1
|
Labastida-Ramírez A, Rubio-Beltrán E, Haanes KA, de Vries R, Dammers R, Bogers AJJC, van den Bogaerdt A, Daugherty BL, Danser AHJ, Villalón CM, MaassenVanDenBrink A. Effects of two isometheptene enantiomers in isolated human blood vessels and rat middle meningeal artery - potential antimigraine efficacy. J Headache Pain 2019; 20:47. [PMID: 31053059 PMCID: PMC6734216 DOI: 10.1186/s10194-019-1003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 04/22/2019] [Indexed: 11/17/2022] Open
Abstract
Background Racemic isometheptene [(RS)-isometheptene] is an antimigraine drug that due to its cardiovascular side-effects was separated into its enantiomers, (R)- and (S)-isometheptene. This study set out to characterize the contribution of each enantiomer to its vasoactive profile. Moreover, rat neurogenic dural vasodilatation was used to explore their antimigraine mechanism of action. Methods Human blood vessel segments (middle meningeal artery, proximal and distal coronary arteries, and saphenous vein) were mounted in organ baths and concentration response curves to isometheptene were constructed. Calcitonin gene-related peptide (CGRP)-induced neurogenic dural vasodilation was elicited in the presence of the enantiomers using a rat closed cranial window model. Results The isometheptene enantiomers did not induce any significant contraction in human blood vessels, except in the middle meningeal artery, when they were administered at the highest concentration (100 μM). Interestingly in rats, (S)-isometheptene induced more pronounced vasopressor responses than (R)-isometheptene. However, none of these compounds affected the CGRP-induced vasodilator responses. Conclusion The isometheptene enantiomers displayed a relatively safe peripheral vascular profile, as they failed to constrict the human coronary artery. These compounds do not appear to modulate neurogenic dural CGRP release, therefore, their antimigraine site of action remains to be determined.
Collapse
Affiliation(s)
- Alejandro Labastida-Ramírez
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Dr Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Eloísa Rubio-Beltrán
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Dr Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Kristian A Haanes
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Dr Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - René de Vries
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Dr Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Ruben Dammers
- Department of Neurosurgery, Erasmus MC, Dr Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - A J J C Bogers
- Department of Thoracic surgery, Erasmus MC, Dr Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | | | - Bruce L Daugherty
- Tonix Pharmaceuticals, Inc, 509 Madison Avenue, Suite 306, New York, NY, 10022, USA
| | - Alexander H J Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Dr Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | - Carlos M Villalón
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda de los Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, C.P, 14330, Ciudad de México, Mexico
| | - Antoinette MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Dr Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands.
| |
Collapse
|