1
|
Ge T, Ning B, Wu Y, Chen X, Qi H, Wang H, Zhao M. MicroRNA-specific therapeutic targets and biomarkers of apoptosis following myocardial ischemia-reperfusion injury. Mol Cell Biochem 2024; 479:2499-2521. [PMID: 37878166 DOI: 10.1007/s11010-023-04876-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023]
Abstract
MicroRNAs are single-stranded non-coding RNAs that participate in post-transcriptional regulation of gene expression, it is involved in the regulation of apoptosis after myocardial ischemia-reperfusion injury. For example, the alteration of mitochondrial structure is facilitated by MicroRNA-1 through the regulation of apoptosis-related proteins, such as Bax and Bcl-2, thereby mitigating cardiomyocyte apoptosis. MicroRNA-21 not only modulates the expression of NF-κB to suppress inflammatory signals but also activates the PI3K/AKT pathway to mitigate ischemia-reperfusion injury. Overexpression of MicroRNA-133 attenuates reactive oxygen species (ROS) production and suppressed the oxidative stress response, thereby mitigating cellular apoptosis. MicroRNA-139 modulates the extrinsic death signal of Fas, while MicroRNA-145 regulates endoplasmic reticulum calcium overload, both of which exert regulatory effects on cardiomyocyte apoptosis. Therefore, the article categorizes the molecular mechanisms based on the three classical pathways and multiple signaling pathways of apoptosis. It summarizes the targets and pathways of MicroRNA therapy for ischemia-reperfusion injury and analyzes future research directions.
Collapse
Affiliation(s)
- Teng Ge
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Bo Ning
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Yongqing Wu
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Xiaolin Chen
- School of Pharmacy, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Hongfei Qi
- Shaanxi Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Institute of Integrative Medicine, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Haifang Wang
- Shaanxi Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Institute of Integrative Medicine, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Mingjun Zhao
- Department of Cardiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Deputy 2, Weiyang West Road, Weicheng District, Xianyang, 712000, China.
| |
Collapse
|
2
|
Zheng H, Ye W, Huang K, Chen Q, Yang J, Luo L. KLF15 alleviates oxidative stress and apoptosis of H/R-induced trophoblast cells to improve invasion and migration capacity via the activation of IGF1R. Tissue Cell 2024; 90:102485. [PMID: 39067323 DOI: 10.1016/j.tice.2024.102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Krüppel-like factor 15 (KLF15) has been reported to be involved in ischemia injury of multiple types of diseases. Nevertheless, the roles and underlying mechanisms of KLF15 in preeclampsia (PE) are still unclear. METHODS In this study, the expression of KLF15 in placenta tissues and hypoxia/reoxygenation (H/R)-induced HTR8/SVneo cells was evaluated by GSE66273 database, qRT-PCR and western blot assay. CCK-8 assay was employed to detect cell proliferation. Wound healing assay and transwell assay were used to detect cell migration and invasion. Cell oxidative stress was measured by DCFH-DA staining and kits. Cell apoptosis was evaluated by TUNEL assay and western blot assay. The JASPAR database was used to analyze the binding site of KLF15 and insulin-like growth factor-1 receptor (IGF1R) promoter region. The luciferase reporter assay was used to detect IGF1R promoter activity and ChIP assay was used to verify the combination of KLF15 and IGF1R promoter. Moreover, western blot was employed to measure the expressions of PI3K/Akt-related proteins. RESULTS The data showed that the expression of KLF15 was significantly downregulated in GSE66273 database, tissues and HTR8/SVneo cells. KLF15 overexpression increased H/R-induced HTR8/SVneo cell proliferation, invasion and migration, and inhibited oxidative stress and cell apoptosis. In addition, IGF1R was highly expressed in H/R-induced HTR8/SVneo cells after KLF15 overexpression, and the binding of KLF15 and IGF1R promoter was verified. Silencing of IGF1R reversed the effects of KLF15 overexpression on H/R-induced HTR8/SVneo cell proliferation, migration, invasion, oxidative stress and cell apoptosis. Moreover, KLF15 overexpression and IGF1R silencing regulated the expressions of PI3K/Akt-related proteins in H/R-induced HTR8/SVneo cells. CONCLUSION In conclusion, KLF15 overexpression promoted the proliferation and metastasis, and suppressed oxidative stress and cell apoptosis of H/R-induced HTR8/SVneo cells through mediating the PI3K/Akt pathway, which may provide a promising target for the treatment of preeclampsia.
Collapse
Affiliation(s)
- Huimu Zheng
- Department of Obstetrics, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong 518172, China
| | - Wei Ye
- Department of Obstetrics, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong 518172, China
| | - Kangrong Huang
- Department of Obstetrics, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong 518172, China
| | - Qiuzhen Chen
- Department of Obstetrics, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong 518172, China
| | - Jinying Yang
- Department of Obstetrics, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong 518172, China
| | - Liefang Luo
- Department of Obstetrics, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong 518172, China.
| |
Collapse
|
3
|
Zhao B, Zang Y, Gui L, Xiang Y, Zhang Z, Sun X, Fan J, Huang L. The effect of miR-223-3p on endothelial cells in coronary artery disease. In Vitro Cell Dev Biol Anim 2024; 60:151-160. [PMID: 38155264 DOI: 10.1007/s11626-023-00842-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/03/2023] [Indexed: 12/30/2023]
Abstract
Endothelial cell damage and dysfunction are crucial factors in the development and early stages of coronary artery disease (CAD) and apoptosis plays a significant role in this process. In this study, We aimed to simulate the CAD vascular microenvironment by treating endothelial cells with tumor necrosis factor alpha (TNF-α) to construct an endothelial cell apoptosis model. Our findings revealed that the TNF-α model resulted in increased micro-RNA 223-3p (miR-223-3p) mRNA and Bax protein expression, decreased kruppel-like factor 15 (KLF15) and Bcl-2 protein expression, and decreased cell viability. More importantly, in the TNF-α-induced endothelial cell apoptosis model, transfection with the miR-223-3p inhibitor reversed the effects of TNF-α on Bcl-2, Bax expression. We transfected miRNA-223-3p mimics or inhibitors into endothelial cells and assessed miR-223-3p levels using RT-PCR. Cell viability was detected using CCK8. Western blot technology was used to detect the expression of Bcl-2, Bax, and KLF15. In summary, this study demonstrates the role and possible mechanism of miR-223-3p in endothelial cells during CAD, suggesting that miR-223-3p may serve as a promising therapeutic target in CAD by regulating KLF15.
Collapse
Affiliation(s)
- Boxin Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Yunhui Zang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Lin Gui
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Yingyu Xiang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Zhiyong Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Xueyuan Sun
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Jingyao Fan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Lijuan Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
4
|
Wang L, Zhao Y, Su Z, Zhao K, Li P, Xu T. Ginkgolide A targets forkhead box O1 to protect against lipopolysaccharide-induced septic cardiomyopathy. Phytother Res 2023; 37:3309-3322. [PMID: 36932920 DOI: 10.1002/ptr.7802] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/16/2023] [Accepted: 02/25/2023] [Indexed: 03/19/2023]
Abstract
Ginkgolide A (GA), a main terpenoid extracted from Ginkgo biloba, possesses biological activities such as anti-inflammatory, anti-tumor, and liver protection. However, the inhibitory effects of GA on septic cardiomyopathy remain unclear. This study aimed to explore the effects and mechanisms of GA in countering sepsis-induced cardiac dysfunction and injury. In lipopolysaccharide (LPS)-induced mouse model, GA alleviated mitochondrial injury and cardiac dysfunction. GA also significantly reduced the production of inflammatory and apoptotic cells, the release of inflammatory indicators, and the expression of oxidative stress-associated and apoptosis-associated markers, but increased the expression of pivotal antioxidant enzymes in hearts from LPS group. These results were consistent with those of in vitro experiments based on H9C2 cells. Database analysis and molecular docking suggested that FoxO1 was targeted by GA, as shown by stable hydrogen bonds formed between GA with SER-39 and ASN-29 of FoxO1. GA reversed LPS-induced downregulation of nucleus FoxO1 and upregulation of p-FoxO1 in H9C2 cells. FoxO1 knockdown abolished the protective properties of GA in vitro. KLF15, TXN2, NOTCH1, and XBP1, as the downstream genes of FoxO1, also exerted protective effects. We concluded that GA could alleviate LPS-induced septic cardiomyopathy via binding to FoxO1 to attenuate cardiomyocyte inflammation, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Luyang Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunxi Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenyang Su
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tianhua Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Han X, Liu K, Gao F, Yang M, Wang F. Hsa-miR-223-3p participates in the process of anthracycline-induced cardiomyocyte damage by regulating NFIA gene. Open Med (Wars) 2023; 18:20230754. [PMID: 37533740 PMCID: PMC10390750 DOI: 10.1515/med-2023-0754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023] Open
Abstract
Irreversible cardiomyopathy was caused by the therapeutic of anthracyclines in the chemotherapy of cancers. The cell apoptosis and autophagy were induced by anthracyclines in AC16 cells. MiR-223-3p ascends in anthracycline-treated AC16, but the expression of nuclear factor I-A (NFIA) was specifically down-regulated. However, the underlying molecular mechanism between NFIA and miR-223-3p is unclear now in AC16 cells. In our research, NFIA expression was dampened in AC16 cells by miR-223-3p mimics. Additionally, miR-223-3p knockdown hindered the apoptosis and autophagy in anthracycline-treated AC16. Furthermore, NFIA was predicted and verified as a miR-223-3p's downstream target and rescued the functions of miR-223-3p. These findings illustrated that miR-223-3p advances anthracycline-stimulated cardiomyocyte damage progression by targeting NFIA, implying the promising therapeutic function of miR-223-3p on cardiomyocyte damage in cancer patients.
