1
|
Wang M, Wu W, Lu J, Lu R, Min L, Song A, Zhao B, Li Y, Xie K, Gu L. Mitochondrial-Derived Signaling Mediates Differentiation of Parietal Epithelial Cells into Podocytes. Antioxid Redox Signal 2024. [PMID: 39212658 DOI: 10.1089/ars.2024.0580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Aims: Parietal epithelial cells (PECs) are potential stem cells within the glomerulus, migrating into site of podocyte loss to differentiate into podocytes. Little is known about the mechanism mediating differentiation of PECs into podocytes. Results: In vitro differentiation of PECs into podocytes led to upregulation of podocyte markers such as Wilms' tumor gene 1 (WT-1), Forkhead box C1 (FOXC1), synaptopodin and podocin, accompanied by increased mitochondrial abundance. Preincubation with a mitochondrial reactive oxygen species (ROS) inhibitor prevented all these events in PECs. In vivo, adriamycin (ADR)-treated mice exhibited albuminuria, decreased WT1 positive cells, and claudin-1 expressed in glomerular capillary tuft, as well as peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) overproduction in PECs. Expression of the ROS-related molecule nuclear factor erythroid 2-related factor 2 (Nrf2) and its target protein Brahma-related gene 1 (Brg1) increased during differentiation of PECs into podocytes. Suppressing Nrf2 or Brg1 reduced the differentiation of PECs, whereas overexpression had the opposite effect. Brg1 directly regulated WT-1 transcription in PECs. Activation of Nrf2 with bardoxolone-methyl (CDDO-Me) resulted in less proteinuria and more WT1 positive cells in ADR mice. PECs conditional human Nrf2 knock-in mice showed increased WT1 cell numbers. Conclusion: It concluded that mitochondria-derived ROS mediated differentiation of PECs into podocytes via Nrf2 and Brg1 signaling.
Collapse
Affiliation(s)
- Minzhou Wang
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Renji Hospital, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wangshu Wu
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Renji Hospital, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayue Lu
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Renji Hospital, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renhua Lu
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Renji Hospital, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lulin Min
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Renji Hospital, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ahui Song
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Renji Hospital, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingru Zhao
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Renji Hospital, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Li
- Department of Nephrology, Shanghai Jiading District Central Hospital, Shanghai, China
| | - Kewei Xie
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Renji Hospital, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Leyi Gu
- Department of Nephrology, Molecular Cell Laboratory for Kidney Disease, Renji Hospital, Shanghai Peritoneal Dialysis Research Center, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Nephrology, Shanghai Jiading District Central Hospital, Shanghai, China
| |
Collapse
|
2
|
Liu X, Liu Y, Chen L, Zhang Z, Cui L, Wei T. Loss of pleckstrin homology domain and leucine-rich repeat protein phosphatase 2 has protective effects on high glucose-injured retinal ganglion cells via the effect on the Akt-GSK-3β-Nrf2 pathway. Inflamm Res 2023; 72:373-385. [PMID: 36562794 DOI: 10.1007/s00011-022-01680-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Pleckstrin homology domain and leucine-rich repeat protein phosphatase 2 (PHLPP2) is linked to various pathological states. However, whether PHLPP2 mediates diabetic retinopathy is unaddressed. This work explored the biological function of PHLPP2 in modulating high glucose (HG)-elicited damage of retinal ganglion cells (RGCs), an in vitro model for studying diabetic retinopathy. METHODS Mouse RGCs were treated with HG to establish a cell model. PHLPP2 was silenced by transfecting specific shRNAs targeting PHLPP2. RT-qPCR, immunoblotting, CCK-8 assay, flow cytometry, TUNEL assay, and ELISA were carried out. RESULTS Significant increases in PHLPP2 levels were observed in cultured RGCs exposed to HG. The severe damages evoked by HG to RGCs were remarkably weakened in PHLPP2-silenced RGCs, including improved cell survival, attenuated cell apoptosis, repressed oxidative stress, and prohibited proinflammatory response. The silencing of PHLPP2 strengthened the activation of Nrf2 in HG-treated RGCs via modulation of the Akt-GSK-3β axis. Interruption of the Akt-GSK-3β axis reversed PHLPP2-silencing-elicited Nrf2 activation. The protective effects of PHLPP2 silencing on HG-induced injury of RGCs were diminished by Nrf2 inhibition. CONCLUSIONS The loss of PHLPP2 was beneficial for HG-injured RGCs through the effect on the Akt-GSK-3β-Nrf2 pathway. This work suggests a possible role of PHLPP2 in diabetic retinopathy.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| | - Yong Liu
- The Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, No. 76 Yanta Road, Xi'an, 710061, Shaanxi, China.
