated histone deacetylase 4 (HDAC4) and consequently increased cyclin D1 protein leading to ASMCs proliferation. Prior incubation of ASMCs with metformin induced AMPK activation and blocked TGF-β1-induced cell proliferation. Activation of AMPK slightly attenuated TGF-β1-induced miR-206 suppression, but dramatically suppressed TGF-β1-caused HDAC4 up-expression and significantly increased HDAC4 phosphorylation finally leading to reduction of up-regulated cyclin D1 protein expression. Our study suggests that activation of AMPK modulates miR-206/HDAC4/cyclin D1 signaling pathway, particularly targeting on HDAC4, to suppress ASMCs proliferation and therefore has a potential value in the prevention and treatment of asthma by alleviating airway remodeling.
Collapse
|
22
|
Qureshi AT, Dey D, Sanders EM, Seavey JG, Tomasino AM, Moss K, Wheatley B, Cholok D, Loder S, Li J, Levi B, Davis TA. Inhibition of Mammalian Target of Rapamycin Signaling with Rapamycin Prevents Trauma-Induced Heterotopic Ossification. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2536-2545. [PMID: 29029772 DOI: 10.1016/j.ajpath.2017.07.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/18/2017] [Accepted: 07/26/2017] [Indexed: 12/27/2022]
Abstract
A pressing clinical need exists for 63% to 65% of combat-wounded service members and 11% to 20% of civilians who develop heterotopic ossification (HO) after blast-related extremity injury and traumatic injuries, respectively. The mammalian target of rapamycin pathway is a central cellular sensor of injury. We evaluated the prophylactic effects of rapamycin, a selective inhibitor of mammalian target of rapamycin signaling, on HO formation in a rat model of blast-related, polytraumatic extremity injury. Rapamycin was administered intraperitoneally daily for 14 days at 0.5 mg/kg or 2.5 mg/kg. Ectopic bone formation was monitored by micro-computed tomography and confirmed by histologic examination. Connective tissue progenitor cells, platelet-derived growth factor receptor-α-positive cells, and α-smooth muscle actin-positive blood vessels were assayed at postoperative day 7 by colony formation and immunofluorescence. Early gene expression changes were determined by low-density microarray. There was significant attenuation of 1) total new bone and soft tissue ectopic bone with 0.5 mg/kg (38.5% and 14.7%) and 2.5 mg/kg rapamycin (90.3% and 82.9%), respectively, 2) connective tissue progenitor cells, 3) platelet-derived growth factor receptor-α-positive cells, 4) α-smooth muscle actin-positive blood vessels, and 5) of key extracellular matrix remodeling (CD44, Col1a1, integrins), osteogenesis (Sp7, Runx2, Bmp2), inflammation (Cxcl5, 10, IL6, Ccl2), and angiogenesis (Angpt2) genes. No wound healing complications were noted. Our data demonstrate the efficacy of rapamycin in inhibiting blast trauma-induced HO by a multipronged mechanism.
Collapse
Affiliation(s)
- Ammar T Qureshi
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Devaveena Dey
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Erin M Sanders
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Jonathan G Seavey
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland; Department of Surgery, Uniformed Services University and the Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Allison M Tomasino
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Kaitlyn Moss
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland
| | - Benjamin Wheatley
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland; Department of Surgery, Uniformed Services University and the Walter Reed National Military Medical Center, Bethesda, Maryland
| | - David Cholok
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, Michigan
| | - Shawn Loder
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, Michigan
| | - John Li
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, Michigan
| | - Benjamin Levi
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, Michigan
| | - Thomas A Davis
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland; Department of Surgery, Uniformed Services University and the Walter Reed National Military Medical Center, Bethesda, Maryland.