Collapse
Affiliation(s)
- Xiao Han
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China
| | - Kun Liu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Fumin Gao
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Mingjun Yang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Fei Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| |
Collapse
|
6
|
Zapata-Martínez L, Águila S, de los Reyes-García AM, Carrillo-Tornel S, Lozano ML, González-Conejero R, Martínez C. Inflammatory microRNAs in cardiovascular pathology: another brick in the wall. Front Immunol 2023; 14:1196104. [PMID: 37275892 PMCID: PMC10233054 DOI: 10.3389/fimmu.2023.1196104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023] Open
Abstract
The regulatory role of microRNAs (miRNAs) is mainly mediated by their effect on protein expression and is recognized in a multitude of pathophysiological processes. In recent decades, accumulating evidence has interest in these factors as modulatory elements of cardiovascular pathophysiology. Furthermore, additional biological processes have been identified as new components of cardiovascular disease etiology. In particular, inflammation is now considered an important cardiovascular risk factor. Thus, in the present review, we will focus on the role of a subset of miRNAs called inflamma-miRs that may regulate inflammatory status in the development of cardiovascular pathology. According to published data, the most representative candidates that play functional roles in thromboinflammation are miR-21, miR-33, miR-34a, miR-146a, miR-155, and miR-223. We will describe the functions of these miRNAs in several cardiovascular pathologies in depth, with specific emphasis on the molecular mechanisms related to atherogenesis. We will also discuss the latest findings on the role of miRNAs as regulators of neutrophil extracellular traps and their impact on cardiovascular diseases. Overall, the data suggest that the use of miRNAs as therapeutic tools or biomarkers may improve the diagnosis or prognosis of adverse cardiovascular events in inflammatory diseases. Thus, targeting or increasing the levels of adequate inflamma-miRs at different stages of disease could help mitigate or avoid the development of cardiovascular morbidities.
Collapse
|
7
|
Miao S, Zhang Q, Ding W, Hou B, Su Z, Li M, Yang L, Zhang J, Chang W, Wang J. Platelet Internalization Mediates Ferroptosis in Myocardial Infarction. Arterioscler Thromb Vasc Biol 2023; 43:218-230. [PMID: 36353991 DOI: 10.1161/atvbaha.122.318161] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Myocardial cell death is the hallmark of myocardial infarction. In the process of myocardial injury, platelets contribute to the pathogenesis by triggering intense inflammatory responses. Yet, it is still unclear if platelets regulate cardiomyocyte death directly, thereby exacerbating myocardial injury in myocardial infarction. METHODS We describe a mechanism underlying the correlative association between platelets accumulation and myocardial cell death by using myocardial infarction mouse model and patient specimens. RESULTS Myocardial infarction induces platelets internalization, resulting in the release of miR-223-3p, a platelet-enriched miRNA. By targeting the ACSL3, miR-223-3p delivered by internalized platelets cause the reduction of stearic acid-phosphatidylcholine in cardiomyocytes. The presence of stearic acid-phosphatidylcholine protects cardiomyocytes against ferroptosis. CONCLUSIONS Our work reveals a novel mechanism of platelet-mediated myocardial injury, highlighting antiplatelet therapies could potentially represent a multimechanism treatment of myocardial infarction, and implying ferroptosis being considered as novel target for therapeutics.
Collapse
Affiliation(s)
- Shuo Miao
- School of Basic Medicine, Qingdao University, China (S.M., M.L., L.Y., J.Z., J.W.)
| | - Qingsong Zhang
- Affiliated Hospital of Qingdao University, China (Q.Z., W.D., B.H., Z.S.)
| | - Wei Ding
- Affiliated Hospital of Qingdao University, China (Q.Z., W.D., B.H., Z.S.)
| | - Bo Hou
- Affiliated Hospital of Qingdao University, China (Q.Z., W.D., B.H., Z.S.)
| | - Zhe Su
- Affiliated Hospital of Qingdao University, China (Q.Z., W.D., B.H., Z.S.)
| | - Mengyang Li
- School of Basic Medicine, Qingdao University, China (S.M., M.L., L.Y., J.Z., J.W.)
| | - Lanting Yang
- School of Basic Medicine, Qingdao University, China (S.M., M.L., L.Y., J.Z., J.W.)
| | - Jun Zhang
- School of Basic Medicine, Qingdao University, China (S.M., M.L., L.Y., J.Z., J.W.)
| | - Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (W.C.)
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, China (S.M., M.L., L.Y., J.Z., J.W.)
| |
Collapse
|
8
|
Yao J, Cai L, Chen Y, Zhang J, Zhuang W, Liang J, Li H. Exosomes: mediators regulating the phenotypic transition of vascular smooth muscle cells in atherosclerosis. Cell Commun Signal 2022; 20:153. [PMID: 36221105 PMCID: PMC9555104 DOI: 10.1186/s12964-022-00949-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/31/2022] [Indexed: 11/10/2022] Open
Abstract
Cardiovascular disease is one of the leading causes of human mortality worldwide, mainly due to atherosclerosis (AS), and the phenotypic transition of vascular smooth muscle cells (VSMCs) is a key event in the development of AS. Exosomes contain a variety of specific nucleic acids and proteins that mediate intercellular communication. The role of exosomes in AS has attracted attention. This review uses the VSMC phenotypic transition in AS as the entry point, introduces the effect of exosomes on AS from different perspectives, and discusses the status quo, deficiencies, and potential future directions in this field to provide new ideas for clinical research and treatment of AS. Video Abstract.
Collapse
Affiliation(s)
- Jiali Yao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Linqian Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yingrui Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jie Zhang
- Department of Neurology, Afliated Hospital of Yangzhou University, Yangzhou, 225001, China
| | - Wenwen Zhuang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Experimental and Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Hongliang Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Key Laboratory of Experimental and Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
9
|
Cheng Y, He Q, Li N, Luo M. Activation of PTEN/P13K/AKT Signaling Pathway by miRNA-124-3p-Loaded Nanoparticles to Regulate Oxidative Stress Attenuates Cardiomyocyte Regulation and Myocardial Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8428596. [PMID: 36267811 PMCID: PMC9578799 DOI: 10.1155/2022/8428596] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/28/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Abstract
As a common cardiovascular disease, acute myocardial infarction seriously affects the health and life of patients. miRNAs play an important role in acute myocardial infarction. Based on miRNA obtained from the previous sequencing, this study investigated whether miRNA (miR)-124-3p-loaded nanoparticles (NPs) affect the phenotype of the acute myocardial infarction (AMI) rat. Nano-miR-124-3p decreased the myocardial infarction area, improved the myocardial tissue structure, and increased the degree of fibrosis. Nano-miR-124-3p decreased apoptosis and the expression of cleaved caspase 3, indicating its role in protecting and repairing the myocardium. To further verify the action mechanism of miRNA, a potential target gene of miR-124-3p, PTEN was identified by STARBASE and further confirmed using double luciferase assays. Following cotransfection of nano-miR-124-3p and PTEN, the areas of tissue structure damage, myocardial infarction, and fibrosis were substantially elevated. The expression of cleaved caspase 3 and the apoptosis rate in the nano-miR-124-3p and PTEN cotransfection group was also significantly increased. Bioinformatics analysis revealed that miRNA-124-3 may regulate oxidative stress injury by targeting PTEN. Taken together, miR-124-3p could protect and repair myocardial tissues through targeting PTEN.