| | - Li Chen
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Zhichao Zhang
- The Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, No. 76 Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Lijun Cui
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Ting Wei
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| |
Collapse
|
3
|
Wang XJ, Zhang D, Yang YT, Li XY, Li HN, Zhang XP, Long JY, Lu YQ, Liu L, Yang G, Liu J, Hong J, Wu HG, Ma XP. Suppression of microRNA-222-3p ameliorates ulcerative colitis and colitis-associated colorectal cancer to protect against oxidative stress via targeting BRG1 to activate Nrf2/HO-1 signaling pathway. Front Immunol 2023; 14:1089809. [PMID: 36776858 PMCID: PMC9911687 DOI: 10.3389/fimmu.2023.1089809] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Oxidative stress is an important pathogenic factor in ulcerative colitis (UC) and colitis-associated colorectal cancer (CAC), further impairing the entire colon. Intestinal epithelial cells (IECs) are crucial components of innate immunity and play an important role in maintaining intestinal barrier function. Recent studies have indicated that microRNA-222-3p (miR-222-3p) is increased in colon of UC and colorectal cancer (CRC) patients, and miR-222-3p is a crucial regulator of oxidative stress. However, whether miR-222-3p influences IEC oxidative stress in UC and CAC remains unknown. This study investigated the effect of miR-222-3p on the regulation of IEC oxidative stress in UC and CAC. An in vitro inflammation model was established in NCM460 colonic cells, mouse UC and CAC models were established in vivo, and IECs were isolated. The biological role and mechanism of miR-222-3p-mediated oxidative stress in UC and CAC were determined. We demonstrated that miR-222-3p expression was notably increased in dextran sulfate sodium (DSS)-induced NCM460 cells and IECs from UC and CAC mice. In vitro, these results showed that the downregulation of miR-222-3p reduced oxidative stress, caspase-3 activity, IL-1β and TNF-α in DSS-induced NCM460 cells. We further identified BRG1 as the target gene of miR-222-3p, and downregulating miR-222-3p alleviated DSS-induced oxidative injury via promoting BRG1-mediated activation Nrf2/HO-1 signaling in NCM460 cells. The in vivo results demonstrated that inhibiting miR-222-3p in IECs significantly relieved oxidative stress and inflammation in the damaged colons of UC and CAC mice, as evidenced by decreases in ROS, MDA, IL-1β and TNF-α levels and increases in GSH-Px levels. Our study further demonstrated that inhibiting miR-222-3p in IECs attenuated oxidative damage by targeting BRG1 to activate the Nrf2/HO-1 signaling. In summary, inhibiting miR-222-3p in IECs attenuates oxidative stress by targeting BRG1 to activate the Nrf2/HO-1 signaling, thereby reducing colonic inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Xue-Jun Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Dan Zhang
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-Ting Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Ying Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Na Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Peng Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun-Yi Long
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun-Qiong Lu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Liu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Yang
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Liu
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jue Hong
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huan-Gan Wu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Peng Ma
