1
|
Waddingham MT, Tsuchimochi H, Sonobe T, Sequeira V, Nayeem MJ, Shirai M, Pearson JT, Ogo T. The selective serotonin reuptake inhibitor paroxetine improves right ventricular systolic function in experimental pulmonary hypertension. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 8:100072. [PMID: 39802918 PMCID: PMC11708357 DOI: 10.1016/j.jmccpl.2024.100072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/13/2024] [Accepted: 03/24/2024] [Indexed: 01/16/2025]
Abstract
Background Pulmonary hypertension (PH) often leads to right ventricle (RV) failure, a significant cause of morbidity and mortality. Despite advancements in PH management, progression to RV maladaptation and subsequent failure remain a clinical challenge. This study explored the effect of paroxetine, a selective serotonin reuptake inhibitor (SSRI), on RV function in a rat model of PH, hypothesizing that it improves RV function by inhibiting G protein-coupled receptor kinase 2 (GRK2) and altering myofilament protein phosphorylation. Methods The Su5416/hypoxia (SuHx) rat model was used to induce PH. Rats were treated with paroxetine and compared to vehicle-treated and control groups. Parameters measured included RV morphology, systolic and diastolic function, myofilament protein phosphorylation, GRK2 activity, and sympathetic nervous system (SNS) markers. Results Paroxetine treatment significantly improved RV systolic function, evidenced by increased stroke volume, cardiac output, and ejection fraction, without significantly affecting RV hypertrophy, myosin heavy chain/titin isoform switching, or fibrosis. Enhanced phosphorylation of titin and myosin light chain-2 was observed, correlating positively with improved systolic function. Contrary to the hypothesis, improvements occurred independently of GRK2 inhibition or SNS modulation, suggesting an alternate mechanism, potentially involving antioxidant properties of paroxetine. Conclusion Paroxetine improves RV systolic function in PH rats, likely through mechanisms beyond GRK2 inhibition, possibly related to its antioxidant effects. This highlights the potential of paroxetine in managing RV dysfunction in PH, warranting further investigation into its detailed mechanisms of action and clinical applicability.
Collapse
Affiliation(s)
- Mark T. Waddingham
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Hirotsugu Tsuchimochi
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Takashi Sonobe
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- Department of Bioregulatory Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Vasco Sequeira
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- DZHI, Department of Translational Science Universitätsklinikum, Würzburg, Germany
| | - Md Junayed Nayeem
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Mikiyasu Shirai
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - James T. Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- Department of Physiology, Victoria Heart Institute, Monash Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Takeshi Ogo
- Division of Pulmonary Circulation, Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| |
Collapse
|
2
|
Drobnik M, Tomaszewska A, Ryżko J, Kędzia A, Gałdyszyńska M, Piera L, Rydel J, Szymański J, Drobnik J. Melatonin increases collagen content accumulation and Fibroblast Growth Factor-2 secretion in cultured human cardiac fibroblasts. Pharmacol Rep 2023; 75:560-569. [PMID: 37188903 PMCID: PMC10227126 DOI: 10.1007/s43440-023-00490-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND The extracellular matrix serves as a scaffold for cardiomyocytes, allowing them to work in accord. In rats, collagen metabolism within a myocardial infarction scar is regulated by melatonin. The present study determines whether melatonin influences matrix metabolism within human cardiac fibroblast cultures and examines the underlying mechanism. METHODS The experiments were performed on cultures of cardiac fibroblasts. The Woessner method, 1,9-dimethylmethylene blue assay, enzyme-linked immunosorbent assay and quantitative PCR were used in the study. RESULTS Melatonin treatment lowered the total cell count within the culture, elevated necrotic and apoptotic cell count as well as augmented cardiac fibroblast proliferation, and increased total, intracellular, and extracellular collagen within the fibroblast culture; it also elevated type III procollagen α1 chain expression, without increasing procollagen type I mRNA production. The pineal hormone did not influence matrix metalloproteinase-2 (MMP-2) release or glycosaminoglycan accumulation by cardiac fibroblasts. Melatonin increased the release of Fibroblast Growth Factor-2 (FGF-2) by human cardiac fibroblasts, but cardiotrophin release was not influenced. CONCLUSION Within human cardiac fibroblast culture, collagen metabolism is regulated by melatonin. The profibrotic effect of melatonin depends on the elevation of procollagen type III gene expression, and this could be modified by FGF-2. Two parallel processes, viz., cell elimination and proliferation, induced by melatonin, lead to excessive replacement of cardiac fibroblasts.