Collapse
Affiliation(s)
- Yuan Cheng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qing He
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- Clinical College of Southwest Jiao Tong University, Chengdu, China
| | - Na Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Mengdi Luo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
10
|
FAT10 Combined with Miltefosine Inhibits Mitochondrial Apoptosis and Energy Metabolism in Hypoxia-Induced H9C2 Cells by Regulating the PI3K/AKT Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4388919. [PMID: 36034957 PMCID: PMC9410791 DOI: 10.1155/2022/4388919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/26/2022] [Accepted: 07/02/2022] [Indexed: 11/17/2022]
Abstract
Hypoxia-induced cardiomyocyte apoptosis is the main contributor to heart diseases. Human leukocyte antigen F-associated transcript 10 (FAT10), the small ubiquitin-like protein family subtype involved in apoptosis, is expressed in the heart and exhibits cardioprotective functions. This study explored the impact of FAT10 on hypoxia-induced cardiomyocyte apoptosis and the involved mechanisms. The cardiomyocyte cell line H9C2 was cultivated in hypoxia-inducing conditions (94% N2, 5% CO2, and 1% O2) and the expression of FAT10 in hypoxia-stimulated H9C2 cells was identified. For this, FAT10 overexpression/interference vectors were exposed to transfection into H9C2 cells with/without the PI3K/AKT inhibitor, miltefosine. The results indicated that hypoxia exposure decreased the FAT10 expression, suppressed H9C2 cell growth, disrupted mitochondrial metabolism, and promoted H9C2 cell apoptosis and oxidative stress. However, these impacts were reversed by the FAT10 overexpression. In addition, the inhibition of PI3K/AKT in FAT10-overexpressing cells suppressed cell proliferation, impaired mitochondrial metabolism, and promoted apoptosis and oxidative stress response. The findings demonstrated that FAT10 inhibited mitochondrial apoptosis and energy metabolism in hypoxia-stimulated H9C2 cells through the PI3K/AKT pathway. This finding can be utilized for developing therapeutic targets for treating heart disorders associated with hypoxia-induced apoptosis.
Collapse
|
11
|
Candidate microRNAs as prognostic biomarkers in heart failure: A systematic review. Rev Port Cardiol 2022; 41:865-885. [DOI: 10.1016/j.repc.2021.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 11/24/2022] Open
|
12
|
Leng Q, Ding J, Dai M, Liu L, Fang Q, Wang DW, Wu L, Wang Y. Insights Into Platelet-Derived MicroRNAs in Cardiovascular and Oncologic Diseases: Potential Predictor and Therapeutic Target. Front Cardiovasc Med 2022; 9:879351. [PMID: 35757325 PMCID: PMC9218259 DOI: 10.3389/fcvm.2022.879351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022] Open
Abstract
Non-communicable diseases (NCDs), represented by cardiovascular diseases and cancer, have been the leading cause of death globally. Improvements in mortality from cardiovascular (CV) diseases (decrease of 14%/100,000, United States) or cancers (increase 7.5%/100,000, United States) seem unsatisfactory during the past two decades, and so the search for innovative and accurate biomarkers of early diagnosis and prevention, and novel treatment strategies is a valuable clinical and economic endeavor. Both tumors and cardiovascular system are rich in angiological systems that maintain material exchange, signal transduction and distant regulation. This pattern determines that they are strongly influenced by circulating substances, such as glycolipid metabolism, inflammatory homeostasis and cyclic non-coding RNA and so forth. Platelets, a group of small anucleated cells, inherit many mature proteins, mRNAs, and non-coding RNAs from their parent megakaryocytes during gradual formation and manifest important roles in inflammation, angiogenesis, atherosclerosis, stroke, myocardial infarction, diabetes, cancer, and many other diseases apart from its classical function in hemostasis. MicroRNAs (miRNAs) are a class of non-coding RNAs containing ∼22 nucleotides that participate in many key cellular processes by pairing with mRNAs at partially complementary binding sites for post-transcriptional regulation of gene expression. Platelets contain fully functional miRNA processors in their microvesicles and are able to transport their miRNAs to neighboring cells and regulate their gene expression. Therefore, the importance of platelet-derived miRNAs for the human health is of increasing interest. Here, we will elaborate systematically the roles of platelet-derived miRNAs in cardiovascular disease and cancer in the hope of providing clinicians with new ideas for early diagnosis and therapeutic strategies.
Collapse
|
13
|
Liao B, Tian X. CTRP12 alleviates cardiomyocyte ischemia‑reperfusion injury via regulation of KLF15. Mol Med Rep 2022; 26:247. [PMID: 35656890 PMCID: PMC9185681 DOI: 10.3892/mmr.2022.12763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/25/2021] [Indexed: 11/30/2022] Open
Abstract
Myocardial ischemia-reperfusion (I/R) serves a crucial role in myocardial infarction. C1q/TNF-related protein 12 (CTRP12) is a secretory protein involved in metabolism. It has been reported that CTRP12 participates in the regulation of numerous cardiovascular diseases. However, its role in myocardial I/R injury remains unclear. In the present study, the left anterior descending coronary artery in mice was ligated to establish a mouse I/R model. A myocardial hypoxia-reoxygenation (H/R) cell model was also established. Cardiomyocyte injury was evaluated using hematoxylin and eosin staining, Cell Counting Kit-8 and a lactate dehydrogenase (LDH) kit. The expression levels of CTRP12 and Krueppel-like factor 15 (KLF15) in murine myocardial tissues and H9c2 cells were determined using reverse transcription-quantitative PCR and western blotting, as KLF15 was previously reported to protect against I/R-induced cardiomyocyte damage. Furthermore, inflammatory factors TNF-α, IL-1β and IL-6 were analyzed using ELISA while apoptosis was assessed using TUNEL assays and western blotting. Moreover, the activity of the CTRP12 promoter was determined using a dual-luciferase reporter assay. The results demonstrated that I/R surgery markedly exacerbated myocardial tissue damage, whereas H/R treatment significantly reduced cell viability and significantly increased LDH activity as well as the release of inflammatory factors and apoptosis. I/R and H/R induction significantly reduced the expression levels of CTRP12 and KLF15. CTRP12 overexpression significantly alleviated H/R-induced cell injury and significantly inhibited inflammation and apoptosis. Further analysis demonstrated that KLF15 could significantly promote the activity of the CTRP12 promoter. However, following CTRP12 knockdown, KLF15 overexpression exacerbated cell injury, inflammation and apoptosis. In conclusion, the present study demonstrated that CTRP12 may mitigate inflammation and apoptosis in H/R-induced cardiomyocytes, possibly via the regulation of KLF15, which provided a theoretical basis for the potential treatment of I/R-induced myocardial infarction.
Collapse
Affiliation(s)
- Bo Liao
- Department of Cardiology, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Guangdong 518000, P.R. China
| | - Xiaoyuan Tian
- Department of Cardiology, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
14
|
Rui L, Liu R, Jiang H, Liu K. Sox9 Promotes Cardiomyocyte Apoptosis After Acute Myocardial Infarction by Promoting miR-223-3p and Inhibiting MEF2C. Mol Biotechnol 2022; 64:902-913. [PMID: 35229259 DOI: 10.1007/s12033-022-00471-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/17/2022] [Indexed: 01/18/2023]
Abstract
Acute myocardial infarction (AMI) is a severe and even fatal cardiovascular disease. The effect of transcription factors on AMI is intensively explored. Our experiment attempts to probe the role of Sox9 in cardiomyocyte apoptosis after AMI. AMI cell model was established in AC16 cells by hypoxia treatment. Cell viability and apoptosis were assessed. Then, the levels of BAX, Bcl-2, Sox9, miR-223-3p, and MEF2C were detected. The binding relation between Sox9 and miR-223-3p and between miR-223-3p and MEF2C was verified. The expression of miR-223-3p was upregulated using the miR-223-3p mimic, and collaborative experiments were conducted as si-Sox9 or si-MEF2C was transfected into cells to inhibit the expression of Sox9 or MEF2C. Sox9 was highly expressed in cardiomyocyte apoptosis after hypoxia, while Sox9 silencing protected hypoxia-treated cardiomyocytes from apoptosis by enhancing cell viability, quenching apoptosis, and reducing activity of caspase-3 and caspase-9. Essentially, Sox9 bound to the miR-223-3p promoter region to upregulate its expression. miR-223-3p targeted MEF2C transcription. miR-223-3p overexpression and MEF2C silencing could counteract the suppressive role of Sox9 silencing in hypoxia-treated cardiomyocyte apoptosis. Sox9 exacerbated hypoxia-induced cardiomyocyte apoptosis by promoting miR-223-3p expression and inhibiting MEF2C transcription.
