1
|
Zhang B, Zhou N, Zhang Z, Wang R, Chen L, Zheng X, Feng W. Study on the Neuroprotective Effects of Eight Iridoid Components Using Cell Metabolomics. Molecules 2024; 29:1497. [PMID: 38611777 PMCID: PMC11013420 DOI: 10.3390/molecules29071497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/02/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Iridoid components have been reported to have significant neuroprotective effects. However, it is not yet clear whether the efficacy and mechanisms of iridoid components with similar structures are also similar. This study aimed to compare the neuroprotective effects and mechanisms of eight iridoid components (catalpol (CAT), genipin (GE), geniposide (GEN), geniposidic acid (GPA), aucubin (AU), ajugol (AJU), rehmannioside C (RC), and rehmannioside D (RD)) based on corticosterone (CORT)-induced injury in PC12 cells. PC12 cells were randomly divided into a normal control group (NC), model group (M), positive drug group (FLX), and eight iridoid administration groups. Firstly, PC12 cells were induced with CORT to simulate neuronal injury. Then, the MTT method and flow cytometry were applied to evaluate the protective effects of eight iridoid components on PC12 cell damage. Thirdly, a cell metabolomics study based on ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q/TOF-MS) was performed to explore changes in relevant biomarkers and metabolic pathways following the intervention of administration. The MTT assay and flow cytometry analysis showed that the eight iridoid components can improve cell viability, inhibit cell apoptosis, reduce intracellular ROS levels, and elevate MMP levels. In the PCA score plots, the sample points of the treatment groups showed a trend towards approaching the NC group. Among them, AU, AJU, and RC had a weaker effect. There were 38 metabolites (19 metabolites each in positive and negative ion modes, respectively) identified as potential biomarkers during the experiment, among which 23 metabolites were common biomarkers of the eight iridoid groups. Pathway enrichment analysis revealed that the eight iridoid components regulated the metabolism mainly in relation to D-glutamine and D-glutamate metabolism, arginine biosynthesis, the TCA cycle, purine metabolism, and glutathione metabolism. In conclusion, the eight iridoid components could reverse an imbalanced metabolic state by regulating amino acid neurotransmitters, interfering with amino acid metabolism and energy metabolism, and harmonizing the level of oxidized substances to exhibit neuroprotective effects.
Collapse
Affiliation(s)
- Bingxian Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (B.Z.); (N.Z.); (Z.Z.); (R.W.); (L.C.)
| | - Ning Zhou
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (B.Z.); (N.Z.); (Z.Z.); (R.W.); (L.C.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou 450046, China
| | - Zhenkai Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (B.Z.); (N.Z.); (Z.Z.); (R.W.); (L.C.)
| | - Ruifeng Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (B.Z.); (N.Z.); (Z.Z.); (R.W.); (L.C.)
| | - Long Chen
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (B.Z.); (N.Z.); (Z.Z.); (R.W.); (L.C.)
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (B.Z.); (N.Z.); (Z.Z.); (R.W.); (L.C.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P.R. China, Zhengzhou 450046, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; (B.Z.); (N.Z.); (Z.Z.); (R.W.); (L.C.)