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Ren J, Zhang S, Pan Y, Jin M, Li J, Luo Y, Sun X, Li G. Diabetic retinopathy: Involved cells, biomarkers, and treatments. Front Pharmacol 2022; 13:953691. [PMID: 36016568 PMCID: PMC9396039 DOI: 10.3389/fphar.2022.953691] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic retinopathy (DR), a leading cause of vision loss and blindness worldwide, is caused by retinal neurovascular unit dysfunction, and its cellular pathology involves at least nine kinds of retinal cells, including photoreceptors, horizontal and bipolar cells, amacrine cells, retinal ganglion cells, glial cells (Müller cells, astrocytes, and microglia), endothelial cells, pericytes, and retinal pigment epithelial cells. Its mechanism is complicated and involves loss of cells, inflammatory factor production, neovascularization, and BRB impairment. However, the mechanism has not been completely elucidated. Drug treatment for DR has been gradually advancing recently. Research on potential drug targets relies upon clear information on pathogenesis and effective biomarkers. Therefore, we reviewed the recent literature on the cellular pathology and the diagnostic and prognostic biomarkers of DR in terms of blood, protein, and clinical and preclinical drug therapy (including synthesized molecules and natural molecules). This review may provide a theoretical basis for further DR research.
Collapse
Affiliation(s)
- Jiahui Ren
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Kunming, China
| | - Shuxia Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Yunfeng Pan
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Meiqi Jin
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Jiaxin Li
- Yunnan Key Laboratory of Southern Medicine Utilization, Kunming, China
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun , ; Guang Li,
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun , ; Guang Li,
| | - Guang Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Kunming, China
- *Correspondence: Yun Luo, ; Xiaobo Sun , ; Guang Li,
| |
Collapse
|
5
|
Jiang QY, Lin ZL, Su ZW, Li S, Li J, Guan S, Ling Y, Zhang L. Peptide identification of hepatocyte growth-promoting factor and its function in cytoprotection and promotion of liver cell proliferation through the JAK2/STAT3/c-MYC pathway. Eur J Pharmacol 2022; 920:174832. [DOI: 10.1016/j.ejphar.2022.174832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/03/2022]
|
6
|
Carpi-Santos R, de Melo Reis RA, Gomes FCA, Calaza KC. Contribution of Müller Cells in the Diabetic Retinopathy Development: Focus on Oxidative Stress and Inflammation. Antioxidants (Basel) 2022; 11:617. [PMID: 35453302 PMCID: PMC9027671 DOI: 10.3390/antiox11040617] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
Diabetic retinopathy is a neurovascular complication of diabetes and the main cause of vision loss in adults. Glial cells have a key role in maintenance of central nervous system homeostasis. In the retina, the predominant element is the Müller cell, a specialized cell with radial morphology that spans all retinal layers and influences the function of the entire retinal circuitry. Müller cells provide metabolic support, regulation of extracellular composition, synaptic activity control, structural organization of the blood-retina barrier, antioxidant activity, and trophic support, among other roles. Therefore, impairments of Müller actions lead to retinal malfunctions. Accordingly, increasing evidence indicates that Müller cells are affected in diabetic retinopathy and may contribute to the severity of the disease. Here, we will survey recently described alterations in Müller cell functions and cellular events that contribute to diabetic retinopathy, especially related to oxidative stress and inflammation. This review sheds light on Müller cells as potential therapeutic targets of this disease.