Collapse
Affiliation(s)
- Lu Rui
- Fuwai Hospital, Chinese Academy of Medical Sciences, State Key Laboratory of Cardiovascular Disease, Peking Union Medical College, No.167 Beilishi Road, Xicheng District, Beijing, 100037, China.
| | - Rui Liu
- Fuwai Hospital, Chinese Academy of Medical Sciences, State Key Laboratory of Cardiovascular Disease, Peking Union Medical College, No.167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Huaping Jiang
- Fuwai Hospital, Chinese Academy of Medical Sciences, State Key Laboratory of Cardiovascular Disease, Peking Union Medical College, No.167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Kaiyang Liu
- Fuwai Hospital, Chinese Academy of Medical Sciences, State Key Laboratory of Cardiovascular Disease, Peking Union Medical College, No.167 Beilishi Road, Xicheng District, Beijing, 100037, China
| |
Collapse
|
15
|
Zhang DM, Deng JJ, Wu YG, Tang T, Xiong L, Zheng YF, Xu XM. MicroRNA-223-3p Protect Against Radiation-Induced Cardiac Toxicity by Alleviating Myocardial Oxidative Stress and Programmed Cell Death via Targeting the AMPK Pathway. Front Cell Dev Biol 2022; 9:801661. [PMID: 35111759 PMCID: PMC8801819 DOI: 10.3389/fcell.2021.801661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives: Radiotherapy improves the survival rate of cancer patients, yet it also involves some inevitable complications. Radiation-induced heart disease (RIHD) is one of the most serious complications, especially the radiotherapy of thoracic tumors, which is characterized by cardiac oxidative stress disorder and programmed cell death. At present, there is no effective treatment strategy for RIHD; in addition, it cannot be reversed when it progresses. This study aims to explore the role and potential mechanism of microRNA-223-3p (miR-223-3p) in RIHD.Methods: Mice were injected with miR-223-3p mimic, inhibitor, or their respective controls in the tail vein and received a single dose of 20 Gy whole-heart irradiation (WHI) for 16 weeks after 3 days to construct a RIHD mouse model. To inhibit adenosine monophosphate activated protein kinase (AMPK) or phosphodiesterase 4D (PDE4D), compound C (CompC) and AAV9-shPDE4D were used.Results: WHI treatment significantly inhibited the expression of miR-223-3p in the hearts; furthermore, the levels of miR-223-3p decreased in a radiation time-dependent manner. miR-223-3p mimic significantly relieved, while miR-223-3p inhibitor aggravated apoptosis, oxidative damage, and cardiac dysfunction in RIHD mice. In addition, we found that miR-223-3p mimic improves WHI-induced myocardial injury by activating AMPK and that the inhibition of AMPK by CompC completely blocks these protective effects of miR-223-3p mimic. Further studies found that miR-223-3p lowers the protein levels of PDE4D and inhibiting PDE4D by AAV9-shPDE4D blocks the WHI-induced myocardial injury mediated by miR-223-3p inhibitor.Conclusion: miR-223-3p ameliorates WHI-induced RIHD through anti-oxidant and anti-programmed cell death mechanisms via activating AMPK by PDE4D regulation. miR-223-3p mimic exhibits potential value in the treatment of RIHD.
Collapse
Affiliation(s)
- Dao-ming Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun-jian Deng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yao-gui Wu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tian Tang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lin Xiong
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yong-fa Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yong-fa Zheng, ; Xi-ming Xu,
| | - Xi-ming Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yong-fa Zheng, ; Xi-ming Xu,
| |
Collapse
|
16
|
Li X, Long J, Zong L, Zhang C, Yang Z, Guo S. ZNF561-AS1 Regulates Cell Proliferation and Apoptosis in Myocardial Infarction Through miR-223-3p/NLRP3 Axis. Cell Transplant 2022; 31:9636897221077928. [PMID: 35997481 PMCID: PMC9421029 DOI: 10.1177/09636897221077928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been widely recognized as important regulators in myocardial infarction (MI) and other heart diseases. Our study aimed to investigate the mechanism and biological function of an unknown lncRNA zinc finger protein 561 antisense RNA 1 (ZNF561-AS1) in MI. After confirming the MI model was successful, we applied reverse transcription quantitative polymerase chain reaction and Western blot (WB) and found that the expression of NLR family pyrin domain containing 3 (NLRP3), interleukin (IL)-1β, and IL-18 was substantially increased in infarct and border zones of MI mice heart at 24 h and 72 h compared with that in sham-operated models. Moreover, we found that NLRP3 expression was promoted in hypoxia human cardiomyocytes (HCMs). Through cell function assays including CCK-8, 5-Ethynyl-2’-deoxyuridine (EdU), flow cytometry, and TdT-mediated dUTP Nick-End Labeling (TUNEL), supported by WB analysis, we verified that silencing of NLRP3 facilitated proliferation but impeded apoptosis of hypoxia-induced myocardial cell. Moreover, Ago2-RIP and RNA pull-down assays displayed that NLRP3 could combine with miR-223-3p. Luciferase reporter assays further confirmed that NLRP3 was directly targeted by miR-223-3p. Simultaneously, we found that miR-223-3p was the downstream gene of ZNF561-AS1. In addition, we conducted a series of rescue experiments to affirm that ZNF561-AS1 regulated cell proliferation and apoptosis in MI through miR-223-3p/NLRP3 axis.
Collapse
Affiliation(s)
- Xiaoyu Li
- Cardiovascular Medicine, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Jun Long
- Centre for Cardiovascular Disease, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ligeng Zong
- Department of Cardiology, Binzhou People's Hospital of Shandong Province, Binzhou, China
| | - Chengcheng Zhang
- Department of Cardiology, Binzhou People's Hospital of Shandong Province, Binzhou, China
| | - Zhongxin Yang
- The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Shengnan Guo
- Cardiovascular Medicine, The First Affiliated Hospital of Henan University, Kaifeng, China
| |
Collapse
|
17
|
Majka M, Kleibert M, Wojciechowska M. Impact of the Main Cardiovascular Risk Factors on Plasma Extracellular Vesicles and Their Influence on the Heart's Vulnerability to Ischemia-Reperfusion Injury. Cells 2021; 10:3331. [PMID: 34943838 PMCID: PMC8699798 DOI: 10.3390/cells10123331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
The majority of cardiovascular deaths are associated with acute coronary syndrome, especially ST-elevation myocardial infarction. Therapeutic reperfusion alone can contribute up to 40 percent of total infarct size following coronary artery occlusion, which is called ischemia-reperfusion injury (IRI). Its size depends on many factors, including the main risk factors of cardiovascular mortality, such as age, sex, systolic blood pressure, smoking, and total cholesterol level as well as obesity, diabetes, and physical effort. Extracellular vesicles (EVs) are membrane-coated particles released by every type of cell, which can carry content that affects the functioning of other tissues. Their role is essential in the communication between healthy and dysfunctional cells. In this article, data on the variability of the content of EVs in patients with the most prevalent cardiovascular risk factors is presented, and their influence on IRI is discussed.