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P.R. China, Zhengzhou 450046, China
| |
Collapse
|
2
|
Gao J, Zhang M, Zu X, Gu X, Hao E, Hou X, Bai G. Glucuronic acid metabolites of phenolic acids target AKT-PH domain to improve glucose metabolism. CHINESE HERBAL MEDICINES 2023; 15:398-406. [PMID: 37538860 PMCID: PMC10394347 DOI: 10.1016/j.chmed.2022.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/08/2022] [Accepted: 11/03/2022] [Indexed: 08/05/2023] Open
Abstract
Objective Phenolic acids widely exist in the human diet and exert beneficial effects such as improving glucose metabolism. It is not clear whether phenolic acids or their metabolites play a major role in vivo. In this study, caffeic acid (CA) and ferulic acid (FA), the two most ingested phenolic acids, and their glucuronic acid metabolites, caffeic-4'-O-glucuronide (CA4G) and ferulic-4'-O-glucuronide (FA4G), were investigated. Methods Three insulin resistance models in vitro were established by using TNF-α, insulin and palmitic acid (PA) in HepG2 cells, respectively. We compared the effects of FA, FA4G, CA and CA4G on glucose metabolism in these models by measuring the glucose consumption levels. The potential targets and related pathways were predicted by network pharmacology. Fluorescence quenching measurement was used to analyze the binding between the compounds and the predicted target. To investigate the binding mode, molecular docking was performed. Then, we performed membrane recruitment assays of the AKT pleckstrin homology (PH) domain with the help of the PH-GFP plasmid. AKT enzymatic activity was determined to compare the effects between the metabolites with their parent compounds. Finally, the downstream signaling pathway of AKT was investigated by Western blot analysis. Results The results showed that CA4G and FA4G were more potent than their parent compounds in increasing glucose consumption. AKT was predicted to be the key target of CA4G and FA4G by network pharmacology analysis. The fluorescence quenching test confirmed the more potent binding to AKT of the two metabolites compared to their parent compounds. The molecular docking results indicated that the carbonyl group in the glucuronic acid structure of CA4G and FA4G might bind to the PH domain of AKT at the key Arg-25 site. CA4G and FA4G inhibited the translocation of the AKT PH domain to the membrane, while increasing the activity of AKT. Western blot analysis demonstrated that the metabolites could increase the phosphorylation of AKT and downstream glycogen synthase kinase 3β in the AKT signaling pathway to increase glucose consumption. Conclusion In conclusion, our results suggested that the metabolites of phenolic acids, which contain glucuronic acid, are the key active substances and that they activate AKT by targeting the PH domain, thus improving glucose metabolism.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Manqian Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Xingwang Zu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Xue Gu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
3
|
Guzmán-López EG, Reina M, Hernández-Ayala LF, Galano A. Rational Design of Multifunctional Ferulic Acid Derivatives Aimed for Alzheimer's and Parkinson's Diseases. Antioxidants (Basel) 2023; 12:1256. [PMID: 37371986 DOI: 10.3390/antiox12061256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Ferulic acid has numerous beneficial effects on human health, which are frequently attributed to its antioxidant behavior. In this report, many of them are reviewed, and 185 new ferulic acid derivatives are computationally designed using the CADMA-Chem protocol. Consequently, their chemical space was sampled and evaluated. To that purpose, selection and elimination scores were used, which are built from a set of descriptors accounting for ADME properties, toxicity, and synthetic accessibility. After the first screening, 12 derivatives were selected and further investigated. Their potential role as antioxidants was predicted from reactivity indexes directly related to the formal hydrogen atom transfer and the single electron transfer mechanisms. The best performing molecules were identified by comparisons with the parent molecule and two references: Trolox and α-tocopherol. Their potential as polygenic neuroprotectors was investigated through the interactions with enzymes directly related to the etiologies of Parkinson's and Alzheimer's diseases. These enzymes are acetylcholinesterase, catechol-O-methyltransferase, and monoamine oxidase B. Based on the obtained results, the most promising candidates (FA-26, FA-118, and FA-138) are proposed as multifunctional antioxidants with potential neuroprotective effects. The findings derived from this investigation are encouraging and might promote further investigations on these molecules.
