1
|
Yun HM, Kim E, Kwon YJ, Park KR. Vanillin Promotes Osteoblast Differentiation, Mineral Apposition, and Antioxidant Effects in Pre-Osteoblasts. Pharmaceutics 2024; 16:485. [PMID: 38675146 PMCID: PMC11054936 DOI: 10.3390/pharmaceutics16040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Antioxidant vanillin (4-hydroxy-3-methoxybenzaldehyde) is used as a flavoring in foods, beverages, and pharmaceuticals. Vanillin possesses various biological effects, such as antioxidant, anti-inflammatory, antibacterial, and anticancer properties. This study aimed to investigate the biological activities of vanillin purified from Adenophora triphylla var. japonica Hara on bone-forming processes. Vanillin treatment induced mineralization as a marker for mature osteoblasts, after stimulating alkaline phosphatase (ALP) staining and activity. The bone-forming processes of vanillin are mainly mediated by the upregulation of the bone morphogenetic protein 2 (BMP2), phospho-Smad1/5/8, and runt-related transcription factor 2 (RUNX2) pathway during the differentiation of osteogenic cells. Moreover, vanillin promoted osteoblast-mediated bone-forming phenotypes by inducing migration and F-actin polymerization. Furthermore, we validated that vanillin-mediated bone-forming processes were attenuated by noggin and DKK1. Finally, we demonstrated that vanillin-mediated antioxidant effects prevent the death of osteoblasts during bone-forming processes. Overall, vanillin has bone-forming properties through the BMP2-mediated biological mechanism, indicating it as a bone-protective compound for bone health and bone diseases such as periodontitis and osteoporosis.
Collapse
Affiliation(s)
- Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eonmi Kim
- National Development Institute of Korean Medicine, Gyeongsan 38540, Republic of Korea; (E.K.); (Y.-J.K.)
| | - Yoon-Ju Kwon
- National Development Institute of Korean Medicine, Gyeongsan 38540, Republic of Korea; (E.K.); (Y.-J.K.)
| | - Kyung-Ran Park
- Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
| |
Collapse
|
2
|
Banik I, Ghosh A, Beebe E, Burja B, Frank Bertoncelj M, Dooley CM, Markkanen E, Dummer R, Busch-Nentwich EM, Levesque MP. P38 Mediates Tumor Suppression through Reduced Autophagy and Actin Cytoskeleton Changes in NRAS-Mutant Melanoma. Cancers (Basel) 2023; 15:877. [PMID: 36765834 PMCID: PMC9913513 DOI: 10.3390/cancers15030877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Hotspot mutations in the NRAS gene are causative genetic events associated with the development of melanoma. Currently, there are no FDA-approved drugs directly targeting NRAS mutations. Previously, we showed that p38 acts as a tumor suppressor in vitro and in vivo with respect to NRAS-mutant melanoma. We observed that because of p38 activation through treatment with the protein synthesis inhibitor, anisomycin leads to a transient upregulation of several targets of the cAMP pathway, representing a stressed cancer cell state that is often observed by therapeutic doses of MAPK inhibitors in melanoma patients. Meanwhile, genetically induced p38 or its stable transduction leads to a distinct cellular transcriptional state. Contrary to previous work showing an association of invasiveness with high p38 levels in BRAF-mutated melanoma, there was no correlation of p38 expression with NRAS-mutant melanoma invasion, highlighting the difference in BRAF and NRAS-driven melanomas. Although the role of p38 has been reported to be that of both tumor suppressor and oncogene, we show here that p38 specifically plays the role of a tumor suppressor in NRAS-mutant melanoma. Both the transient and stable activation of p38 elicits phosphorylation of mTOR, reported to be a master switch in regulating autophagy. Indeed, we observed a correlation between elevated levels of phosphorylated mTOR and a reduction in LC3 conversion (LCII/LCI), indicative of suppressed autophagy. Furthermore, a reduction in actin intensity in p38-high cells strongly suggests a role of mTOR in regulating actin and a remodeling in the NRAS-mutant melanoma cells. Therefore, p38 plays a tumor suppressive role in NRAS-mutant melanomas at least partially through the mechanism of mTOR upregulation, suppressed autophagy, and reduced actin polymerization. One or more combinations of MEK inhibitors with either anisomycin, rapamycin, chloroquine/bafilomycin, and cytochalasin modulate p38 activation, mTOR phosphorylation, autophagy, and actin polymerization, respectively, and they may provide an alternate route to targeting NRAS-mutant melanoma.