Collapse
Affiliation(s)
- Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
18
|
Tan J, Pan W, Chen H, Du Y, Jiang P, Zeng D, Wu J, Peng K. Circ_0124644 Serves as a ceRNA for miR-590-3p to Promote Hypoxia-Induced Cardiomyocytes Injury via Regulating SOX4. Front Genet 2021; 12:667724. [PMID: 34249089 PMCID: PMC8267871 DOI: 10.3389/fgene.2021.667724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/16/2021] [Indexed: 11/13/2022] Open
Abstract
Circular RNA (circRNA) is an important factor for regulating the progression of many cardiovascular diseases, including acute myocardial infarction (AMI). However, the role of circ_0124644 in AMI progression remains unclear. Hypoxia was used to induce cardiomyocytes injury. The expression of circ_0124644, microRNA (miR)-590-3p, and SRY-box transcription factor 4 (SOX4) mRNA was measured by qRT-PCR. Cell counting kit 8 (CCK8) assay and flow cytometry were utilized to detect cell viability, cell cycle progression, and apoptosis. The protein levels of apoptosis markers and SOX4 were determined by western blot (WB) analysis, and the levels of oxidative stress markers were assessed using commercial Assay Kits. Dual-luciferase reporter assay, RIP assay, and RNA pull-down assay were employed to confirm the interaction between miR-590-3p and circ_0124644 or SOX4. Circ_0124644 was upregulated in AMI patients and hypoxia-induced cardiomyocytes. Hypoxia could inhibit cardiomyocytes viability, cell cycle process, and promote apoptosis and oxidative stress, while silencing circ_0124644 could alleviate hypoxia-induced cardiomyocytes injury. In terms of mechanism, circ_0124644 could target miR-590-3p. MiR-590-3p overexpression could relieve hypoxia-induced cardiomyocytes injury. Also, the suppressive effect of circ_0124644 knockdown on hypoxia-induced cardiomyocytes injury could be reversed by miR-590-3p inhibitor. Moreover, SOX4 was found to be a target of miR-590-3p, and its overexpression also could reverse the regulation of miR-590-3p on hypoxia-induced cardiomyocytes injury. Circ_0124644 silencing could alleviate hypoxia-induced cardiomyocytes injury by regulating the miR-590-3p/SOX4 axis, suggesting that it might be a target for alleviating AMI.
Collapse
Affiliation(s)
- Juan Tan
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Weinan Pan
- College of Pharmacy, Hunan Food and Drug Vocational College, Changsha, China
| | - Huilin Chen
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Yafang Du
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Peiyong Jiang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Dianmei Zeng
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Jie Wu
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Kuang Peng
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
19
|
Zhang S, Zhang Y, Wang X, Wu L, Shen J, Gu M, Fang Z. Effects of Shenfu Qiangxin Drink on H 2O 2-induced oxidative stress, inflammation and apoptosis in neonatal rat cardiomyocytes and possible underlying mechanisms. Exp Ther Med 2021; 21:553. [PMID: 33850525 PMCID: PMC8027745 DOI: 10.3892/etm.2021.9985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to investigate the effects of Shenfu Qiangxin Drink (SFQXD) on acute myocardial infarction (AMI) and identify the possible underlying mechanisms. Levels of reactive oxygen species (ROS) and inflammatory factors, including interleukin (IL)-6, IL-1β and tumor necrosis factor-α (TNF-α) in the blood samples of patients with AMI were measured using commercially available kits by visible spectrophotometry after SFQXD administration. The contents of phosphorylated (p-) forkhead box O3a (FOXO3a) was examined using an ELISA kit. In addition, a hydrogen peroxide (H2O2)-induced myocardial injury model was established in vitro using neonatal rat cardiomyocytes. Following treatment with SFQXD, the levels of intracellular ROS, cell apoptosis, oxidative stress- and inflammation-related markers were measured using commercially available kits by visible spectrophotometry. Additionally, western blot analysis was used to measure the expression of sirtuin-4 (SIRT4), p-FOXO3a, acetylated FOXO3a (ace-FOXO3a) and apoptosis-related genes (Bcl-2, Bax, BIM and cleaved caspase-3). Subsequently, to investigate the possible underlying regulatory mechanisms, SIRT4 expression was silenced by transfection with small hairpin RNA against SIRT4, following which changes in the extent of oxidative stress, inflammation and apoptosis were assessed. The levels of ROS and interleukin (IL)-1β were found to be significantly reduced, whilst FOXO3a phosphorylation was markedly increased following administration with SFQXD. In vitro, SFQXD dose-dependently inhibited H2O2-induced oxidative stress, inflammation and apoptosis in neonatal rat cardiomyocytes. In addition, FOXO3a phosphorylation was markedly upregulated whilst FOXO3a acetylation was downregulated following treatment of H2O2-induced primary neonatal cardiomyocytes with SFQXD. SIRT4 knockdown also markedly reversed the effects of SFQXD on oxidative stress, inflammation and apoptosis in neonatal rat cardiomyocytes. In conclusion, these findings demonstrated that SFQXD may alleviate oxidative stress-induced myocardial injury by potentially regulating SIRT4/FOXO3a signaling, suggesting that SFQXD may be of clinical value for the treatment of AMI.
Collapse
Affiliation(s)
- Sujie Zhang
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
- Department of Cardiology, Jiangsu Province Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Yiyan Zhang
- Department of Cardiology, Jiangsu Province Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Xindong Wang
- Department of Cardiology, Jiangsu Province Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Lixing Wu
- Department of Cardiology, Jiangsu Province Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Jianping Shen
- Department of Cardiology, Jiangsu Province Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Minglin Gu
- Department of Cardiology, Jiangsu Province Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Zhuyuan Fang
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
20
|
The Impact of Melatonin and NLRP3 Inflammasome on the Expression of microRNAs in Aged Muscle. Antioxidants (Basel) 2021; 10:antiox10040524. [PMID: 33801675 PMCID: PMC8066875 DOI: 10.3390/antiox10040524] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
Muscular aging is a complex process and underlying physiological mechanisms are not fully clear. In recent years, the participation of the NF-kB pathway and the NLRP3 inflammasome in the chronic inflammation process that accompanies the skeletal muscle's aging has been confirmed. microRNAs (miRs) form part of a gene regulatory machinery, and they control numerous biological processes including inflammatory pathways. In this work, we studied the expression of four miRs; three of them are considered as inflammatory-related miRs (miR-21, miR-146a, and miR-223), and miR-483, which is related to the regulation of melatonin synthesis, among other targets. To investigate the changes of miRs expression in muscle along aging, the impact of inflammation, and the role of melatonin in aged skeletal muscle, we used the gastrocnemius muscle of wild type (WT) and NLRP3-knockout (NLRP3-) mice of 3, 12, and 24 months-old, with and without melatonin supplementation. The expression of miRs and pro-caspase-1, caspase-3, pro-IL-1β, bax, bcl-2, and p53, was investigated by qRT-PCR analysis. Histological examination of the gastrocnemius muscle was also done. The results showed that age increased the expression of miR-21 (p < 0.01), miR-146a, and miR-223 (p < 0.05, for both miRs) in WT mice, whereas the 24-months-old mutant mice revealed decline of miR-21 and miR-223 (p < 0.05), compared to WT age. The lack of NLRP3 inflammasome also improved the skeletal muscle fibers arrangement and reduced the collagen deposits compared with WT muscle during aging. For the first time, we showed that melatonin significantly reduced the expression of miR-21, miR-146a, and miR-223 (p < 0.05 for all ones, and p < 0.01 for miR-21 at 24 months old) in aged WT mice, increased miR-223 in NLRP3- mice (p < 0.05), and induced miR-483 expression in both mice strains, this increase being significant at 24 months of age.
Collapse
|
21
|
Zhang M, Cheng K. Long non-coding RNA KCNQ1OT1 promotes hydrogen peroxide-induced lens epithelial cell apoptosis and oxidative stress by regulating miR-223-3p/BCL2L2 axis. Exp Eye Res 2021; 206:108543. [PMID: 33744257 DOI: 10.1016/j.exer.2021.108543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022]
Abstract
Many long non-coding RNAs (lncRNAs) can exert crucial roles in the pathogenesis of cataract, including lncRNA KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1). We aimed to further elucidate the biological role and regulatory molecular mechanism of KCNQ1OT1 in cataract. The expression of KCNQ1OT1 and miR-223-3p and BCL2 like 2 (BCL2L2) was examined by qRT-PCR. Cataract cell model was constructed by treatment with hydrogen peroxide (H2O2) in lens epithelial cells (SRA01/04). SRA01/04 cell viability and cell apoptosis were tested using CCK-8 assay and flow cytometry, respectively. Western blot (WB) was performed to measure the levels of apoptosis-related proteins and BCL2L2 protein. The oxidative stress factors were analyzed by corresponding kits. The interaction between miR-223-3p and KCNQ1OT1 or BCL2L2 was validated by dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. We found that KCNQ1OT1 was upregulated in cataract anterior lens capsule samples and H2O2-induced SRA01/04 cells. Knockdown of KCNQ1OT1 suppressed H2O2-induced SRA01/04 cell apoptosis and oxidative stress. KCNQ1OT1 acted as a sponge of miR-223-3p. Inhibition of miR-223-3p could abate the function of KCNQ1OT1 silence in H2O2-treated SRA01/04 cells. Additionally, BCL2L2 was a direct target of miR-223-3p, and miR-223-3p weakened H2O2-induced SRA01/04 cell apoptosis and oxidative stress by targeting BCL2L2. Collectively, the data suggest a role for the KCNQ1OT1/miR-223-3p/BCL2L2 axis in cataract formation but the data was generated using an epithelial cell line.