Collapse
Affiliation(s)
- Eduardo Gabriel Guzmán-López
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Alcaldía Iztapalapa, Mexico City 09310, Mexico
| | - Miguel Reina
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Luis Felipe Hernández-Ayala
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Alcaldía Iztapalapa, Mexico City 09310, Mexico
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Alcaldía Iztapalapa, Mexico City 09310, Mexico
| |
Collapse
|
4
|
Ferdous MRU, Abdalla M, Yang M, Xiaoling L, Song Y. Berberine chloride (dual topoisomerase I and II inhibitor) modulate mitochondrial uncoupling protein (UCP1) in molecular docking and dynamic with in-vitro cytotoxic and mitochondrial ATP production. J Biomol Struct Dyn 2023; 41:1704-1714. [PMID: 35612892 DOI: 10.1080/07391102.2021.2024255] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Obesity initiates numerous diseases like cardiovascular, metabolic, and type 2 diabetes, and obesity is a vital cause of death worldwide. Plants are necessary to the source of life. Several drug compounds isolated from plants are called phytochemicals which are safe, effective drug moieties to treat several diseases. Berberine chloride is a dual topoisomerase I and II inhibitor, that exhibited potent antitumor activities against several malignancies. However, the effect of Berberine on mitochondria remains unknown. The focus of this study was to determine the role of Berberine on mitochondrial uncoupling protein (UCP1), ATP production, and cytotoxic effect of HEK293T cell at a time and dose-dependent manner analysis by CCK8 assay. The upregulation of mitochondrial UCP1 gene expression reduces adipocyte content by initiating thermogenesis. In this study, berberine chloride significantly up-regulates UCP1 gene expression in brown adipocytes. AT 10 µM concentration of Berberine 48 h treatment demonstrated significant cell death. The decreased level of ATP production leads to mitochondrial uncoupling. Initiate thermogenesis reducing fat droplets in adipocytes. The first time, we used molecular docking and dynamic of Berberine with UCP1 gene in this study and revealed therapeutic potential of Berberine via modulation of mitochondrial UCP1 gene. Further investigation will reveal new insight into mechanisms to treat metabolic-related diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Reyad-Ul Ferdous
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Internal Medicine, Cheeloo College of Medicine Shandong University, Jinan, Shandong, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China.,Shandong Institute of Endocrinology & Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, PR China
| | - Mengjiao Yang
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Shandong First Medical University, Shandong, China
| | - Li Xiaoling
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Shandong First Medical University, Shandong, China
| | - Yongfeng Song
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China.,Shandong Institute of Endocrinology & Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Shandong First Medical University, Shandong, China
| |
Collapse
|
5
|
Ye Z, Liu Y. Polyphenolic compounds from rapeseeds (Brassica napus L.): The major types, biofunctional roles, bioavailability, and the influences of rapeseed oil processing technologies on the content. Food Res Int 2023; 163:112282. [PMID: 36596189 DOI: 10.1016/j.foodres.2022.112282] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022]
Abstract
The rapeseed (Brassica napus L.) are the important oil bearing material worldwide, which contain wide variety of bioactive components with polyphenolic compounds considered the most typical. The rapeseed polyphenols encompass different structural variants, and have been considered to have many bioactive functions, which are beneficial for the human health. Whereas, the rapeseed oil processing technologies affect their content and the biofunctional activities. The present review of the literature highlighted the major types of the rapeseed polyphenols, and summarized their biofunctional roles. The influences of rapeseed oil processing technologies on these polyphenols were also elucidated. Furthermore, the directions of the future studies for producing nutritional rapeseed oils preserved higher level of polyphenols were prospected. The rapeseed polyphenols are divided into the phenolic acids and polyphenolic tannins, both of which contained different subtypes. They are reported to have multiple biofunctional roles, thus showing outstanding health improvement effects. The rapeseed oil processing technologies have significant effects on both of the polyphenol content and activity. Some novel processing technologies, such as aqueous enzymatic extraction (AEE), subcritical or supercritical extraction showed advantages for producing rapeseed oil with higher level of polyphenols. The oil refining process involved heat or strong acid and alkali conditions affected their stability and activity, leading to the loss of polyphenols of the final products. Future efforts are encouraged to provide more clinic evidence for the practical applications of the rapeseed polyphenols, as well as optimizing the processing technologies for the green manufacturing of rapeseed oils.