Collapse
Affiliation(s)
- Marta Drobnik
- Laboratory of Connective Tissue Metabolism, Department of Pathophysiology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Agnieszka Tomaszewska
- Laboratory of Connective Tissue Metabolism, Department of Pathophysiology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Joanna Ryżko
- Laboratory of Connective Tissue Metabolism, Department of Pathophysiology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Aleksandra Kędzia
- Laboratory of Connective Tissue Metabolism, Department of Pathophysiology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Małgorzata Gałdyszyńska
- Laboratory of Connective Tissue Metabolism, Department of Pathophysiology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Lucyna Piera
- Laboratory of Connective Tissue Metabolism, Department of Pathophysiology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Justyna Rydel
- Laboratory of Connective Tissue Metabolism, Department of Pathophysiology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Jacek Szymański
- Central Scientific Laboratory, Medical University of Lodz, Ul. Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Jacek Drobnik
- Laboratory of Connective Tissue Metabolism, Department of Pathophysiology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland.
| |
Collapse
|
3
|
Türck P, Salvador IS, Campos-Carraro C, Ortiz V, Bahr A, Andrades M, Belló-Klein A, da Rosa Araujo AS. Blueberry extract improves redox balance and functional parameters in the right ventricle from rats with pulmonary arterial hypertension. Eur J Nutr 2022; 61:373-386. [PMID: 34374852 DOI: 10.1007/s00394-021-02642-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/16/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Pulmonary arterial hypertension (PAH) is a disease characterized by increased pulmonary vascular resistance and right ventricle (RV) failure. In this context, oxidative stress is an essential element contributing to PAH's pathophysiology. Thus, blueberry (BB), which has a high antioxidant capacity, emerges as a natural therapeutic approach in PAH. This work evaluated the effect of BB extract on redox balance in RV in a PAH's animal model. METHODS Male Wistar rats (200 ± 20 g) (n = 72) were randomized into eight groups: control (CTR); monocrotaline (MCT); CTR and MCT treated at doses of 50, 100, and 200 mg/kg BB. PAH was induced by administration of MCT (60 mg/kg, intraperitoneal). Rats were treated with BB orally for 5 weeks (2 weeks before monocrotaline and 3 weeks after monocrotaline injection). On day 35, rats were submitted to echocardiography and catheterization, then euthanasia and RV harvesting for biochemical analyses. RESULTS RV hypertrophy, observed in the MCT groups, was reduced with BB treatment. MCT elevated RV systolic pressure and pressure/time derivatives, while the intervention with BB decreased these parameters. PAH decreased RV output and pulmonary artery outflow acceleration/ejection time ratio, while increased RV diameters, parameters restored by BB treatment. Animals from the MCT group showed elevated lipid peroxidation and NADPH oxidase activity, outcomes attenuated in animals treated with BB, which also led to increased catalase activity. CONCLUSION Treatment with BB partially mitigated PAH, which could be associated with improvement of RV redox state. Such findings constitute an advance in the investigation of the role of BB extract in chronic progressive cardiovascular diseases that involve the redox balance, such as PAH.
