1
|
Yuki R, Kuwajima H, Ota R, Ikeda Y, Saito Y, Nakayama Y. Eph signal inhibition potentiates the growth-inhibitory effects of PLK1 inhibition toward cancer cells. Eur J Pharmacol 2024; 963:176229. [PMID: 38072041 DOI: 10.1016/j.ejphar.2023.176229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/07/2024]
Abstract
Anti-mitotic drugs are clinically used as anti-cancer treatments. Polo-like kinase 1 (PLK1) is a promising target against cancer cell division due to its importance in the whole process of mitosis, and thus PLK1-targeting agents have been developed in the last few decades. Clinical trial studies show that several PLK1 inhibitors are generally well-tolerated. However, the response rates are limited; therefore, it is needed to improve the efficacy of those drugs. Here, we show that NVP-BHG712, an erythropoietin-producing human hepatocellular (Eph) signaling inhibitor, potentiates the growth-inhibitory effects of the PLK1 inhibitors BI2536 and BI6727 in cancer cells. This combination treatment strongly suppresses cancer spheroid formation. Moreover, the combination drastically arrests cells at mitosis by continuous activation of the spindle assembly checkpoint (SAC), thereby inducing apoptosis. SAC activation caused by the combination of NVP-BHG712 and BI2536 is due to the inhibition of centrosome maturation and separation. Although the inactivation level of the PLK1 kinase is comparable between BI2536 treatment alone and combination treatment, the combination treatment strongly inactivates MAPK signaling in mitosis. Since inhibition of MAPK signaling potentiates the efficacy of BI2536 treatment, inactivation of PLK1 kinase and MAPK signaling contributes to the strong inhibition of centrosome separation. These results suggest that Eph signal inhibition potentiates the effect of PLK1 inhibition, leading to strong mitotic arrest via SAC activation and the subsequent reduction of cancer cell survival. The combination of PLK1 inhibition and Eph signal inhibition will provide a new effective strategy for targeting cancer cell division.
Collapse
Affiliation(s)
- Ryuzaburo Yuki
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan.
| | - Hiroki Kuwajima
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Ryoko Ota
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Yuki Ikeda
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Youhei Saito
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Yuji Nakayama
- Laboratory of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| |
Collapse
|
2
|
Zhang J, Zhang L, Wang J, Ouyang L, Wang Y. Polo-like Kinase 1 Inhibitors in Human Cancer Therapy: Development and Therapeutic Potential. J Med Chem 2022; 65:10133-10160. [PMID: 35878418 DOI: 10.1021/acs.jmedchem.2c00614] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Polo-like kinase 1 (PLK1) plays an important role in a variety of cellular functions, including the regulation of mitosis, DNA replication, autophagy, and the epithelial-mesenchymal transition (EMT). PLK1 overexpression is often associated with cell proliferation and poor prognosis in cancer patients, making it a promising antitumor target. To date, at least 10 PLK1 inhibitors (PLK1i) have been entered into clinical trials, among which the typical kinase domain (KD) inhibitor BI 6727 (volasertib) was granted "breakthrough therapy designation" by the FDA in 2013. Unfortunately, many other KD inhibitors showed poor specificity, resulting in dose-limiting toxicity, which has greatly impeded their development. Researchers recently discovered many PLK1i with higher selectivity, stronger potency, and better absorption, distribution, metabolism, and elimination (ADME) characteristics. In this review, we emphasize the structure-activity relationships (SARs) of PLK1i, providing insights into new drugs targeting PLK1 for antitumor clinical practice.
Collapse
Affiliation(s)
- Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lele Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis 38163, Tennessee, United States
| | - Liang Ouyang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|