1
|
Chen H, Guo Z, Sun Y, Dai X. The immunometabolic reprogramming of microglia in Alzheimer's disease. Neurochem Int 2023; 171:105614. [PMID: 37748710 DOI: 10.1016/j.neuint.2023.105614] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder (NDD). In the central nervous system (CNS), immune cells like microglia could reprogram intracellular metabolism to alter or exert cellular immune functions in response to environmental stimuli. In AD, microglia could be activated and differentiated into pro-inflammatory or anti-inflammatory phenotypes, and these differences in cellular phenotypes resulted in variance in cellular energy metabolism. Considering the enormous energy requirement of microglia for immune functions, the changes in mitochondria-centered energy metabolism and substrates of microglia are crucial for the cellular regulation of immune responses. Here we reviewed the mechanisms of microglial metabolic reprogramming by analyzing their flexible metabolic patterns and changes that occurred in their metabolism during the development of AD. Further, we summarized the role of drugs in modulating immunometabolic reprogramming to prevent neuroinflammation, which may shed light on a new research direction for AD treatment.
Collapse
Affiliation(s)
- Hongli Chen
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
| | - Zichen Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
| | - Yaxuan Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
| | - Xueling Dai
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China.
| |
Collapse
|
2
|
The Role of Aldose Reductase in Beta-Amyloid-Induced Microglia Activation. Int J Mol Sci 2022; 23:ijms232315088. [PMID: 36499422 PMCID: PMC9739496 DOI: 10.3390/ijms232315088] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The occurrence of Alzheimer's disease has been associated with the accumulation of beta-amyloid (β-amyloid) plaques. These plaques activate microglia to secrete inflammatory molecules, which damage neurons in the brain. Thus, understanding the underlying mechanism of microglia activation can provide a therapeutic strategy for alleviating microglia-induced neuroinflammation. The aldose reductase (AR) enzyme catalyzes the reduction of glucose to sorbitol in the polyol pathway. In addition to mediating diabetic complications in hyperglycemic environments, AR also helps regulate inflammation in microglia. However, little is known about the role of AR in β-amyloid-induced inflammation in microglia and subsequent neuronal death. In this study, we confirmed that AR inhibition attenuates increased β-amyloid-induced reactive oxygen species and tumor necrosis factor α secretion by suppressing ERK signaling in BV2 cells. In addition, we are the first to report that AR inhibition reduced the phagocytotic capability and cell migration of BV2 cells in response to β-amyloid. To further investigate the protective role of the AR inhibitor sorbinil in neurons, we co-cultured β-amyloid-induced microglia with stem cell-induced neurons. sorbinil ameliorated neuronal damage in both cells in the co-culture system. In summary, our findings reveal AR regulation of microglia activation as a novel therapeutic target for Alzheimer's disease.
Collapse
|
3
|
Zhang X, Wang D, Zhang B, Zhu J, Zhou Z, Cui L. Regulation of microglia by glutamate and its signal pathway in neurodegenerative diseases. Drug Discov Today 2020; 25:1074-1085. [PMID: 32320851 DOI: 10.1016/j.drudis.2020.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/10/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023]
Abstract
Microglia are an essential component of the central nervous system (CNS) and are involved in the primary response to microorganisms, neuroinflammation, homeostasis, and tissue regeneration, as well as contributing to the pathogenesis of neurodegenerative diseases. Research has shown that microglial diversity, multifunctionality, and their relationship with glutamate are crucial to determining their roles in these diseases. In this review, we focus on recent progress in determining microglial characteristics and the role of glutamate and its receptors in microglia regulation, which could be a novel therapeutic strategy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.
| | - Dan Wang
- Department of Ophthalmology, the First Hospital of Jilin University, Changchun, China.
| | - Bo Zhang
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden; Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China.
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.
| | - Zhulin Zhou
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.
| | - Li Cui
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
4
|
McKenzie JA, Barghash RF, Alsaggaf AT, Kulkarni O, Boudreau K, Menard F, Neeland EG, Klegeris A. Synthesis and Evaluation of Novel Pyrazole Ethandiamide Compounds as Inhibitors of Human THP-1 Monocytic Cell Neurotoxicity. Cells 2019; 8:cells8070655. [PMID: 31261948 PMCID: PMC6679371 DOI: 10.3390/cells8070655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/20/2022] Open
Abstract
Neuroinflammation and microglia-mediated neurotoxicity contribute to the pathogenesis of a broad range of neurodegenerative diseases; therefore, identifying novel compounds that can suppress adverse activation of glia is an important goal. We have previously identified a class of trisubstituted pyrazoles that possess neuroprotective and anti-inflammatory properties. Here, we describe a second generation of pyrazole analogs that were designed to improve their neuroprotective activity toward neurons under inflammatory conditions. Pyrazolyl oxalamide derivatives were designed to explore the effects of steric and electronic factors. Three in vitro assays were performed to evaluate the compounds' anti-neurotoxic, neuroprotective, and cytotoxic activity using human THP-1, PC-3, and SH-SY5Y cells. Five compounds significantly reduced the neurotoxic secretions from immune-stimulated microglia-like human THP-1 monocytic cells. One of these compounds was also found to protect SH-SY5Y neuronal cells when they were exposed to cytotoxic THP-1 cell supernatants. While one of the analogs was discarded due to its interference with the cell viability assay, most compounds were innocuous to the cultured cells at the concentrations used (1-100 μM). The new compounds reported herein provide a design template for the future development of lead candidates as novel inhibitors of neuroinflammation and neuroprotective drugs.
Collapse
Affiliation(s)
- Jordan A McKenzie
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Reham F Barghash
- Department of Chemistry, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada
- Chemical Research Industries Division, National Research Centre, Dokki, Giza D-12622, Egypt
| | - Azhaar T Alsaggaf
- Department of Chemistry, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada
- Department of Chemistry, Taibah University, Medina 42353, Saudi Arabia
| | - Omkar Kulkarni
- Department of Chemistry, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Kalun Boudreau
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Frederic Menard
- Department of Chemistry, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada.
| | - Edward G Neeland
- Department of Chemistry, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|