Collapse
Affiliation(s)
- Min Zhang
- Department of Ophthalmology, Jinan Maternal and Child Health Hospital, Jinan, 250001, Shandong, China
| | - Kai Cheng
- Department of Ophthalmology, Jinan Maternal and Child Health Hospital, Jinan, 250001, Shandong, China.
| |
Collapse
|
22
|
He Y, Cai Y, Pai PM, Ren X, Xia Z. The Causes and Consequences of miR-503 Dysregulation and Its Impact on Cardiovascular Disease and Cancer. Front Pharmacol 2021; 12:629611. [PMID: 33762949 PMCID: PMC7982518 DOI: 10.3389/fphar.2021.629611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/20/2021] [Indexed: 12/27/2022] Open
Abstract
microRNAs (miRs) are short, non-coding RNAs that regulate gene expression by mRNA degradation or translational repression. Accumulated studies have demonstrated that miRs participate in various biological processes including cell differentiation, proliferation, apoptosis, metabolism and development, and the dysregulation of miRs expression are involved in different human diseases, such as neurological, cardiovascular disease and cancer. microRNA-503 (miR-503), one member of miR-16 family, has been studied widely in cardiovascular disease and cancer. In this review, we summarize and discuss the studies of miR-503 in vitro and in vivo, and how miR-503 regulates gene expression from different aspects of pathological processes of diseases, including carcinogenesis, angiogenesis, tissue fibrosis and oxidative stress; We will also discuss the mechanisms of dysregulation of miR-503, and whether miR-503 could be applied as a diagnostic marker or therapeutic target in cardiovascular disease or cancer.
Collapse
Affiliation(s)
- Yanjing He
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Pearl Mingchu Pai
- Department of Medicine, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
- Department of Medicine, The University of Hong Kong - Queen Mary Hospital, Hong Kong, China
| | - Xinling Ren
- Department of Respiratory Medicine, Shenzhen University General Hospital, Shenzhen, China
| | - Zhengyuan Xia
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
23
|
Zheng W, Li T, Wei J, Zhang Y, Zuo Q, Lin Y. Identification of miR-145 as a regulator of the cardiomyocyte inflammatory response and oxidative stress under hyperglycemia. Exp Ther Med 2021; 21:467. [PMID: 33763154 PMCID: PMC7983182 DOI: 10.3892/etm.2021.9898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
The current study aimed to explore the effects of microRNA (miR)-145 on the inflammatory response and oxidative stress (OS) in high glucose (HG)-induced cardiomyocytes, as well as the specific mechanism underlying this action. H9c2 cells were treated with 33 mmol/l glucose (HG group) or cotreated with 24.5 mmol/l mannitol and 5.5 mmol/l glucose (hypertonic group), and the expression levels of miR-145 and ADP ribosylation factor 6 (ARF6) were detected. The cells were transfected with pcDNA3.1-ARF6, miR-145 mimics or corresponding negative controls prior to the assessment of cell survival rate. Levels of lactate dehydrogenase (LDH), reactive oxygen species (ROS) and malondialdehyde (MDA), as well as the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), and the levels of IL-6, TNF-α and monocyte chemoattractant protein-1 (MCP-1) were subsequently determined. The apoptotic rate of H9c2 cells was examined by flow cytometry. The interaction between miR-145-ARF6 was predicted and confirmed by luciferase reporter assays. In the HG group, miR-145 expression was significantly decreased and ARF6 expression significantly increased compared with controls. Furthermore, the levels of inflammatory factors (IL-6, TNF-α and MCP-1), LDH, ROS and MDA were significantly elevated in the HG group compared with controls. Significantly decreased SOD, CAT and GPx activities and significantly increased numbers of apoptotic cells were observed in the HG group compared with controls. The cells transfected with miR-145 mimics exhibited significantly decreased LDH, ROS and MDA levels, significantly increased antioxidant enzyme activities and significantly decreased apoptotic rates compared with controls, while the opposite results were observed in cells transfected with pcDNA3.1-ARF6. Moreover, co-transfection with miR-145 mimics and pcDNA3.1-ARF6 exacerbated the inflammatory response and OS injury in HG-induced cardiomyocytes compared with cells transfected with miR-145 mimics alone. Furthermore, miR-145 negatively targeted ARF6. miR-145 attenuated the HG-induced inflammatory response and OS injury in cardiomyocytes by negatively regulating ARF6, which may contribute to providing a theoretical basis for the treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Wan Zheng
- Department of Cardiovascular Internal Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Tianfa Li
- Department of Cardiovascular Internal Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Junping Wei
- Department of Cardiovascular Internal Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Yuanyuan Zhang
- Department of Cardiovascular Internal Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Qi Zuo
- Department of Cardiovascular Internal Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Yun Lin
- Department of Cardiovascular Internal Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| |
Collapse
|
24
|
Zhang MW, Shen YJ, Shi J, Yu JG. MiR-223-3p in Cardiovascular Diseases: A Biomarker and Potential Therapeutic Target. Front Cardiovasc Med 2021; 7:610561. [PMID: 33553260 PMCID: PMC7854547 DOI: 10.3389/fcvm.2020.610561] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases, involving vasculopathy, cardiac dysfunction, or circulatory disturbance, have become the major cause of death globally and brought heavy social burdens. The complexity and diversity of the pathogenic factors add difficulties to diagnosis and treatment, as well as lead to poor prognosis of these diseases. MicroRNAs are short non-coding RNAs to modulate gene expression through directly binding to the 3′-untranslated regions of mRNAs of target genes and thereby to downregulate the protein levels post-transcriptionally. The multiple regulatory effects of microRNAs have been investigated extensively in cardiovascular diseases. MiR-223-3p, expressed in multiple cells such as macrophages, platelets, hepatocytes, and cardiomyocytes to modulate their cellular activities through targeting a variety of genes, is involved in the pathological progression of many cardiovascular diseases. It participates in regulation of several crucial signaling pathways such as phosphatidylinositol 3-kinase/protein kinase B, insulin-like growth factor 1, nuclear factor kappa B, mitogen-activated protein kinase, NOD-like receptor family pyrin domain containing 3 inflammasome, and ribosomal protein S6 kinase B1/hypoxia inducible factor 1 α pathways to affect cell proliferation, migration, apoptosis, hypertrophy, and polarization, as well as electrophysiology, resulting in dysfunction of cardiovascular system. Here, in this review, we will discuss the role of miR-223-3p in cardiovascular diseases, involving its verified targets, influenced signaling pathways, and regulation of cell function. In addition, the potential of miR-223-3p as therapeutic target and biomarker for diagnosis and prediction of cardiovascular diseases will be further discussed, providing clues for clinicians.
Collapse
Affiliation(s)
- Meng-Wan Zhang
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yun-Jie Shen
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Shi
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Guang Yu
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Jirak P, Wernly B, Lichtenauer M, Franz M, Knost T, Abusamrah T, Kelm M, Bimpong-Buta NY, Jung C. Next-generation sequencing analysis of circulating micro-RNA expression in response to parabolic flight as a spaceflight analogue. NPJ Microgravity 2020; 6:31. [PMID: 33298968 PMCID: PMC7606465 DOI: 10.1038/s41526-020-00121-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 09/11/2020] [Indexed: 01/15/2023] Open
Abstract
Understanding physiologic reactions to weightlessness is an indispensable requirement for safe human space missions. This study aims to analyse changes in the expression of circulating miRNAs following exposure to gravitational changes. Eight healthy volunteers (age: 24.5 years, male: 4, female: 4) were included. Each subject underwent 31 short-term phases of weightlessness and hypergravity induced by parabolic flight as a spaceflight analogue. At baseline, 1 and 24 h after parabolic flight, venous blood was withdrawn. Analysis of circulating miRNAs in serum was conducted by means of next generation sequencing. In total, 213 miRNAs were robustly detected (TPM > 5) by small RNA sequencing in all 24 samples. Four miRNAs evidenced a significant change in expression after adjusting for multiple testing. Only miR-223-3p showed a consistent significant decrease 24 h after parabolic flight compared to baseline values and values at 1 h after parabolic flight. miR-941 and miR-24-3p showed a significant decrease 24 h after parabolic flight compared to 1 h after parabolic flight but not to baseline values. miR-486-5p showed a significant increase 24 h after parabolic flight compared to 1 h after parabolic flight but not to baseline values. A target network analysis identified genes of the p53 signaling pathway and the cell cycle highly enriched among the targets of the four microRNAs. Our findings suggest cellular adaption to gravitational changes at the post-transcriptional level. Based on our results, we suggest a change in cell cycle regulation as potential explanation for adaptational changes observed in space missions.