Collapse
Affiliation(s)
- Raul Carpi-Santos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (R.C.-S.); (F.C.A.G.)
| | - Ricardo A. de Melo Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Flávia Carvalho Alcantara Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (R.C.-S.); (F.C.A.G.)
| | - Karin C. Calaza
- Instituto de Biologia, Departamento de Neurobiologia, Universidade Federal Fluminense, Niteroi 24210-201, RJ, Brazil
| |
Collapse
|
7
|
Zhang S, Pan C, Shang Q, Wang W, Hu T, Liu P, Chen S, Wang J, Fang Q. Overexpressed mitogen-and stress-activated protein kinase 1 promotes the resistance of cytarabine in acute myeloid leukemia through brahma related gene 1-mediated upregulation of heme oxygenase-1. Eur J Pharmacol 2022; 917:174722. [PMID: 34953799 DOI: 10.1016/j.ejphar.2021.174722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 11/27/2022]
Abstract
Drug resistance remains a major challenge in the current treatment of acute myeloid leukemia (AML). Finding specific molecules responsible for mediating drug resistance in AML contributes to the effective reversal of drug resistance. Recent studies have found that mitogen- and stress-activated protein kinase 1 (MSK1) is of great significance in the occurrence and development of tumors. In the current study, MSK1 was found highly expressed in drug-resistant AML patients. Heme oxygenase-1 (HO-1) has been previously validated to be associated with drug resistance in AML. Our study revealed a positive correlation between MSK1 and HO-1 in patient samples. In vitro experiments revealed that the sensitivity of AML cell lines THP-1 and U937 to cytarabine (Ara-C) significantly decreased after overexpression of MSK1. Meanwhile, downregulation of MSK1 by siRNA transfection or treatment of pharmacological inhibitor SB-747651A in AML cell lines and primary AML cells enhanced the sensitivity to Ara-C. Flow cytometry analysis showed that downregulation of MSK1 in AML cells accelerated apoptosis and arrested cell cycle progression in G0/G1 phase. However, the increased cell sensitivity induced by MSK1 downregulation was reversed by the induction of HO-1 inducer Hemin. Through further mechanism exploration, real-time PCR, immunofluorescence and Western blot analysis demonstrated that brahma related gene 1 (BRG1) was involved in the regulatory effect of MSK1 on HO-1. High expression of MSK1 could promote the resistance of AML through BRG1-mediated upregulation of HO-1. Downregulation of MSK1 enhanced the sensitivity of AML cells to Ara-C. Our findings provide novel ideas for developing effective anti-AML targets.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Cytarabine/pharmacology
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Heme Oxygenase-1/genetics
- Heme Oxygenase-1/metabolism
- Up-Regulation/drug effects
- Ribosomal Protein S6 Kinases, 90-kDa/metabolism
- Ribosomal Protein S6 Kinases, 90-kDa/genetics
- Apoptosis/drug effects
- Apoptosis/genetics
- Male
- Cell Line, Tumor
- Female
- U937 Cells
- Middle Aged
- THP-1 Cells
- Gene Expression Regulation, Leukemic/drug effects
- Adult
Collapse
Affiliation(s)
- Siyu Zhang
- College of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China; Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China
| | - Chengyun Pan
- Department of Haematology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Qin Shang
- College of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China
| | - Weili Wang
- Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China; Department of Haematology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Tianzhen Hu
- College of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ping Liu
- Department of Haematology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Siyu Chen
- Department of Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jishi Wang
- Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China; Department of Haematology, Affiliated Hospital of Guizhou Medical University, Guizhou, China.
| | - Qin Fang
- College of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China; Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
8
|
Albert-Garay JS, Riesgo-Escovar JR, Salceda R. High glucose concentrations induce oxidative stress by inhibiting Nrf2 expression in rat Müller retinal cells in vitro. Sci Rep 2022; 12:1261. [PMID: 35075205 PMCID: PMC8975969 DOI: 10.1038/s41598-022-05284-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/31/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic retinopathy (DR) is a complication of diabetes. Several studies have implicated oxidative stress as a fundamental factor in the progression of the disease. The nuclear factor erythroid-2-related factor 2 (Nrf2) is one of the main regulators of redox homeostasis. Glia Müller cells (MC) maintain the structural and functional stability of the retina. The objective of this study was to evaluate the effect of high glucose concentrations on reactive oxygen species (ROS) production and Nrf2 expression levels in rat MC. MC were incubated with normal (NG; 5 mM) or high glucose (HG; 25 mM) for different times. Incubation with HG increased ROS levels from 12 to 48 h but did not affect cell viability. However, exposure to 3 h of HG caused a transient decrease Nrf2 levels. At that time, we also observed a decrease in the mRNA expression of Nrf2 target genes, glutathione levels, and catalase activity, all of which increased significantly beyond initial levels after 48 h of incubation. HG exposure leads to an increase in the p65 subunit of nuclear factor-κB (NF-kB) levels, and its target genes. These results suggest that high glucose concentrations lead to alteration of the redox regulatory capacity of Nrf2 mediated by NF-kB regulation.