Collapse
Affiliation(s)
- Patrick Türck
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
- Postgraduate Program in Biological Sciences: Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Isadora Schein Salvador
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristina Campos-Carraro
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Biological Sciences: Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Vanessa Ortiz
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Biological Sciences: Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Alan Bahr
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Biological Sciences: Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Michael Andrades
- Cardiovascular Research Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Adriane Belló-Klein
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Biological Sciences: Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Alex Sander da Rosa Araujo
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Biological Sciences: Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
4
|
Zancan LR, Bruinsmann FA, Paese K, Türck P, Bahr A, Zimmer A, Carraro CC, Schenkel PC, Belló-Klein A, Schwertz CI, Driemeier D, Pohlmann AR, Guterres SS. Oral delivery of ambrisentan-loaded lipid-core nanocapsules as a novel approach for the treatment of pulmonary arterial hypertension. Int J Pharm 2021; 610:121181. [PMID: 34653563 DOI: 10.1016/j.ijpharm.2021.121181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/29/2022]
Abstract
Ambrisentan (AMB) is an orphan drug approved for oral administration that has been developed for the treatment of pulmonary arterial hypertension (PAH), a chronic and progressive pathophysiological state that might result in death if left untreated. Lipid-core nanocapsules (LNCs) are versatile nanoformulations capable of loading lipophilic drugs for topical, vaginal, oral, intravenous, pulmonary, and nasal administration. Our hypothesis was to load AMB into these nanocapsules (LNCamb) and test their effect on slowing or reducing the progression of monocrotaline-induced PAH in a rat model, upon oral administration. LNCamb displayed a unimodal distribution of diameters (around 200 nm), negative zeta potential (-11.5 mV), high encapsulation efficiency (78%), spherical shape, and sustained drug release (50-60% in 24 h). The in vivo pharmacodynamic effect of the LNCamb group was evaluated by observing the echocardiography, hemodynamic, morphometric, and histological data, which showed a significant decrease in PAH in this group, as compared to the control group (AMBsolution). LNCamb showed the benefit of reversing systolic dysfunction and preventing vascular remodeling with greater efficacy than that observed in the control group. The originality and contribution of our work reveal the promising value of this nanoformulation as a novel therapeutic strategy for PAH treatment.
Collapse
Affiliation(s)
- Lali Ronsoni Zancan
- Programa de Pós-Graduação em Nanotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre 90610-000, RS, Brazil
| | - Franciele Aline Bruinsmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre 90610-000, RS, Brazil
| | - Karine Paese
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre 90610-000, RS, Brazil
| | - Patrick Türck
- Laboratório de Fisiologia Cardiovascular e Espécies Ativas de Oxigênio, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite 500, Porto Alegre 90050-170, RS, Brazil
| | - Alan Bahr
- Laboratório de Fisiologia Cardiovascular e Espécies Ativas de Oxigênio, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite 500, Porto Alegre 90050-170, RS, Brazil
| | - Alexsandra Zimmer
- Laboratório de Fisiologia Cardiovascular e Espécies Ativas de Oxigênio, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite 500, Porto Alegre 90050-170, RS, Brazil
| | - Cristina Campos Carraro
- Laboratório de Fisiologia Cardiovascular e Espécies Ativas de Oxigênio, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite 500, Porto Alegre 90050-170, RS, Brazil
| | - Paulo Cavalheiro Schenkel
- Laboratório de Fisiologia Cardiovascular e Espécies Ativas de Oxigênio, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite 500, Porto Alegre 90050-170, RS, Brazil
| | - Adriane Belló-Klein
- Laboratório de Fisiologia Cardiovascular e Espécies Ativas de Oxigênio, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite 500, Porto Alegre 90050-170, RS, Brazil
| | - Claiton I Schwertz
- Setor de Patologia Veterinária, Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9090, Porto Alegre 91540-000, RS, Brazil
| | - David Driemeier
- Setor de Patologia Veterinária, Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9090, Porto Alegre 91540-000, RS, Brazil
| | - Adriana Raffin Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre 90610-000, RS, Brazil
| | - Sílvia Stanisçuaski Guterres
- Programa de Pós-Graduação em Nanotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre 90610-000, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre 90610-000, RS, Brazil.