Collapse
Affiliation(s)
- Peter Jirak
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Bernhard Wernly
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Michael Lichtenauer
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Marcus Franz
- Department of Internal Medicine I, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Thorben Knost
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Duesseldorf, Duesseldorf, Germany
| | - Thaer Abusamrah
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Duesseldorf, Duesseldorf, Germany
| | - Malte Kelm
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Duesseldorf, Duesseldorf, Germany
| | - Nana-Yaw Bimpong-Buta
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Duesseldorf, Duesseldorf, Germany
| | - Christian Jung
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Duesseldorf, Duesseldorf, Germany.
| |
Collapse
|
26
|
Climent M, Viggiani G, Chen YW, Coulis G, Castaldi A. MicroRNA and ROS Crosstalk in Cardiac and Pulmonary Diseases. Int J Mol Sci 2020; 21:ijms21124370. [PMID: 32575472 PMCID: PMC7352701 DOI: 10.3390/ijms21124370] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) affect many cellular functions and the proper redox balance between ROS and antioxidants contributes substantially to the physiological welfare of the cell. During pathological conditions, an altered redox equilibrium leads to increased production of ROS that in turn may cause oxidative damage. MicroRNAs (miRNAs) regulate gene expression at the post-transcriptional level contributing to all major cellular processes, including oxidative stress and cell death. Several miRNAs are expressed in response to ROS to mediate oxidative stress. Conversely, oxidative stress may lead to the upregulation of miRNAs that control mechanisms to buffer the damage induced by ROS. This review focuses on the complex crosstalk between miRNAs and ROS in diseases of the cardiac (i.e., cardiac hypertrophy, heart failure, myocardial infarction, ischemia/reperfusion injury, diabetic cardiomyopathy) and pulmonary (i.e., idiopathic pulmonary fibrosis, acute lung injury/acute respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, lung cancer) compartments. Of note, miR-34a, miR-144, miR-421, miR-129, miR-181c, miR-16, miR-31, miR-155, miR-21, and miR-1/206 were found to play a role during oxidative stress in both heart and lung pathologies. This review comprehensively summarizes current knowledge in the field.
Collapse
Affiliation(s)
- Montserrat Climent
- Humanitas Clinical and Research Center—IRCCS, Via Manzoni 56, 20089 Rozzano, MI, Italy;
| | - Giacomo Viggiani
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, MI, Italy;
| | - Ya-Wen Chen
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Gerald Coulis
- Department of Physiology and Biophysics, and Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA;
| | - Alessandra Castaldi
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Correspondence:
| |
Collapse
|
27
|
Xu D, Zhang X, Chen X, Yang S, Chen H. Inhibition of miR-223 attenuates the NLRP3 inflammasome activation, fibrosis, and apoptosis in diabetic cardiomyopathy. Life Sci 2020; 256:117980. [PMID: 32561396 DOI: 10.1016/j.lfs.2020.117980] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/05/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023]
Abstract
Diabetic cardiomyopathy (DCM) is an independent and specific cardiomyopathy, which is associated with cardiac failure in diabetic patients. Currently, the pathogenesis of DCM is a popular research topic in the investigation of cardiovascular diseases. MicroRNAs (miRNAs) have been identified as the latent therapeutic targets for DCM. However, the functions and complex mechanisms of miRNAs in DCM have not been clarified. The cardiomyocyte injury model was established using high glucose (HG) ingestion, and the DCM rat model was established using 30 mg/kg streptozotocin. MicroRNA-223 (miR-223) expression was determined using qRT-PCR; the levels of NLRP3 inflammasome, fibrosis, and apoptosis-related genes and proteins were analyzed using qRT-PCR and western blot assays. Besides the morphological changes and fibrosis of myocardial tissues were evaluated using H&E and Masson staining. We discovered that miR-223 was highly expressed in the HG-induced cardiomyocyte injury model, and miR-223 inhibitor could further relieve the myocardial fibrosis and apoptosis, and inhibit NLRP3 inflammasome of HG-induced H9c2 cells. Additionally, we found that inhibition of miR-223 had obvious positive effects on the cardiac dysfunction and reduced the elevation of blood sugar in the DCM model rats. We found that the miRNA-223 inhibitor could improve the morphological structure and the degree of fibrosis in myocardial tissues in the DCM model rats. Moreover, we verified that inhibition of miR-223 could suppress the NLRP3 inflammasome activation, and alleviate myocardial fibrosis and apoptosis of the DCM model rats. In conclusion, our results suggested that miR-223 might be an underlying therapeutic target for DCM by reducing NLRP3 inflammasome activation, fibrosis, and apoptosis.
Collapse
Affiliation(s)
- Dan Xu
- Department of Endocrinology and Metabolism, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Xiuzhen Zhang
- Department of Endocrinology and Metabolism, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Xuan Chen
- Department of Endocrinology and Metabolism, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Shufen Yang
- Department of Endocrinology and Metabolism, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China.
| | - Hongmei Chen
- Department of Endocrinology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| |
Collapse
|
28
|
Li W, Ren Y, Meng T, Yang W, Zhang W. miR‐129‐5p attenuates hypoxia‐induced apoptosis in rat H9c2 cardiomyocytes by activating autophagy. J Gene Med 2020; 22:e3200. [PMID: 32298509 DOI: 10.1002/jgm.3200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Wenjia Li
- Department of Geriatric MedicineThe First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi China
| | - Yanping Ren
- Department of Geriatric MedicineThe First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi China
| | - Tianyu Meng
- Department of Geriatric MedicineThe First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi China
| | - Wei Yang
- Department of Geriatric MedicineThe First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi China
| | - Wei Zhang
- Department of Geriatric MedicineThe First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi China
| |
Collapse
|
29
|
Ji D, Chen GF, Wang JC, Ji SH, Wu XW, Lu XJ, Chen JL, Li JT. Hsa_circ_0070963 inhibits liver fibrosis via regulation of miR-223-3p and LEMD3. Aging (Albany NY) 2020; 12:1643-1655. [PMID: 32003753 PMCID: PMC7053641 DOI: 10.18632/aging.102705] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022]
Abstract
Previous circular RNA (circRNA) microarray analyses have uncovered an abnormal expression of hsa_circ_0070963 in hepatic stellate cells (HSCs). However, the specific role of hsa_circ_0070963 in liver fibrosis remains unknown. Here, we show that hsa_circ_0070963 inhibits liver fibrosis via regulation of miR-223-3p and LEMD3. Moreover, we demonstrated that hsa_circ_0070963 levels were reduced during liver fibrosis while restoring hsa_circ_0070963 levels abolished HSC activation, with a reduction in α-SMA and type I collagen levels both in vitro and in vivo. Furthermore, hsa_circ_0070963 overexpression suppressed both cell proliferation and the cell cycle of HSCs. MiR-223-3p was confirmed as a target of hsa_circ_0070963 and was shown to be involved in the effects of hsa_circ_0070963 on HSC activation. Furthermore, LEMD3 was confirmed as a target of miR-223-3p and was shown to be responsible for the activation of HSCs. The interactions between hsa_circ_0070963, miR-223-3p, and LEMD3 were validated via bioinformatic analysis, luciferase reporter assays, and rescue experiments. Collectively, hsa_circ_0070963 appeared to function as a miR-223-3p sponge that inhibited HSC activation in liver fibrosis via regulation of miR-223-3p and LEMD3. Therefore, hsa_circ_0070963 may serve as a potential therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Dong Ji
- Second Liver Cirrhosis Diagnosis and Treatment Center, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guo-Feng Chen
- Second Liver Cirrhosis Diagnosis and Treatment Center, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jin-Cheng Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Si-Han Ji
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Sparkfire Scientific Research Group of Nanjing Medical University, Nanjing, China
| | - Xue-Wen Wu
- Department of Gastroenterology, Fengxian Hospital, Southern Medical University, Shanghai, China.,Department of Gastroenterology, Shanghai Sixth People's Hospital (South), Shanghai Jiaotong University, Shanghai, China
| | - Xiao-Jie Lu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin-Lian Chen
- Department of Gastroenterology, Fengxian Hospital, Southern Medical University, Shanghai, China.,Department of Gastroenterology, Shanghai Sixth People's Hospital (South), Shanghai Jiaotong University, Shanghai, China
| | - Jing-Tao Li
- Department of Liver Diseases, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| |
Collapse
|
30
|
Zhou Q, Li Y, Gu T. Silencing of miR-223 expression inhibits the apoptosis of H 2O 2-induced cardiomyocytes by increasing the activity of the IGF-1R/PI3K/AKT pathway. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220950871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To study the: (1) function of micro (mi)R-223 on H2O2-induced H9C2 cells; (2) relationship between miR-223 and insulin-like growth factor 1 receptor (IGF-1R); and (3) role of miR-223 on the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway. H9C2 cells were selected to establish the H2O2-injury model. Overexpression/low expression of miR-223 in H9C2 cells was constructed, respectively. Flow cytometry and western blotting were applied to measure the apoptosis, cell activity, and expression of related proteins. Dual-luciferase reporter gene assays (DLRGAs) were applied to test if miR-223 targeted IGF-1R. Overexpression/low expression of IGF-1R was constructed to test if miR-223 regulated IGF-1R expression negatively. Increases in miR-223 expression were observed in H2O2-induced H9C2 cells. miR-223 absence improved H2O2-induced H9C2-cell apoptosis accompanied by an increase in B-cell lymphoma (Bcl)-2 expression and decrease in expression of Bax and cleaved caspase-3 ( P < 0.05). miR-223 silencing increased expression of IGF-1R, p-PI3K, and p-AKT in H2O2-induced H9C2 cells ( P < 0.05). miR-223 overexpression aggravated H2O2-induced H9C2-cell apoptosis and reduced expression of the proteins of IGF-1R, p-PI3K, and p-AKT. DLRGAs showed IGF-1R to be a downstream gene of miR-223. IGF-1R silencing significantly inhibited expression of p-PI3K and p-AKT proteins ( P < 0.05). miR-223 negatively regulated IGF-1R expression for H9C2-cell apoptosis and the PI3K/AKT pathway. miR-223 absence can ameliorate H2O2-induced cardiomyocyte apoptosis by targeting IGF-1R to regulate PI3K/AKT activity.