Collapse
Affiliation(s)
- Jesús Silvestre Albert-Garay
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, CDMX, Mexico.
| | - Juan Rafael Riesgo-Escovar
- Instituto de Neurobiología, Campus UNAM Juriquilla, Universidad Nacional Autónoma de México, 76226, Querétaro, Mexico
| | - Rocío Salceda
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, CDMX, Mexico
| |
Collapse
|
9
|
Zhao Z, Lu Y, Wang H, Gu X, Zhu L, Guo H, Li N. ALK7 Inhibition Protects Osteoblast Cells Against High Glucoseinduced ROS Production via Nrf2/HO-1 Signaling Pathway. Curr Mol Med 2022; 22:354-364. [PMID: 34126915 DOI: 10.2174/1566524021666210614144337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Some studies demonstrated that under high-glucose (HG) condition, osteoblasts develop oxidative stress, which will impair their normal functions. The effects of activin receptor-like kinase 7 (ALK7) silencing on HG-induced osteoblasts remained unclear. OBJECTIVE The aim of this study was to explore the effect of ALK7 on HG-induced osteoblasts. METHODS MC3T3-E1 cells were treated with different concentrations of HG (0, 50, 100, 200 and 300mg/dL), and the cell viability was detected using cell counting kit-8 (CCK-8). HG-treated MC3T3-E1 cells were transfected with siALK7 or ALK7 overexpression plasmid or siNrf2, and then the viability and apoptosis were detected by CCK-8 and flow cytometry. The levels of Reactive Oxygen Species (ROS), collagen I and calcification nodule were determined by oxidative stress kits, Enzyme-linked immunosorbent assay and Alizarin red staining. The expressions of NF-E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and osteoblast-associated genes were determined by quantitative real-time PCR (qRT-PCR) and Western blot. RESULTS Cell viability was reduced with HG treatment. Silencing ALK7 inhibited the effect of HG on increasing cell apoptosis and ROS production, reduced cell viability, mineralized nodules, and downregulated collagen I and osteoblast-associated genes expression in MC3T3-E1 cells. ALK7 silencing activated the Nrf2/HO-1 signaling pathway by affecting expressions of HO-1 and Nrf2. ALK7 overexpression had the opposite effects. In addition, siNrf2 partially reversed the effects of ALK7 silencing on HG-induced MC3T3-E1 cells. CONCLUSION ALK7 silencing protected osteoblasts under HG condition possibly through activating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Zhen Zhao
- Department of Geriatrics, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, 100050, China
| | - Yu Lu
- Department of Geriatrics, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, 100050, China
| | - Huan Wang
- Department of Geriatrics, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, 100050, China
| | - Xiang Gu
- Department of Geriatrics, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, 100050, China
| | - Luting Zhu
- Department of Geriatrics, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, 100050, China
| | - Hong Guo
- Department of Geriatrics, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, 100050, China
| | - Nan Li
- Department of Endocrinology, The Second Medical Center & National Clinical Research Center, Chinese PLA General Hospital, Haidian District, Beijing, 100853, China
| |
Collapse
|
10
|
Yan H, Xu F, Xu J, Song MA, Wang K, Wang L. Activation of Akt-dependent Nrf2/ARE pathway by restoration of Brg-1 remits high glucose-induced oxidative stress and ECM accumulation in podocytes. J Biochem Mol Toxicol 2020; 35:e22672. [PMID: 33270355 DOI: 10.1002/jbt.22672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/29/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022]
Abstract