Collapse
Affiliation(s)
- Ishani Banik
- Department of Dermatology, University of Zurich Hospital, University of Zurich, 8091 Zurich, Switzerland
- Department of Dermatology, University of San Francisco California, San Francisco, CA 94117, USA
| | - Adhideb Ghosh
- Functional Genomics Center Zurich, ETH/University of Zurich, 8057 Zurich, Switzerland
| | - Erin Beebe
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Blaž Burja
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Mojca Frank Bertoncelj
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
- Team Integrative Biology of Immune-Mediated Inflammatory Diseases, BioMed X Institute, 69120 Heidelberg, Germany
| | | | - Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University of Zurich Hospital, University of Zurich, 8091 Zurich, Switzerland
- Department of Dermatology, University of San Francisco California, San Francisco, CA 94117, USA
| | | | - Mitchell P. Levesque
- Department of Dermatology, University of Zurich Hospital, University of Zurich, 8091 Zurich, Switzerland
- Department of Dermatology, University of San Francisco California, San Francisco, CA 94117, USA
| |
Collapse
|
3
|
Hosseini Nasab N, Han Y, Hassan Shah F, Vanjare BD, Kim SJ. Synthesis, biological evaluation, migratory inhibition and docking study of Indenopyrazolones as potential anticancer agents. Chem Biodivers 2022; 19:e202200399. [PMID: 35977918 DOI: 10.1002/cbdv.202200399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022]
Abstract
Some bioactive derivatives of indeno[1,2- c ]pyrazolones were synthesized through the reaction of phenylhydrazine, different aldehydes and indan-1,2,3-trione at room temperature in acetonitrile. Analytical and spectroscopic studies have confirmed the structural characteristics of the synthesized compounds. In addition, the target compounds were screened for the in-vitro antiproliferative properties against the B16F10 melanoma cancer cell line by the standard MTT assay. The effect on inflammatory marker cyclooxygenase 2 and matrix metalloproteinase 2, 9 was also checked to determine the anti-inflammatory and anti-cell migratory properties of these compounds. The final compounds were also tested for their tyrosinase inhibitory activity. Among all compounds, screened for anticancer activity, three compounds 4e , 4f and 4h reduced the cell proliferation significantly comparable to that of the positive standard drug erlotinib (IC 50 = 418.9±1.54 µM) with IC 50 values ranging from 20.72-29.35 µM. The compounds 4c-4h decreased the COX-2 expression whereas the MMP 2, 9 expressions were significantly reduced by 4a , 4b and 4h . This was confirmed by molecular docking studies, as 4e , 4f and 4h displayed good interactions with the active site of BRAF protein. The compounds 4b , 4f and 4h exhibited moderate tyrosinase inhibition effect as compared to α-MSH. Collectively, compound 4h can be considered as a candidate for further optimization in the development of anticancer therapies based on the results of biological investigations in this study.