Collapse
Affiliation(s)
- Qianqian Zhou
- Department of Cardiology, The Second People’s Hospital of Dongying, Dongying, China
| | - Yufen Li
- Medical Examination Center, The Second People’s Hospital of Dongying, Dongying, China
| | - Tianjin Gu
- Department of Cardiology, The Second People’s Hospital of Dongying, Dongying, China
| |
Collapse
|
31
|
Zhao T, Qiu Z, Gao Y. MiR-137-3p exacerbates the ischemia-reperfusion injured cardiomyocyte apoptosis by targeting KLF15. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:1013-1024. [PMID: 31822940 DOI: 10.1007/s00210-019-01728-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/06/2019] [Indexed: 12/24/2022]
Abstract
Ischemia-reperfusion (I/R) injury is a kind of the tissue damage caused by an abrupt re-supplying tissue with blood after a period of ischemia or hypoxia. It contributes to a wide range of pathological processes including kidney injury, circulatory arrest, and especially cardiovascular disease. However, the underlying pathological mechanism is not fully elucidated. Previously, extensive studies demonstrated that miRNAs participate in the pathogenesis of I/R injury, such as I/R-induced cardiomyocyte apoptosis. Here, we found that miR-137-3p, a mature form of miR-137, was up-regulated in I/R-injured cardiomyocytes of myocardial infarction patients. Deficiency of miR-137-3p partly alleviated the cardiomyocyte apoptosis and oxidative stress induced by hypoxia-reoxygenation (H/R) treatment in H9c2 cells. Also, we provided evidences that miR-137-3p directly targeted the 3' UTR of KLF15 mRNA to down-regulate its expression, and loss function of KLF15 significantly abolished the deleterious effects of ectopic miR-137-3p on cardiomyocytes both in vitro and in vivo. Collectively, these observations highlight a molecular perturbation in the pathogenesis of I/R injury in cardiomyocytes.
Collapse
Affiliation(s)
- Tingting Zhao
- Department of Cardiology, Peace hospital attached to Changzhi, Changzhi, 046000, Shanxi, People's Republic of China
| | - Zhi Qiu
- Department of Cardiology, Peace hospital attached to Changzhi, Changzhi, 046000, Shanxi, People's Republic of China
| | - Yonghua Gao
- Department of Cardiology, Peace hospital attached to Changzhi, Changzhi, 046000, Shanxi, People's Republic of China. .,Department of Cardiology, The Xiangya Hospital of central south university, Changsha, 410000, Hunan, People's Republic of China. .,Department of Clinical Laboratory, Affiliated Hospital of Xuzhou Medical University, 89 Huaihai Road, Xuzhou, 221000, Jiangsu, People's Republic of China.
| |
Collapse
|
32
|
Wei Y, Chen S, Sun D, Li X, Wei R, Li X, Nian H. miR-223-3p promotes autoreactive T h17 cell responses in experimental autoimmune uveitis (EAU) by inhibiting transcription factor FOXO3 expression. FASEB J 2019; 33:13951-13965. [PMID: 31645142 DOI: 10.1096/fj.201901446r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pathogenic T helper (Th)17 cells are key mediators of autoimmune diseases such as uveitis and its animal model, experimental autoimmune uveitis (EAU). However, the contribution of microRNAs (miRs) to the intrinsic control of pathogenic Th17 cells in EAU remains largely unknown. Here, we have reported that miR-223-3p was significantly up-regulated in interphotoreceptor retinoid-binding protein-specific Th17 cells, and its expression was enhanced by IL-23-signal transducer and activator of transcription 3 signaling. Knockdown of miR-223-3p decreased the pathogenicity of Th17 cells in a T-cell transfer model of EAU. Mechanistic studies showed that miR-223-3p directly repressed the expression of forkhead box O3 (FOXO3), and FOXO3 negatively regulated pathogenic Th17 cell responses partially via suppression of IL-23 receptor expression. Thus, our results reveal an important role for miR-223-3p in autoreactive Th17 cell responses and suggest a potential therapeutic avenue for uveitis.-Wei, Y., Chen, S., Sun, D., Li, X., Wei, R., Li, X., Nian, H. miR-223-3p promotes autoreactive Th17 cell responses in experimental autoimmune uveitis (EAU) by inhibiting transcription factor FOXO3 expression.
Collapse
Affiliation(s)
- Yankai Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Sisi Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Deming Sun
- Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA.,Doheny Eye Institute, Los Angeles, California, USA
| | - Xue Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
33
|
Zhao Y, Song W, Wang L, Rane MJ, Han F, Cai L. Multiple roles of KLF15 in the heart: Underlying mechanisms and therapeutic implications. J Mol Cell Cardiol 2019; 129:193-196. [PMID: 30831134 DOI: 10.1016/j.yjmcc.2019.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/18/2019] [Accepted: 01/26/2019] [Indexed: 12/13/2022]
Abstract
Although there is an increasing understanding of the signaling pathways that promote cardiac hypertrophy, negative regulatory factors of this process have received less attention. Increasing evidence indicates that Krüppel-like factor 15 (KLF15) plays an important role in maintaining cardiac function by controlling the transcriptional pathways that regulating cardiac metabolism. Recent studies have also revealed a vital role for KLF15 as an inhibitor of pathological cardiac hypertrophy and fibrosis via its effects on factors such as myocyte enhancer factor 2 (MEF2), GATA-binding protein 4 (GATA4), transforming growth factor-β (TGF-β), and myocardin. KLF15 may therefore be an effective therapeutic target for the treatment of heart failure and other cardiovascular diseases. In this review, we focus on the physiological and pathophysiological roles of KLF15 in the heart and the potential mechanisms through which KLF15 is regulated in various cardiac diseases.
Collapse
Affiliation(s)
- Yuguang Zhao
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Wenjing Song
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Lizhe Wang
- Department of Pediatric Oncology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Madhavi J Rane
- Departments of Medicine, Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA
| | - Fujun Han
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Lu Cai
- Pediatric Research Institute, Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|