1
|
Peng D, Wang A, Shi W, Lin L. Pentacyclic triterpenes, potential novel therapeutic approaches for cardiovascular diseases. Arch Pharm Res 2024; 47:709-735. [PMID: 39048758 DOI: 10.1007/s12272-024-01510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Cardiovascular diseases (CVDs) involve dysfunction of the heart and blood vessels and have become major health concerns worldwide. Multiple mechanisms may be involved in the occurrence and development of CVDs. Although therapies for CVDs are constantly being developed and applied, the incidence and mortality of CVDs remain high. The roles of natural compounds in CVD treatment are being explored, providing new approaches for the treatment of CVD. Pentacyclic triterpenes are natural compounds with a basic nucleus of 30 carbon atoms, and they have been widely studied for their potential applications in the treatment of CVDs, to which various pharmacological activities contribute, including anti-inflammatory, antioxidant, and antitumor effects. This review introduces the roles of triterpenoids in the prevention and treatment of CVDs, summarizes their potential underlying mechanisms, and provides a comprehensive overview of the therapeutic potential of triterpenoids in the management of CVDs.
Collapse
Affiliation(s)
- Dewei Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Aizan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Wei Shi
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
2
|
Dai Y, Sun L, Tan Y, Xu W, Liu S, Zhou J, Hu Y, Lin J, Yao X, Mi P, Zheng X. Recent progress in the development of ursolic acid derivatives as anti-diabetes and anti-cardiovascular agents. Chem Biol Drug Des 2023; 102:1643-1657. [PMID: 37705131 DOI: 10.1111/cbdd.14347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Ursolic acid (UA) is a pentacyclic triterpenoid, which exhibits many biological activities, particularly in anti-cardiovascular and anti-diabetes. The further application of UA is greatly limited due to its low bioavailability and poor water solubility. Up to date, various UA derivatives have been designed to overcome these shortcomings. In this paper, the authors reviewed the development of UA derivatives as the anti-diabetes anti-cardiovascular reagents.
Collapse
Affiliation(s)
- Yili Dai
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, China
| | - Linjun Sun
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Changsha, China
| | - Yan Tan
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, China
| | - Wenyu Xu
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, China
| | - Shu Liu
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, China
| | - Jing Zhou
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, China
| | - Yalin Hu
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, China
| | - Jieying Lin
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, China
| | - Xu Yao
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, China
| | - Pengbing Mi
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, China
| | - Xing Zheng
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, China
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Changsha, China
| |
Collapse
|
3
|
Identification and Analysis of Metabolites That Contribute to the Formation of Distinctive Flavour Components of Laoxianghuang. Foods 2023; 12:foods12020425. [PMID: 36673517 PMCID: PMC9858094 DOI: 10.3390/foods12020425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/29/2022] [Accepted: 12/15/2022] [Indexed: 01/17/2023] Open
Abstract
In addition to volatile compounds, metabolites also have a great effect on the flavour of food. Fresh finger citron cannot be eaten directly because of its spicy and bitter taste, so it is made into a preserved fruit product known as Laoxianghuang (LXH). To investigate the metabolites that have an effect on the flavour of LXH, untargeted metabolomics was performed using an ultrahigh-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS), and the metabolites of the Laoxianghuang samples from different locations in the Chaoshan area were compared and analysed. A total of 756 metabolites were identified and distinct differences were revealed among the different Laoxianghuang samples. A total of 33 differential metabolites with the most significant changes were screened through further multivariate analytical steps, and each group of samples had unique metabolites. For instance, pomolic acid had the highest content in the JG sample, while L-glycyl-L-isoleucine was rich in the QS sample. Moreover, flavonoid metabolites made the greatest contribution to the unique flavour of Laoxianghuang. The metabolic pathways involved are the biosynthetic pathways of flavonoids, isoflavonoids, flavones, and flavonols. This study can provide some creative information for distinguishing the quality differences of Laoxianghuang from the perspective of metabolites and offer preliminary theoretical support to characterise the formation of flavour substances in Laoxianghuang.
Collapse
|
4
|
Erdmann J, Kujaciński M, Wiciński M. Beneficial Effects of Ursolic Acid and Its Derivatives-Focus on Potential Biochemical Mechanisms in Cardiovascular Conditions. Nutrients 2021; 13:3900. [PMID: 34836155 PMCID: PMC8622438 DOI: 10.3390/nu13113900] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
Ursolic acid (UA) is a natural pentacyclic triterpenoid found in a number of plants such as apples, thyme, oregano, hawthorn and others. Several in vitro and in vivo studies have presented its anti-inflammatory and anti-apoptotic properties. The inhibition of NF-κB-mediated inflammatory pathways and the increased scavenging of reactive oxygen species (ROS) in numerous ways seem to be the most beneficial effects of UA. In mice and rats, administration of UA appears to slow down the development of cardiovascular diseases (CVDs), especially atherosclerosis and cardiac fibrosis. Upregulation of endothelial-type nitric oxide synthase (eNOS) and cystathionine-λ-lyase (CSE) by UA may suggest its vasorelaxant property. Inhibition of metalloproteinases activity by UA may contribute to better outcomes in aneurysms management. UA influence on lipid and glucose metabolism remains inconsistent, and additional studies are essential to verify its efficacy. Furthermore, UA derivatives appear to have a beneficial impact on the cardiovascular system. This review aims to summarize recent findings on beneficial effects of UA that may make it a promising candidate for clinical trials for the management of CVDs.
Collapse
Affiliation(s)
- Jakub Erdmann
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland; (M.K.); (M.W.)
| | | | | |
Collapse
|