| |
Collapse
|
5
|
Peters EL, Bogaard HJ, Vonk Noordegraaf A, de Man FS. Neurohormonal modulation in pulmonary arterial hypertension. Eur Respir J 2021; 58:13993003.04633-2020. [PMID: 33766951 PMCID: PMC8551560 DOI: 10.1183/13993003.04633-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/13/2021] [Indexed: 12/15/2022]
Abstract
Pulmonary hypertension is a fatal condition of elevated pulmonary pressures, complicated by right heart failure. Pulmonary hypertension appears in various forms; one of those is pulmonary arterial hypertension (PAH) and is particularly characterised by progressive remodelling and obstruction of the smaller pulmonary vessels. Neurohormonal imbalance in PAH patients is associated with worse prognosis and survival. In this back-to-basics article on neurohormonal modulation in PAH, we provide an overview of the pharmacological and nonpharmacological strategies that have been tested pre-clinically and clinically. The benefit of neurohormonal modulation strategies in PAH patients has been limited by lack of insight into how the neurohormonal system is changed throughout the disease and difficulties in translation from animal models to human trials. We propose that longitudinal and individual assessments of neurohormonal status are required to improve the timing and specificity of neurohormonal modulation strategies. Ongoing developments in imaging techniques such as positron emission tomography may become helpful to determine neurohormonal status in PAH patients in different disease stages and optimise individual treatment responses.
Collapse
Affiliation(s)
- Eva L Peters
- Dept of Pulmonology, Amsterdam UMC, Amsterdam, The Netherlands.,Dept of Physiology, Amsterdam UMC, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
6
|
Qiu H, Zhang Y, Li Z, Jiang P, Guo S, He Y, Guo Y. Donepezil Ameliorates Pulmonary Arterial Hypertension by Inhibiting M2-Macrophage Activation. Front Cardiovasc Med 2021; 8:639541. [PMID: 33791350 PMCID: PMC8005547 DOI: 10.3389/fcvm.2021.639541] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/17/2021] [Indexed: 12/21/2022] Open
Abstract
Background: The beneficial effects of parasympathetic stimulation in pulmonary arterial hypertension (PAH) have been reported. However, the specific mechanism has not been completely clarified. Donepezil, an oral cholinesterase inhibitor, enhances parasympathetic activity by inhibiting acetylcholinesterase, whose therapeutic effects in PAH and its mechanism deserve to be investigated. Methods: The PAH model was established by a single intraperitoneal injection of monocrotaline (MCT, 50 mg/kg) in adult male Sprague-Dawley rats. Donepezil was administered via intraperitoneal injection daily after 1 week of MCT administration. At the end of the study, PAH status was confirmed by echocardiography and hemodynamic measurement. Testing for acetylcholinesterase activity and cholinergic receptor expression was used to evaluate parasympathetic activity. Indicators of pulmonary arterial remodeling and right ventricular (RV) dysfunction were assayed. The proliferative and apoptotic ability of pulmonary arterial smooth muscle cells (PASMCs), inflammatory reaction, macrophage infiltration in the lung, and activation of bone marrow-derived macrophages (BMDMs) were also tested. PASMCs from the MCT-treated rats were co-cultured with the supernatant of BMDMs treated with donepezil, and then, the proliferation and apoptosis of PASMCs were evaluated. Results: Donepezil treatment effectively enhanced parasympathetic activity. Furthermore, it markedly reduced mean pulmonary arterial pressure and RV systolic pressure in the MCT-treated rats, as well as reversed pulmonary arterial remodeling and RV dysfunction. Donepezil also reduced the proliferation and promoted the apoptosis of PASMCs in the MCT-treated rats. In addition, it suppressed the inflammatory response and macrophage activation in both lung tissue and BMDMs in the model rats. More importantly, donepezil reduced the proliferation and promoted the apoptosis of PASMCs by suppressing M2-macrophage activation. Conclusion: Donepezil could prevent pulmonary vascular and RV remodeling, thereby reversing PAH progression. Moreover, enhancement of the parasympathetic activity could reduce the proliferation and promote the apoptosis of PASMCs in PAH by suppressing M2-macrophage activation.
