1
|
Wang P, Zhu H, Tian JS, Zhu W, Xu S, Yao H, Liu J, Zhu Z, Miao CY, Xu J. Discovery of MT-1207: A Novel, Potent Multitarget Inhibitor as a Promising Clinical Candidate for the Treatment of Hypertension. J Med Chem 2024; 67:16128-16144. [PMID: 38968440 DOI: 10.1021/acs.jmedchem.4c00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Herein, a series of novel arylpiperazine (piperidine) derivatives were designed, synthesized, and evaluated for mechanisms of action through in vitro and in vivo studies. The most promising compound, II-13 (later named as MT-1207), is a potent α1 and 5-HT2A receptor antagonist with remarkable IC50 in the picomolar level. Importantly, in the in vivo assay, II-13 achieved an effective blood pressure (BP) reduction in the 2K2C rat model without damaging renal function. Compound II-13, with its significant advantages in terms of pharmacological effects, pharmacokinetic parameters, and a large safety window, was extensively investigated. Moreover, data also showed that compound II-13 had fewer side effects in a postural BP assay and could prevent the onset of postural hypotension. Together, these results suggested that compound II-13 is a highly potent antihypertensive drug candidate with multitarget mechanisms of action in preclinical models. Currently, MT-1207 is in phase II hypertensive clinical trials in China.
Collapse
Affiliation(s)
- Peng Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Huajian Zhu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Jia-Sheng Tian
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| | - Wenjian Zhu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Hong Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Jie Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, U.K
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
2
|
Kotańska M, Wojtaszek K, Kubacka M, Bednarski M, Nicosia N, Wojnicki M. The Influence of Caramel Carbon Quantum Dots and Caramel on Platelet Aggregation, Protein Glycation and Lipid Peroxidation. Antioxidants (Basel) 2023; 13:13. [PMID: 38275633 PMCID: PMC10812612 DOI: 10.3390/antiox13010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Caramel, defined as a coloring agent and as an antioxidant, is used in several kinds of food products and is consumed by many people in different amounts. In our research we showed that the caramelization of sucrose under special conditions leads to the formation of carbon quantum dots (CQDs). So, it makes sense that humans also consume this type of CQDs, and it is theoretically possible for these particles to affect the body. Despite an increasing number of studies describing different types of CQDs, their biosafety is still not clearly understood. In our in vitro research, we examined the effects on platelet aggregation, protein glycation and lipid peroxidation of CQDs and caramel formed from a 20% sucrose solution. In vitro aggregation tests were conducted using freshly collected whole rat blood in a multiplate platelet function analyzer and measurer of electric impedance. The cytotoxic effect of the tested solutions on blood platelets was evaluated based on the release of lactate dehydrogenase. The formation of glycated bovine serum albumin was measured as fluorescence intensity and fructosamine level. The reducing power of the solutions was determined in adipose tissue, and their effect on lipid peroxidation in adipose tissue in vitro was also assessed. By measuring the intensity of hemolysis after incubation in solutions with red blood cell, we assessed their influence on the integration of the red blood cell membrane. All tests were performed in comparison with glucose and fructose and other frequently used sweeteners, such as erythritol and xylitol. Our study showed that caramel and CQDs formed from caramel may influence the glycation process and integrity of the red blood cell membrane, but unlike glucose and fructose, they decrease lipid peroxidation and may reduce Fe (III). Additionally, it is unlikely that they affect platelet aggregation. Compared to glucose and fructose, they may be safer for patients with metabolic disorders; however, further research is needed on the safety and biological activity of caramel and CQD.