Brahma-related gene 1 (Brg-1) is perceived as a cytoprotective protein due to its role in alleviating oxidative stress and apoptosis. Our study aimed to explore the role and mechanism of Brg-1 in high glucose (HG)-stimulated podocytes. The HG exposure downregulated Brg-1 and inactivated the protein kinase B (Akt) pathway in podocytes. Restoration of Brg-1 inhibited HG-induced viability reduction of podocytes. The HG-induced increase of reactive oxygen species and malondialdehyde levels and decrease of superoxide dismutase activity in podocytes were reversed by the Brg-1 overexpression. The Brg-1 overexpression terminated the HG-induced production of fibronectin, collagen IV, transforming growth factor-β1, and connective tissue growth factor. In addition, the Brg-1 overexpression activated Akt-dependent nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling in HG-stimulated podocytes. However, inhibition of the Akt pathway or Nrf2 silencing counteracted the protective effects of Brg-1 in HG-stimulated podocytes. In conclusion, the Brg-1 overexpression suppressed HG-induced oxidative stress and extracellular matrix accumulation by activation of Akt-dependent Nrf2/ARE signaling in podocytes.
Collapse
Affiliation(s)
- Hao Yan
- Department of Nephrology, Nanyang First People's Hospital, Nanyang, China
| | - Fei Xu
- Department of ICU, Lianshui County People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huai'an, China
| | - Jun Xu
- Department of Neonatology, Nanyang First People's Hospital, Nanyang, China
| | - Ming-Ai Song
- Department of Nephrology, Nanyang First People's Hospital, Nanyang, China
| | - Kai Wang
- Department of Nephrology, Nanyang First People's Hospital, Nanyang, China
| | - Lulu Wang
- Department of Emergency, The Second People's Hospital of Huai'an, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
11
|
Protective Effect of Simplicillium sp. Ethyl Acetate Extract against High Glucose-Induced Oxidative Stress in HUVECs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5172765. [PMID: 32879632 PMCID: PMC7448235 DOI: 10.1155/2020/5172765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/15/2020] [Accepted: 07/11/2020] [Indexed: 12/30/2022]
Abstract
This study aimed at investigating the cytoprotective effect of an ethyl acetate extract of insect fungi against high glucose- (HG-) induced oxidative damage in human umbilical vein endothelial cells (HUVECs). An insect fungus strain termed CH180672 (CH) was found for protecting HUVECs from HG-induced damage. In this study, CH was identified as Simplicillium sp. based on a phylogenetic analysis of ITS-rDNA sequences. Ethyl acetate extract (EtOAc) of this strain (CH) was subjected to the following experiments. Cell viability was examined with the MTT method. To evaluate the protection of CH, intracellular reactive oxygen species (ROS), malondialdehyde (MDA) levels, and the activities of antioxidant enzymes were measured and the expression of oxidation-associated proteins was assessed. In the current study, it has been found that CH can increase the survival rate of HUVECs induced by HG. Additionally, we found that HG-induced nuclear factor-erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) signal decreased and increased the intracellular ROS and MDA generation in HUVECs. However, CH treatment strongly promoted the translocation of Nrf2 and its transregulation on HO-1 and ultimately inhibited the high level of ROS and MDA induced by HG. The regulatory ability of CH was similar to Nrf2 agonist bardoxolone, while the effect was abolished by ML385, suggesting that Nrf2 mediated the inhibition of CH on HG-induced oxidative stress in HUVECs. Taken together, CH can improve HG-induced oxidative damage of HUVECs, and its mechanism may be related to the regulation of the Nrf2/HO-1 pathway.
Collapse
|