Collapse
Affiliation(s)
- Haihua Qiu
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Yibo Zhang
- Department of Ultrasound, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Zhongyu Li
- Laboratory Medicine Center, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Ping Jiang
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Shuhong Guo
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Yi He
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Yuan Guo
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China.,Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Zimmer A, Teixeira RB, Bonetto JHP, Bahr AC, Türck P, de Castro AL, Campos-Carraro C, Visioli F, Fernandes-Piedras TR, Casali KR, Scassola CMC, Baldo G, Araujo AS, Singal P, Belló-Klein A. Role of inflammation, oxidative stress, and autonomic nervous system activation during the development of right and left cardiac remodeling in experimental pulmonary arterial hypertension. Mol Cell Biochem 2019; 464:93-109. [DOI: 10.1007/s11010-019-03652-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022]
|
8
|
Bucindolol Modulates Cardiac Remodeling by Attenuating Oxidative Stress in H9c2 Cardiac Cells Exposed to Norepinephrine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6325424. [PMID: 31360296 PMCID: PMC6652037 DOI: 10.1155/2019/6325424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/12/2019] [Accepted: 06/15/2019] [Indexed: 11/18/2022]
Abstract
The increased circulation of norepinephrine, found in the diseased heart as a result of sympathetic nervous system overactivation, is responsible for its cardiotoxic effects including pathological hypertrophy, cell death, and oxidative stress. Bucindolol is a third generation adrenergic blocker, which acts on the β1 and β2 receptors, and has additional α1 antagonist activity. Thus, the aim of this study was to investigate the action of bucindolol on oxidative stress, hypertrophy, cell survival, and cell death signaling pathways in H9c2 cardiac cells exposed to norepinephrine. H9c2 cells were incubated with 10 μM norepinephrine for 24 h in the presence or absence of bucindolol (10 μM) treatment for 8 h. Western blot was used to determine the expression of proteins for hypertrophy/survival and death signaling pathways. Flow cytometry was used to assess cell death via caspase-3/7 activity and propidium iodide and reactive oxygen species via measuring the fluorescence of CM-H2DCFDA. Norepinephrine exposure resulted in an increase in oxidative stress as well as cell death. This was accompanied by an increased protein expression of LC3B-II/I. The protein kinase B/mammalian target of the rapamycin (Akt/mTOR) pathway which is involved in cardiac remodeling process was activated in response to norepinephrine and was mitigated by bucindolol. In conclusion, bucindolol was able to modulate cardiac remodeling which is mediated by oxidative stress.
Collapse
|
9
|
Shinoda M, Saku K, Oga Y, Tohyama T, Nishikawa T, Abe K, Yoshida K, Kuwabara Y, Fujii K, Ishikawa T, Kishi T, Sunagawa K, Tsutsui H. Suppressed baroreflex peripheral arc overwhelms augmented neural arc and incapacitates baroreflex function in rats with pulmonary arterial hypertension. Exp Physiol 2019; 104:1164-1178. [PMID: 31140668 DOI: 10.1113/ep087253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 05/28/2019] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? The impact of pulmonary arterial hypertension on open-loop baroreflex function, which determines how powerfully and rapidly the baroreflex operates to regulate arterial pressure, remains poorly understood. What is the main finding and its importance? The gain of the baroreflex total arc, indicating the baroreflex pressure-stabilizing function, is markedly attenuated in rats with monocrotaline-induced pulmonary arterial hypertension. This is caused by a rightward shift of the baroreflex neural arc and a downward shift of the peripheral arc. These findings contribute greatly to our understanding of arterial pressure regulation by the sympathetic nervous system in pulmonary arterial hypertension. ABSTRACT Sympathoexcitation has been documented in patients with established pulmonary arterial hypertension (PAH). Although the arterial baroreflex is the main negative feedback regulator of sympathetic nerve activity (SNA), the way in which PAH impacts baroreflex function remains poorly understood. In this study, we conducted baroreflex open-loop analysis in a rat model of PAH. Sprague-Dawley rats were injected with monocrotaline (MCT) s.c. to induce PAH (60 mg kg-1 ; n = 11) or saline as a control group (CTL; n = 8). At 3.5 weeks after MCT injection, bilateral