Collapse
Affiliation(s)
- Magdalena Kotańska
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland;
| | - Konrad Wojtaszek
- Faculty of Non-Ferrous Metals, AGH University of Krakow, Mickiewicza Ave., 30-059 Krakow, Poland;
| | - Monika Kubacka
- Department of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland;
| | - Marek Bednarski
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland;
| | - Noemi Nicosia
- PhD Program in Neuroscience, Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
| | - Marek Wojnicki
- Faculty of Non-Ferrous Metals, AGH University of Krakow, Mickiewicza Ave., 30-059 Krakow, Poland;
| |
Collapse
|
3
|
Kubacka M, Mogilski S, Bednarski M, Pociecha K, Świerczek A, Nicosia N, Schabikowski J, Załuski M, Chłoń-Rzepa G, Hockemeyer J, Müller CE, Kieć-Kononowicz K, Kotańska M. Antiplatelet Effects of Selected Xanthine-Based Adenosine A 2A and A 2B Receptor Antagonists Determined in Rat Blood. Int J Mol Sci 2023; 24:13378. [PMID: 37686188 PMCID: PMC10487961 DOI: 10.3390/ijms241713378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The platelet aggregation inhibitory activity of selected xanthine-based adenosine A2A and A2B receptor antagonists was investigated, and attempts were made to explain the observed effects. The selective A2B receptor antagonist PSB-603 and the A2A receptor antagonist TB-42 inhibited platelet aggregation induced by collagen or ADP. In addition to adenosine receptor blockade, the compounds were found to act as moderately potent non-selective inhibitors of phosphodiesterases (PDEs). TB-42 showed the highest inhibitory activity against PDE3A along with moderate activity against PDE2A and PDE5A. The antiplatelet activity of PSB-603 and TB-42 may be due to inhibition of PDEs, which induces an increase in cAMP and/or cGMP concentrations in platelets. The xanthine-based adenosine receptor antagonists were found to be non-cytotoxic for platelets. Some of the compounds showed anti-oxidative properties reducing lipid peroxidation. These results may provide a basis for the future development of multi-target xanthine derivatives for the treatment of inflammation and atherosclerosis and the prevention of heart infarction and stroke.
Collapse
Affiliation(s)
- Monika Kubacka
- Department of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (M.K.); (S.M.)
| | - Szczepan Mogilski
- Department of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (M.K.); (S.M.)
| | - Marek Bednarski
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (M.B.); (N.N.)
| | - Krzysztof Pociecha
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (K.P.); (A.Ś.)
| | - Artur Świerczek
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (K.P.); (A.Ś.)
| | - Noemi Nicosia
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (M.B.); (N.N.)
- Division of Neuroscience, Vita Salute San Raffaele University, 20132 Milan, Italy
| | - Jakub Schabikowski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (J.S.); (M.Z.); (K.K.-K.)
| | - Michał Załuski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (J.S.); (M.Z.); (K.K.-K.)
| | - Grażyna Chłoń-Rzepa
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland;
| | - Jörg Hockemeyer
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, An der Immenburg 4, D-53121 Bonn, Germany; (J.H.); (C.E.M.)
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, An der Immenburg 4, D-53121 Bonn, Germany; (J.H.); (C.E.M.)
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (J.S.); (M.Z.); (K.K.-K.)
| | - Magdalena Kotańska
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (M.B.); (N.N.)
| |
Collapse
|
4
|
Corzo-Gómez J, Picazo O, Castellanos-Pérez M, Briones-Aranda A. Systematic Review of the Serotonergic System in the Pathophysiology of Severe Dengue: The Theory of Thrombocytopenia and Vascular Extravasation. Mini Rev Med Chem 2023; 23:230-243. [PMID: 35726421 DOI: 10.2174/1389557522666220619231643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Severe dengue is characterized by thrombocytopenia, hemorrhaging, and/or capillary extravasation and may be linked to a reduced plasma concentration of serotonin (5-hydroxytriptamine, or 5-HT). OBJECTIVE The aim of the current contribution was to conduct a systematic bibliographic review of reports on the role of the peripheral serotonergic system in the pathophysiology of severe dengue. METHODS A bibliographic review was carried out of in vivo/in vitro models, clinical trials, and case series studies from 2010-2019. The selective criteria were the use of treatments with serotonin reuptake inhibitors and/or agonists/antagonists of 5-HT receptors and their impact on inflammation, coagulation, and endothelium. Moreover, cross-sectional and cohort studies on the relationship between intraplatelet and plasma 5-HT levels in patients with dengue were also included. The risk of bias in the selected reports was examined with domain-based assessment utilizing Cochrane-type criteria. The main results are summarized in Tables and Figures. RESULTS Based on descriptions of the effect of serotonergic drugs on 5-HT levels and the findings of clinical trials of dengue treatment, most receptors of the peripheral serotonergic system, and especially 5-HT2A, seem to participate in regulating serum 5-HT during severe dengue. Therefore, the peripheral serotonergic system probably contributes to thrombocytopenia and capillary extravasation. CONCLUSION Regarding dengue, 5-HT may be a key parameter for predicting severity, and an understanding of 5-HT-related mechanisms could possibly facilitate the development of new therapies. These proposals require further research due to the limited number of publications on the role of serotonergic receptors at the peripheral level.