Collapse
Affiliation(s)
- Zhan Ye
- School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, PR China.
| |
Collapse
|
6
|
Reyad-ul-Ferdous M, Song Y. Histone deacetylase (HDAC) inhibitor Curcumin upregulates mitochondrial uncoupling protein1 (UCP1) and mitochondrial function in brown adipocytes, in-Silico study and screening natural drug library. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Reyad-ul-Ferdous M, Song Y. Baicalein modulates mitochondrial function by upregulating mitochondrial uncoupling protein-1 (UCP1) expression in brown adipocytes, cytotoxicity, and computational studies. Int J Biol Macromol 2022; 222:1963-1973. [DOI: 10.1016/j.ijbiomac.2022.09.285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
|
8
|
Chen X, Luo Z, Liu X, Li X, Li Q, Zhang W, Liu Y, Cheng Z, Yang X, Liu Y, Jin R, Zhu D, Wang F, Lu Q, Su Z, Guo H. Marsdenia tenacissima (Roxb.) Moon injection exerts a potential anti-tumor effect in prostate cancer through inhibiting ErbB2-GSK3β-HIF1α signaling axis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115381. [PMID: 35595220 DOI: 10.1016/j.jep.2022.115381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Marsdenia tenacissima injection (MTE), a traditional Chinese medical injection extracted from the rattan of Marsdenia tenacissima (Roxb.) Moon, has been approved for clinical use in China as an adjuvant therapeutic agent in multiple cancers, including esophageal cancer, gastric cancer, lung cancer, and liver cancer. However, the activity and mechanism of MTE on prostate cancer (PCa) remain to be defined. AIM OF THE STUDY To investigate the activity and the underlying mechanism of MTE in the treatment of PCa. MATERIALS AND METHODS The component characterization of MTE was analyzed by HPLC-CAD-QTOF-MS/MS technology. Cell Counting Kit-8 (CCK-8) assay was used to assess PCa cell proliferation. Colony formation assay was applied to detect the clonogenic ability of the cells. MetaboAnalyst5.0 database was employed to analyze the altered metabolites of PC3 cells treated with MTE obtained by UPLC-QTOF-MS/MS. Combined with metabolomics analysis and network pharmacology, we predicted the potential targets, which further were verified by Western Blot, RT-qPCR, and Immunohistochemistry assays. Finally, SeeSAR software was applied to predict the potential active components of MTE against PCa. RESULTS A total of 21 components in MTE were confirmed by HPLC-CAD-QTOF-MS/MS analysis. MTE inhibited the proliferation and colony formation of PCa cells. A total of 20 metabolites closely related to glycerophospholipid metabolism, glycolysis/gluconeogenesis, and tricarboxylic acid (TCA) cycle were significantly changed in PC3 cells treated with MTE. The network pharmacology analysis revealed that MTE suppressed the growth of PC3 cells might by regulating the ErbB2-GSK3β-HIF1α signaling axis. Furthermore, we also confirmed that stimulation of MTE significantly inhibited the phosphorylation of ErbB2 at Tyr877 and the activities of its downstream signal transducers (GSK3β and HIF1α) in PCa, as well as the mRNA levels of critical factors (IDH2, LDHA, and HIF1A) in the tricarboxylic acid (TCA) cycle. Molecular docking further suggested that Tenacissimoside E, cryptochlorogenic acid, and scopoletin might be the active ingredients of MTE for PCa treatment. CONCLUSION This study proposed that MTE exerts a potential anti-tumor effect in PCa through inhibiting ErbB2-GSK3β-HIF1α signaling axis, which may be related to the TCA cycle.