carotid sinuses were isolated, and intrasinus pressure (CSP) was controlled while SNA at the coeliac ganglia and arterial pressure (AP) were recorded. To examine the static baroreflex function, CSP was increased stepwise while steady-state AP (total arc) and SNA (neural arc) responses to CSP and the AP response to SNA (peripheral arc) were measured. Monocrotaline significantly decreased the static gain of the baroreflex total arc at the operating AP compared with CTL (-0.80 ± 0.31 versus -0.22 ± 0.22, P < 0.05). Given that MCT markedly increased plasma noradrenaline, an index of SNA, by approximately 3.6-fold compared with CTL, calibrating SNA by plasma noradrenaline revealed that MCT shifted the neural arc to a higher SNA level and shifted the peripheral arc downwards. Monocrotaline also decreased the dynamic gain of the baroreflex total arc (-0.79 ± 0.16 versus -0.35 ± 0.17, P < 0.05), while the corner frequencies that reflect the speed of the baroreflex remained unchanged (0.06 ± 0.02 versus 0.08 ± 0.02 Hz, n.s.). In rats with MCT-induced PAH, the suppressed baroreflex peripheral arc overwhelms the augmented neural arc and, in turn, attenuates the gain of the total arc, which determines the pressure-stabilizing capacity of the baroreflex.
Collapse
Affiliation(s)
- Masako Shinoda
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Keita Saku
- Department of Advanced Risk Stratification for Cardiovascular Diseases, Center for Disruptive Cardiovascular Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Yasuhiro Oga
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Takeshi Tohyama
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Takuya Nishikawa
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Kohtaro Abe
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Keimei Yoshida
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Yukimitsu Kuwabara
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Kana Fujii
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Tomohito Ishikawa
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Takuya Kishi
- Department of Advanced Risk Stratification for Cardiovascular Diseases, Center for Disruptive Cardiovascular Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Kenji Sunagawa
- Department of Therapeutic Regulation of Cardiovascular Homeostasis, Center for Disruptive Cardiovascular Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
10
|
Schlüter KD, Kutsche HS, Hirschhäuser C, Schreckenberg R, Schulz R. Review on Chamber-Specific Differences in Right and Left Heart Reactive Oxygen Species Handling. Front Physiol 2018; 9:1799. [PMID: 30618811 PMCID: PMC6304434 DOI: 10.3389/fphys.2018.01799] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/29/2018] [Indexed: 01/21/2023] Open
Abstract
Reactive oxygen species (ROS) exert signaling character (redox signaling), or damaging character (oxidative stress) on cardiac tissue depending on their concentration and/or reactivity. The steady state of ROS concentration is determined by the interplay between its production (mitochondrial, cytosolic, and sarcolemmal enzymes) and ROS defense enzymes (mitochondria, cytosol). Recent studies suggest that ROS regulation is different in the left and right ventricle of the heart, specifically by a different activity of superoxide dismutase (SOD). Mitochondrial ROS defense seems to be lower in right ventricular tissue compared to left ventricular tissue. In this review we summarize the current evidence for heart chamber specific differences in ROS regulation that may play a major role in an observed inability of the right ventricle to compensate for cardiac stress such as pulmonary hypertension. Based on the current knowledge regimes to increase ROS defense in right ventricular tissue should be in the focus for the development of future therapies concerning right heart failure.
Collapse
Affiliation(s)
| | - Hanna Sarah Kutsche
- Department of Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | - Rolf Schreckenberg
- Department of Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Rainer Schulz
- Department of Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
11
|
de Lima-Seolin BG, Hennemann MM, Fernandes RO, Colombo R, Bonetto JHP, Teixeira RB, Khaper N, Godoy AEG, Litvin IE, Sander da Rosa Araujo A, Schenkel PC, Belló-Klein A. Bucindolol attenuates the vascular remodeling of pulmonary arteries by modulating the expression of the endothelin-1 A receptor in rats with pulmonary arterial hypertension. Biomed Pharmacother 2018; 99:704-714. [DOI: 10.1016/j.biopha.2018.01.127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/19/2022] Open
|