Collapse
Affiliation(s)
- Josselin Corzo-Gómez
- Pharmacology Laboratory, Faculty of Human Medicine, Autonomous University of Chiapas, Tuxtla Gutiérrez, Chiapas, México
| | - Ofir Picazo
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Manuela Castellanos-Pérez
- Pharmacology Laboratory, Faculty of Human Medicine, Autonomous University of Chiapas, Tuxtla Gutiérrez, Chiapas, México
| | - Alfredo Briones-Aranda
- Pharmacology Laboratory, Faculty of Human Medicine, Autonomous University of Chiapas, Tuxtla Gutiérrez, Chiapas, México
| |
Collapse
|
5
|
Marcinkowska M, Kubacka M, Zagorska A, Jaromin A, Fajkis-Zajaczkowska N, Kolaczkowski M. Exploring the antiplatelet activity of serotonin 5-HT 2A receptor antagonists bearing 6-fluorobenzo[d]isoxazol-3-yl)propyl) motif- as potential therapeutic agents in the prevention of cardiovascular diseases. Biomed Pharmacother 2021; 145:112424. [PMID: 34785417 DOI: 10.1016/j.biopha.2021.112424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/30/2021] [Accepted: 11/10/2021] [Indexed: 01/19/2023] Open
Abstract
Small drug-like molecules that can block the function of serotonin 5-HT2A receptors have garnered considerable attention due to their ability to inhibit platelet aggregation and the possible prevention of atherosclerotic lesions. Although clinical data provided compelling evidence for the efficacy of this approach in the prevention of various cardiovascular conditions, the chemical space of 5-HT2A receptor antagonists is limited to ketanserin and sarpogrelate. To expand the portfolio of novel chemical motifs with potential antiplatelet activity, we evaluated the antiplatelet activity of a series of 6-fluorobenzo[d]isoxazole derivatives that possess a high affinity for 5-HT2A receptor. Here we describe in vitro studies showing that 6-fluorobenzo[d]isoxazole derivatives exert promising antiplatelet activity in three various in vitro models of platelet aggregation, as well as limit serotonin-induced vasoconstriction. Compound AZ928 showed in vitro activity greater than the clinically approved drug sarpogrelate. In addition to promising antiplatelet activity, the novel series was characterized by a favorable safety profile. Our findings show that the novel series exerts promising antiplatelet efficacy while being deprived of potential side effects, such as hemolytic activity, which render these compounds as potential substances for further investigation in the field of cardiovascular research.
Collapse
Affiliation(s)
- Monika Marcinkowska
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland.
| | - Monika Kubacka
- Chair of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland.