Collapse
Affiliation(s)
- Xin Chen
- Guangxi Key Laboratory for Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
| | - Zhuo Luo
- Guangxi Key Laboratory for Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
| | - Xi Liu
- Guangxi Key Laboratory for Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
| | - Xiaolan Li
- Guangxi Key Laboratory for Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
| | - Qiaofeng Li
- Guangxi Key Laboratory for Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
| | - Weiquan Zhang
- Guangxi Key Laboratory for Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
| | - Ying Liu
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China; College of Pharmacy, Guangxi University of Chinese Medicine, 179 Mingxiu Dong Road, Nanning, 530001, China
| | - Zhiping Cheng
- Guangxi Key Laboratory for Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
| | - Xin Yang
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
| | - Yanying Liu
- Guangxi Key Laboratory for Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
| | - Ronghua Jin
- Guangxi Key Laboratory for Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
| | - Dan Zhu
- Guangxi Key Laboratory for Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
| | - Fengmao Wang
- Guangxi Key Laboratory for Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China
| | - Qinpei Lu
- Guangxi Key Laboratory for Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.
| | - Zhiheng Su
- Guangxi Key Laboratory for Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.
| | - Hongwei Guo
- Guangxi Key Laboratory for Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.
| |
Collapse
|
9
|
Li X, Hou R, Qin X, Wu Y, Wu X, Tian J, Gao X, Du G, Zhou Y. Synergistic neuroprotective effect of saikosaponin A and albiflorin on corticosterone-induced apoptosis in PC12 cells via regulation of metabolic disorders and neuroinflammation. Mol Biol Rep 2022; 49:8801-8813. [PMID: 36002654 DOI: 10.1007/s11033-022-07730-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Saikosaponin A (SSA) and albiflorin (AF) are major bioactive compounds of Radix Bupleuri and Radix Paeoniae alba respectively, which possess antidepressant effects in pharmacological experiments. However, whether SSA and AF have synergistic neuroprotective effects and the synergistic mechanisms are still unknown. METHODS AND RESULTS The corticosterone-induced PC12 cells apoptosis model was employed to assess the neuroprotective effects of SSA and AF, and the synergistic effect was analyzed using three mathematical models. Meanwhile, cell metabolomics was used to detect the effects on metabolite regulation of SSA and AF. Furthermore, the key metabolites, metabolic enzymes, and cellular markers were verified by ELISA and Western blotting. The results showed that the combination of SSA and AF has a synergistic neuroprotective effect. Besides, the combination could regulate more metabolites than a single agent and possessed a stronger adjustment effect on metabolites. The TCA cycle was regulated by SSA and AF via improving mitochondrial function. The purine metabolism was regulated by SSA via inhibition xanthine oxidase activity and the glutamate metabolism was regulated by AF via inhibition glutaminase activity. Moreover, the oxidative stress induced by the purine metabolism was attenuated by SSA via a reduction in the ROS level. Additionally, the inflammation induced by the oxidative stress was attenuated by the SSA and AF via inhibition of the NLRP3 protein expression. CONCLUSIONS This study for the first time demonstrated the synergistic neuroprotective effects of SSA and AF, and the synergistic mechanisms were involved in metabolic disorders regulation and neuroinflammation inhibition.
Collapse
Affiliation(s)
- Xiao Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China
| | - Ruihong Hou
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.
- Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China.