Collapse
Affiliation(s)
- Narges Hosseini Nasab
- Kongju University: Kongju National University, Biological Sciences, 56 GongjuDaehak-Ro, Gongju, KOREA, REPUBLIC OF
| | - Yohan Han
- Kongju University: Kongju National University, Biological Sciences, 56 GongjuDaehak-Ro, Gongju, KOREA, REPUBLIC OF
| | - Fahad Hassan Shah
- Kongju University: Kongju National University, Biological Sciences, 56 GongjuDaehak-Ro, Gongju, KOREA, REPUBLIC OF
| | - Balasaheb D Vanjare
- Kongju University: Kongju National University, Biological Sciences, 56 GongjuDaehak-Ro, Gongju, KOREA, REPUBLIC OF
| | - Song Ja Kim
- Kongju National University, Biological Science, 56 GongjuDaehak-Ro, 32588, Gongju, KOREA, REPUBLIC OF
| |
Collapse
|
4
|
Tong Z, Liu Y, Xia R, Chang Y, Hu Y, Liu P, Zhai Z, Zhang J, Li H. F-actin Regulates Osteoblastic Differentiation of Mesenchymal Stem Cells on TiO 2 Nanotubes Through MKL1 and YAP/TAZ. NANOSCALE RESEARCH LETTERS 2020; 15:183. [PMID: 32965618 PMCID: PMC7511505 DOI: 10.1186/s11671-020-03415-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/14/2020] [Indexed: 05/02/2023]
Abstract
Titanium and titanium alloys are widely used in orthopedic implants. Modifying the nanotopography provides a new strategy to improve osseointegration of titanium substrates. Filamentous actin (F-actin) polymerization, as a mechanical loading structure, is generally considered to be involved in cell migration, endocytosis, cell division, and cell shape maintenance. Whether F-actin is involved and how it functions in nanotube-induced osteogenic differentiation of mesenchymal stem cells (MSCs) remain to be elucidated. In this study, we fabricated TiO2 nanotubes on the surface of a titanium substrate by anodic oxidation and characterized their features by scanning electron microscopy (SEM), X-ray energy dispersive analysis (EDS), and atomic force microscopy (AFM). Alkaline phosphatase (ALP) staining, Western blotting, qRT-PCR, and immunofluorescence staining were performed to explore the osteogenic potential, the level of F-actin, and the expression of MKL1 and YAP/TAZ. Our results showed that the inner diameter and roughness of TiO2 nanotubes increased with the increase of the anodic oxidation voltage from 30 to 70 V, while their height was 2 μm consistently. Further, the larger the tube diameter, the stronger the ability of TiO2 nanotubes to promote osteogenic differentiation of MSCs. Inhibiting F-actin polymerization by Cyto D inhibited osteogenic differentiation of MSCs as well as the expression of proteins contained in focal adhesion complexes such as vinculin (VCL) and focal adhesion kinase (FAK). In contrast, after Jasp treatment, polymerization of F-actin enhanced the expression of RhoA and transcription factors YAP/TAZ. Based on these data, we concluded that TiO2 nanotubes facilitated the osteogenic differentiation of MSCs, and this ability was enhanced with the increasing diameter of the nanotubes within a certain range (30-70 V). F-actin mediated this process through MKL1 and YAP/TAZ.
Collapse
Affiliation(s)
- Zhicheng Tong
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Yanchang Liu
- Department of Orthopedics, The Second Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Runzhi Xia
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Yongyun Chang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Yi Hu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Pengcheng Liu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Zanjing Zhai
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Jingwei Zhang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Huiwu Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
5
|
Li T, Liu B, Chen K, Lou Y, Jiang Y, Zhang D. Small molecule compounds promote the proliferation of chondrocytes and chondrogenic differentiation of stem cells in cartilage tissue engineering. Biomed Pharmacother 2020; 131:110652. [PMID: 32942151 DOI: 10.1016/j.biopha.2020.110652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 02/09/2023] Open
Abstract
The application of tissue engineering to generate cartilage is limited because of low proliferative ability and unstable phenotype of chondrocytes. The sources of cartilage seed cells are mainly chondrocytes and stem cells. A variety of methods have been used to obtain large numbers of chondrocytes, including increasing chondrocyte proliferation and stem cell chondrogenic differentiation via cytokines, genes, and proteins. Natural or synthetic small molecule compounds can provide a simple and effective method to promote chondrocyte proliferation, maintain a stable chondrocyte phenotype, and promote stem cell chondrogenic differentiation. Therefore, the study of small molecule compounds is of great importance for cartilage tissue engineering. Herein, we review a series of small molecule compounds and their mechanisms that can promote chondrocyte proliferation, maintain chondrocyte phenotype, or induce stem cell chondrogenesis. The studies in this field represent significant contributions to the research in cartilage tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Tian Li
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Bingzhang Liu
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Kang Chen
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yingyue Lou
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yuhan Jiang
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Duo Zhang
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
6
|
Yu SM, Han Y, Kim SJ. Simvastatin induces differentiation in rabbit articular chondrocytes via Wnt/β-catenin pathway. Eur J Pharmacol 2019; 863:172672. [DOI: 10.1016/j.ejphar.2019.172672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/05/2019] [Accepted: 09/18/2019] [Indexed: 01/31/2023]
|