| | - Agnieszka Zagorska
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Nikola Fajkis-Zajaczkowska
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Marcin Kolaczkowski
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
6
|
Novel serotonin 5-HT 2A receptor antagonists derived from 4-phenylcyclohexane-5-spiro-and 5-methyl-5-phenyl-hydantoin, for use as potential antiplatelet agents. Pharmacol Rep 2021; 73:1361-1372. [PMID: 34115343 PMCID: PMC8460535 DOI: 10.1007/s43440-021-00284-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 10/25/2022]
Abstract
BACKGROUND Antiplatelet drugs have been used in the treatment of acute coronary syndromes and for the prevention of recurrent events. Unfortunately, many patients remain resistant to the available antiplatelet treatment. Therefore, there is a clinical need to synthesize novel antiplatelet agents, which would be associated with different pathways of platelet aggregation, to develop an alternative or additional treatment for resistant patients. Recent studies have revealed that 5-HT2A receptor antagonists could constitute alternative antiplatelet therapy. METHODS Based on the structures of the conventional 5-HT2A receptor ligands, two series of compounds with 4-phenylcyclohexane-5-spiro- or 5-methyl-5-phenyl-hydantoin core linked to various arylpiperazine moieties were synthesized and their affinity for 5-HT2A receptor was assessed. Further, we evaluated their antagonistic potency at 5-HT2A receptors using isolated rat aorta and cells expressing human 5-HT2A receptors. Finally, we studied their anti-aggregation effect and compared it with ketanserin and sarpogrelate, the reference 5-HT2A receptor antagonists. Moreover, the structure-activity relationships were studied following molecular docking to the 5-HT2A receptor model. RESULTS Functional bioassays revealed some of the synthesized compounds to be moderate antagonists of 5-HT2A receptors. Among them, 13, 8-phenyl-3-(3-(4-phenylpiperazin-1-yl)propyl)-1,3-diazaspiro[4.5]decane-2,4-dione, inhibited collagen stimulated aggregation (IC50 = 27.3 μM) being more active than sarpogrelate (IC50 = 66.8 μM) and comparable with ketanserin (IC50 = 32.1 μM). Moreover, compounds 2-5, 9-11, 13, 14 inhibited 5-HT amplified, ADP- or collagen-induced aggregation. CONCLUSIONS Our study confirmed that the 5-HT2A antagonists effectively suppress platelet aggregation and remain an interesting option for the development of novel antiplatelet agents with an alternative mechanism of action.
Collapse
|
7
|
Kawano Y, Katsuyama M, Nagata M, Obana M, Nakamatsu S, Mori A, Sakamoto N, Mano Y, Negishi K, Shimada S, Aoyama T. Antiplatelet Effect of Mirtazapine via Co-blocking of the 5-HT 2A and α 2-Adrenergic Receptors on Platelets. Biol Pharm Bull 2021; 44:238-244. [PMID: 33518675 DOI: 10.1248/bpb.b20-00698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mirtazapine (MTZ) is a noradrenergic and specific serotonergic antidepressant. MTZ is reportedly associated with an increased risk of bleeding. However, the underlying mechanism remains unclear. In this study, we investigated the antiplatelet effect of MTZ in mice via light transmission aggregometry to elucidate the mechanism of MTZ-induced bleeding. The results of the ex vivo study showed that the oral administration of MTZ (20 or 100 mg/kg) significantly suppressed platelet aggregation mediated by the synergic interaction of 5-hydroxytryptamine (5-HT) and adrenaline. Additionally, MTZ significantly suppressed platelet aggregation, mediated by the synergic interaction of ADP and 5-HT or adrenaline. Similar results were obtained in vitro, under the condition of 5-HT- and adrenaline-induced platelet aggregation. Overall, the results suggest that MTZ exerts antiplatelet effect by co-blocking 5-HT2A and α2-adrenergic receptors on platelets and suppresses platelet aggregation mediated by ADP, increased by either 5-HT or adrenaline. Thus, a detailed monitoring of bleeding is recommended for patients taking MTZ.