| | - Yanfei Wu
- Department of Traditional Chinese Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xingkang Wu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China
| | - Junsheng Tian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China
| | - Xiaoxia Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China
| | - Guanhua Du
- Institute of Material Medical, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuzhi Zhou
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China
| |
Collapse
|
10
|
Reyad-ul-Ferdous M, Abdalla M, Xiaoling L, Bian W, Xie J, Song Y. Epigenetic drug (XL019) JAK2 inhibitor increases mitochondrial function in brown adipocyte by upregulating mitochondrial uncoupling protein 1 (UCP1), screening of epigenetic drug libraries, cell viability, and in-silico study. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
11
|
Glycyrrhizin (Glycyrrhizic Acid) HMGB1 (high mobility group box 1) inhibitor upregulate mitochondrial function in adipocyte, cell viability and in-silico Study. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Cui HR, Zhang JY, Cheng XH, Zheng JX, Zhang Q, Zheng R, You LZ, Han DR, Shang HC. Immunometabolism at the service of traditional Chinese medicine. Pharmacol Res 2022; 176:106081. [PMID: 35033650 DOI: 10.1016/j.phrs.2022.106081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022]
Abstract
To enhance therapeutic efficacy and reduce adverse effects, ancient practitioners of traditional Chinese medicine (TCM) prescribe combinations of plant species/animal species and minerals designated "TCM formulae" developed based on TCM theory and clinical experience. TCM formulae have been shown to exert curative effects on complex diseases via immune regulation but the underlying mechanisms remain unknown at present. Considerable progress in the field of immunometabolism, referring to alterations in the intracellular metabolism of immune cells that regulate their function, has been made over the past decade. The core context of immunometabolism is regulation of the allocation of metabolic resources supporting host defense and survival, which provides a critical additional dimension and emerging insights into how the immune system and metabolism influence each other during disease progression. This review summarizes research findings on the significant association between the immune function and metabolic remodeling in health and disease as well as the therapeutic modulatory effects of TCM formulae on immunometabolism. Progressive elucidation of the immunometabolic mechanisms involved during the course of TCM treatment continues to aid in the identification of novel potential targets against pathogenicity. In this report, we have provided a comprehensive overview of the benefits of TCM based on regulation of immunometabolism that are potentially applicable for the treatment of modern diseases.
Collapse
Affiliation(s)
- He-Rong Cui
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ji-Yuan Zhang
- Senior Department of Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China
| | - Xue-Hao Cheng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jia-Xin Zheng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qi Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Rui Zheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Liang-Zhen You
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Dong-Ran Han
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hong-Cai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
13
|
Pharmacological potential of ferulic acid for the treatment of metabolic diseases and its mechanism of action: A review. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.4.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Li X, Qin X, Tian J, Gao X, Wu X, Du G, Zhou Y. Liquiritin protects PC12 cells from corticosterone-induced neurotoxicity via regulation of metabolic disorders, attenuation ERK1/2-NF-κB pathway, activation Nrf2-Keap1 pathway, and inhibition mitochondrial apoptosis pathway. Food Chem Toxicol 2020; 146:111801. [PMID: 33035630 DOI: 10.1016/j.fct.2020.111801] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Liquiritin, a flavone derived from the medicine food homology plant liquorice, possesses neuroprotective. However, the neuroprotective mechanism is not clear. In this study, metabolomics based LC-MS was performed to discover the metabolite changes in PC12 cells treated with corticosterone-induced neurotoxicity after liquiritin treatment. A total of 30 metabolites were identified as differential metabolites. Among them, 11 metabolites were regulated by liquiritin, and involved in the D-glutamine and D-glutamate metabolism, and glutathione metabolism, etc. Based on the results of metabolomics, three cell signaling pathways related to these metabolic pathways were verified. The results showed that the ERK1/2-NF-κB pathway related to the D-glutamine and D-glutamate metabolism was attenuated by liquiritin via down-regulation phospho-ERK1/2, phospho-IκBα, phospho-NF-κB protein expression levels. Furthermore, the Nrf2-Keap1 pathway related to glutathione metabolism was activated by liquiritin via up-regulation Nrf2, Keap1, HO-1, NQO1 protein expression levels, and increased SOD, CAT, GSH-PX enzyme activity, thus exerting antioxidant activity. Additionally, liquiritin inhibited the mitochondrial apoptosis by decreasing the Ca2+ concentration, improving MMP, up-regulating Bcl-2, and down-regulating Bax, cytochrome C, cleaved-Caspase-3 expression levels. These results suggest that the neuroprotective mechanisms of liquiritin are connected to the regulation of metabolic disorders, activation Nrf2/Keap1 pathway, attenuation ERK1/2/NF-κB pathway, and inhibition mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Xiao Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China; Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China.
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China; Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China.
| | - Junsheng Tian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China; Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China.
| | - Xiaoxia Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China; Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China.
| | - Xingkang Wu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China; Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China.
| | - Guanhua Du
- Institute of Material Medical, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Yuzhi Zhou
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China; Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China.
| |
Collapse
|