1
|
Aravindraja C, Jeepipalli S, Duncan WD, Vekariya KM, Rahaman SO, Chan EKL, Kesavalu L. Streptococcus gordonii Supragingival Bacterium Oral Infection-Induced Periodontitis and Robust miRNA Expression Kinetics. Int J Mol Sci 2024; 25:6217. [PMID: 38892405 PMCID: PMC11172800 DOI: 10.3390/ijms25116217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Streptococcus gordonii (S. gordonii, Sg) is one of the early colonizing, supragingival commensal bacterium normally associated with oral health in human dental plaque. MicroRNAs (miRNAs) play an important role in the inflammation-mediated pathways and are involved in periodontal disease (PD) pathogenesis. PD is a polymicrobial dysbiotic immune-inflammatory disease initiated by microbes in the gingival sulcus/pockets. The objective of this study is to determine the global miRNA expression kinetics in S. gordonii DL1-infected C57BL/6J mice. All mice were randomly divided into four groups (n = 10 mice/group; 5 males and 5 females). Bacterial infection was performed in mice at 8 weeks and 16 weeks, mice were euthanized, and tissues harvested for analysis. We analyzed differentially expressed (DE) miRNAs in the mandibles of S. gordonii-infected mice. Gingival colonization/infection by S. gordonii and alveolar bone resorption (ABR) was confirmed. All the S. gordonii-infected mice at two specific time points showed bacterial colonization (100%) in the gingival surface, and a significant increase in mandible and maxilla ABR (p < 0.0001). miRNA profiling revealed 191 upregulated miRNAs (miR-375, miR-34b-5p) and 22 downregulated miRNAs (miR-133, miR-1224) in the mandibles of S. gordonii-infected mice at the 8-week mark. Conversely, at 16 weeks post-infection, 10 miRNAs (miR-1902, miR-203) were upregulated and 32 miRNAs (miR-1937c, miR-720) were downregulated. Two miRNAs, miR-210 and miR-423-5p, were commonly upregulated, and miR-2135 and miR-145 were commonly downregulated in both 8- and 16-week-infected mice mandibles. Furthermore, we employed five machine learning (ML) algorithms to assess how the number of miRNA copies correlates with S. gordonii infections in mice. In the ML analyses, miR-22 and miR-30c (8-week), miR-720 and miR-339-5p (16-week), and miR-720, miR-22, and miR-339-5p (combined 8- and 16-week) emerged as the most influential miRNAs.
Collapse
Affiliation(s)
- Chairmandurai Aravindraja
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
| | - Syam Jeepipalli
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
| | - William D. Duncan
- Department of Community Dentistry and Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| | - Krishna Mukesh Vekariya
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
| | - Shaik O. Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA;
| | - Edward K. L. Chan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| | - Lakshmyya Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
2
|
Li X, Wang Z, Chen N. Perspective and Therapeutic Potential of the Noncoding RNA-Connexin Axis. Int J Mol Sci 2024; 25:6146. [PMID: 38892334 PMCID: PMC11173347 DOI: 10.3390/ijms25116146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Noncoding RNAs (ncRNAs) are a class of nucleotide sequences that cannot be translated into peptides. ncRNAs can function post-transcriptionally by splicing complementary sequences of mRNAs or other ncRNAs or by directly engaging in protein interactions. Over the past few decades, the pervasiveness of ncRNAs in cell physiology and their pivotal roles in various diseases have been identified. One target regulated by ncRNAs is connexin (Cx), a protein that forms gap junctions and hemichannels and facilitates intercellular molecule exchange. The aberrant expression and misdistribution of connexins have been implicated in central nervous system diseases, cardiovascular diseases, bone diseases, and cancer. Current databases and technologies have enabled researchers to identify the direct or indirect relationships between ncRNAs and connexins, thereby elucidating their correlation with diseases. In this review, we selected the literature published in the past five years concerning disorders regulated by ncRNAs via corresponding connexins. Among it, microRNAs that regulate the expression of Cx43 play a crucial role in disease development and are predominantly reviewed. The distinctive perspective of the ncRNA-Cx axis interprets pathology in an epigenetic manner and is expected to motivate research for the development of biomarkers and therapeutics.