Collapse
Affiliation(s)
- Yohei Kawano
- Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS)
| | - Maho Katsuyama
- Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS)
| | - Masashi Nagata
- Department of Pharmacy, Medical Hospital, Tokyo Medical and Dental University (TMDU)
| | - Maki Obana
- Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS)
| | - Satoshi Nakamatsu
- Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS)
| | - Ayano Mori
- Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS)
| | - Namiki Sakamoto
- Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS)
| | - Yasunari Mano
- Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS)
| | - Kenichi Negishi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS)
| | - Shuji Shimada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS)
| | - Takao Aoyama
- Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS)
| |
Collapse
|
8
|
Soman S, Bhattacharya A, Panicker MM. Dopamine requires unique residues to signal via the serotonin 2A receptor. Neuroscience 2019; 439:319-331. [PMID: 30970266 DOI: 10.1016/j.neuroscience.2019.03.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/20/2023]
Abstract
Serotonin is an important neurotransmitter and neuromodulator. Disruption of the serotonergic system has been implicated in various psychiatric disorders such as schizophrenia and bipolar disorder. Most of the drugs targeting these neurotransmitter systems are classified primarily as agonists or inverse agonists/antagonists, with their described function being limited to activating the canonical signaling pathway(s), or inhibiting the pathway(s) respectively. Previous work with the human 5-HT2A has shown the receptor to be activated by dopamine, also an endogenous ligand. Dopamine is the cognate ligand of the dopaminergic system, which significantly overlaps with the serotonergic system in the brain. The two systems innervate many of the same brain areas, and the central serotonergic systems also regulate dopamine functions. Our aim was to investigate the downstream signaling set up by the receptor on being activated by dopamine. We show that dopamine is a functionally selective ligand at 5-HT2A and have examined dopamine as a ligand with respect to some receptor-dependent phenotypes. Our results show that dopamine acts as an agonist at the human serotonin 2A receptor and brings about its activation and internalization. Using in vitro assays, we have established differences in the signaling pathways set up by dopamine as compared to serotonin. Using site-specific mutagenesis we have identified residues important for this functional selectivity, shown by dopamine at this receptor. Our identification of specific residues important in the functional selectivity of dopamine at 5-HT2A could have far reaching implications for the field of GPCR signaling and drug-design. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
- Shuchita Soman
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bellary Road, Bengaluru, India.
| | - Aditi Bhattacharya
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bellary Road, Bengaluru, India.
| | - Mitradas M Panicker
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bellary Road, Bengaluru, India.
| |
Collapse
|
9
|
Kubacka M, Kotańska M, Kazek G, Waszkielewicz AM, Marona H, Filipek B, Mogilski S. Involvement of the NO/sGC/cGMP/K + channels pathway in vascular relaxation evoked by two non-quinazoline α 1-adrenoceptor antagonists. Biomed Pharmacother 2018; 103:157-166. [PMID: 29653360 DOI: 10.1016/j.biopha.2018.04.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to explore the α1-adrenoceptor-independent mechanisms involved in the vasorelaxant properties of two non-quinazoline α1-adrenoceptors antagonists (MH-76 and MH-79). Endothelium intact and endothelium denuded rat aorta was contracted with 1 μM phenylephrine to plateau, and the vasodilatory effect of MH-76 and MH-79 was examined in the absence or presence of inhibitors of the different signal transduction pathways. cGMP concetration was measured in rat aorta (enzyme immunoassay kit). In human aortic endothelial cells (HAEC) NO production was examined using a DAF-FM DA fluorescent indicator, whereas in human aortic smooth muscle cells the influence of the title compounds on K+ efflux was evaluated. The vasorelaxant effect of MH-76 and MH-79 was attenuated by endothelium removal, Nω-Nitro-l-arginine methyl ester (L-NAME) and 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) pretreatment to the level characteristic for α1-adrenoreceptor blocking activity. In addition, the MH-76 and MH-79 induced relaxation was reduced by K+ channels blockers. In endothelium intact rat aorta, MH-76 and MH-79 caused an increase in cGMP level, whereas in HAEC they increased NO generation. In contrast, the reference, quinazoline based α1-antagonist prazosin, did not influence NO production. Our findings suggest that the mechanisms underlying the vasodilatory properties of non-quinazoline based α1-adrenoceptors antagonists MH-76 and MH-79 involve not only α1-adrenoceptor blocking activity but also the activation of the endothelial NO-cGMP signalling pathway and the subsequent opening of K+ channels. Our studies show that such double mechanism of action is superior to pure α1-adrenoceptor blockade, and may be considered as a promising alternative for the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Monika Kubacka
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland.
| | - Magdalena Kotańska
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland
| | - Grzegorz Kazek
- Department of Pharmacological Screening, Chair of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland
| | - Anna Maria Waszkielewicz
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland
| | - Henryk Marona
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland
| | - Barbara Filipek
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland
| | - Szczepan Mogilski
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland
| |
Collapse
|