| |
Collapse
|
23
|
Dias MD, Goulart M, Dalécio C, Enes-Marques S, Salles ÉDSL, Venâncio M, Pereira EM, Paffaro VA, Incerpi EK, Soncini R. Metformin influences on respiratory system in obese mice induced by postnatal overnutrition. Respir Physiol Neurobiol 2017; 247:96-102. [PMID: 28963087 DOI: 10.1016/j.resp.2017.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/05/2017] [Accepted: 09/22/2017] [Indexed: 02/06/2023]
Abstract
Many studies have confirmed the merits of metformin to treat type 2 diabetes, but few studies have addressed its effect on the respiratory system. Moreover, vascular endothelial growth factor (VEGF) is critical to many lung functions. In this way, we evaluated the metformin impact on the lung in treated obese Swiss mice, induced by postnatal overnutrition. Glucose and insulin were detected and the insulin resistance index (HOMA) was calculated; inflammatory cells and nitrite/nitrate concentration (NOx) was quantified from bronchoalveolar lavage, collagen and lung VEGF-a was analysed in the lung tissue and lung mechanics were evaluated by methacholine-induced bronchoconstriction. Values of glucose, insulin, HOMA; VEGF-a and collagen demonstrate the partial ability of metformin to improve the effects of obesity. However, metformin is ineffective in re-establishing the inflammation, shows no effects on NOx and does not restore bronchoconstriction in obese mice. In conclusion, metformińs beneficial effects on lung are questionable in the postnatal overnutrition model of obesity.
Collapse
Affiliation(s)
- Maycon Daniel Dias
- Department of Physiology, Institute of Biomedical Science, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil
| | - Melissa Goulart
- Department of Physiology, Institute of Biomedical Science, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil
| | - Cecilia Dalécio
- Department of Physiology, Institute of Biomedical Science, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil
| | - Silvia Enes-Marques
- Department of Physiology, Institute of Biomedical Science, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil
| | - Évila da Silva Lopes Salles
- Department of Cell and Developmental Biology, Institute of Biomedical Science, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil
| | - Marina Venâncio
- Department of Physiology, Institute of Biomedical Science, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil
| | - Elisângela Monteiro Pereira
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil
| | - Valdemar Antonio Paffaro
- Department of Cell and Developmental Biology, Institute of Biomedical Science, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil
| | - Erika Kristina Incerpi
- Department of Physiology, Institute of Biomedical Science, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil
| | - Roseli Soncini
- Department of Physiology, Institute of Biomedical Science, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil.
| |
Collapse
|
24
|
Qiu YT, Wang WJ, Zhang B, Mei LL, Shi ZZ. MCM7 amplification and overexpression promote cell proliferation, colony formation and migration in esophageal squamous cell carcinoma by activating the AKT1/mTOR signaling pathway. Oncol Rep 2017; 37:3590-3596. [DOI: 10.3892/or.2017.5614] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/24/2017] [Indexed: 11/06/2022] Open
|
25
|
Allouch S, Munusamy S. Metformin attenuates albumin-induced alterations in renal tubular cells in vitro. J Cell Physiol 2017; 232:3652-3663. [DOI: 10.1002/jcp.25838] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/01/2017] [Indexed: 12/14/2022]
|
26
|
Pan YC, Wu WQ, Xie JS, Luo CQ, Hao Y. [Two novel TSC2 frameshift mutations in tuberous sclerosis complex]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:308-312. [PMID: 28302202 PMCID: PMC7390151 DOI: 10.7499/j.issn.1008-8830.2017.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/10/2016] [Indexed: 06/06/2023]
Abstract
High-throughput sequencing was performed for the peripheral blood DNA from two probands in the family with tuberous sclerosis complex (TSC) to determine the sequences of TSC-related genes TSC1 and TSC2 and their splicing regions and identify mutation sites. Amplification primers were designed for the mutation sites and polymerase chain reaction and Sanger sequencing were used to verify the sequences of peripheral blood DNA from the probands and their parents. The two probands had c.3981-3982 insA (p.Asp1327AspfsX87) and c.4013-4014 delCA (p.Ser1338Cysfs) heterozygous mutations, respectively, in the TSC2 gene. The parents of proband 1 had no abnormalities at these two loci; the mother of proband 2 had c.4013-4014 delCA heterozygous mutation in the TSC2 gene, while the father and the grandparents of proband 2 had no abnormalities. c.3981-3982 insA mutation may cause early coding termination of amino acid sequence at the 1413th site, and c.4013-4014 delCA mutation may cause early coding termination of amino acid sequence at the 1412th site. These two mutations are the pathogenic mutations for families 1 and 2, respectively, and both of them are novel frameshift mutations, but their association with the disease needs to be further verified by mutant protein function cell model and animal model.
Collapse
Affiliation(s)
- Yu-Chun Pan
- Prenatal Diagnosis Center, Shenzhen Maternity and Child Health Care Hospital, Southern Medical University, Shenzhen, Guangdong 518000, China.
| | | | | | | | | |
Collapse
|