Collapse
Affiliation(s)
| | - Zhenzhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China;
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China;
| |
Collapse
|
3
|
Asjad E, Dobrzynski H. MicroRNAs: Midfielders of Cardiac Health, Disease and Treatment. Int J Mol Sci 2023; 24:16207. [PMID: 38003397 PMCID: PMC10671258 DOI: 10.3390/ijms242216207] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that play a role in post-transcriptional gene regulation. It is generally accepted that their main mechanism of action is the negative regulation of gene expression, through binding to specific regions in messenger RNA (mRNA) and repressing protein translation. By interrupting protein synthesis, miRNAs can effectively turn genes off and influence many basic processes in the body, such as developmental and apoptotic behaviours of cells and cardiac organogenesis. Their importance is highlighted by inhibiting or overexpressing certain miRNAs, which will be discussed in the context of coronary artery disease, atrial fibrillation, bradycardia, and heart failure. Dysregulated levels of miRNAs in the body can exacerbate or alleviate existing disease, and their omnipresence in the body makes them reliable as quantifiable markers of disease. This review aims to provide a summary of miRNAs as biomarkers and their interactions with targets that affect cardiac health, and intersperse it with current therapeutic knowledge. It intends to succinctly inform on these topics and guide readers toward more comprehensive works if they wish to explore further through a wide-ranging citation list.
Collapse
Affiliation(s)
- Emman Asjad
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| | - Halina Dobrzynski
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
- Department of Anatomy, Jagiellonian University Medical College, 31-034 Krakow, Poland
| |
Collapse
|
4
|
Bu Y, Peng M, Tang X, Xu X, Wu Y, Chen AF, Yang X. Protective effects of metformin in various cardiovascular diseases: Clinical evidence and AMPK-dependent mechanisms. J Cell Mol Med 2022; 26:4886-4903. [PMID: 36052760 PMCID: PMC9549498 DOI: 10.1111/jcmm.17519] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Metformin, a well-known AMPK agonist, has been widely used as the first-line drug for treating type 2 diabetes. There had been a significant concern regarding the use of metformin in people with cardiovascular diseases (CVDs) due to its potential lactic acidosis side effect. Currently growing clinical and preclinical evidence indicates that metformin can lower the incidence of cardiovascular events in diabetic patients or even non-diabetic patients beyond its hypoglycaemic effects. The underlying mechanisms of cardiovascular benefits of metformin largely involve the cellular energy sensor, AMPK, of which activation corrects endothelial dysfunction, reduces oxidative stress and improves inflammatory response. In this minireview, we summarized the clinical evidence of metformin benefits in several widely studied cardiovascular diseases, such as atherosclerosis, ischaemic/reperfusion injury and arrhythmia, both in patients with or without diabetes. Meanwhile, we highlighted the potential AMPK-dependent mechanisms in in vitro and/or in vivo models.
Collapse
Affiliation(s)
- Yizhi Bu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Mei Peng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xinyi Tang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xu Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yifeng Wu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Alex F Chen
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
5
|
The role of MicroRNA networks in tissue-specific direct and indirect effects of metformin and its application. Biomed Pharmacother 2022; 151:113130. [PMID: 35598373 DOI: 10.1016/j.biopha.2022.113130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/20/2022] Open
Abstract
Metformin is a first-line oral antidiabetic agent that results in clear benefits in relation to glucose metabolism and diabetes-related complications. The specific regulatory details and mechanisms underlying these benefits are still unclear and require further investigation. There is recent mounting evidence that metformin has pleiotropic effects on the target tissue development in metabolic organs, including adipose tissue, the gastrointestinal tract and the liver. The mechanism of actions of metformin are divided into direct effects on target tissues and indirect effects via non-targeted tissues. MicroRNAs (miRNAs) are a class of endogenous, noncoding, negative gene regulators that have emerged as important regulators of a number of diseases, including type 2 diabetes mellitus (T2DM). Metformin is involved in many aspects of miRNA regulation, and metformin treatment in T2DM should be associated with other miRNA targets. A large number of miRNAs regulation by metformin in target tissues with either direct or indirect effects has gradually been revealed in the context of numerous diseases and has gradually received increasing attention. This paper thoroughly reviews the current knowledge about the role of miRNA networks in the tissue-specific direct and indirect effects of metformin. Furthermore, this knowledge provides a novel theoretical basis and suggests therapeutic targets for the clinical treatment of metformin and miRNA regulators in the prevention and treatment of cancer, cardiovascular disorders, diabetes and its complications.
Collapse
|
6
|
Alimoradi N, Firouzabadi N, Fatehi R. Metformin and insulin-resistant related diseases: Emphasis on the role of microRNAs. Biomed Pharmacother 2021; 139:111662. [PMID: 34243629 DOI: 10.1016/j.biopha.2021.111662] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
Metformin is one of the most prescribed drugs in type II diabetes (T2DM) which has recently found new applications in the prevention and treatment of various illnesses, from metabolic disorders to cardiovascular and age-related diseases. Metformin improves insulin resistance (IR) by modulating metabolic mechanisms and mitochondrial biogenesis. Alternation of microRNAs (miRs) in the treatment of IR-related illnesses has been observed by metformin therapy. MiRs are small non-coding RNAs that play important roles in RNA silencing, targeting the 3'untranslated region (3'UTR) of most mRNAs and inhibiting the translation of related proteins. As a result, their dysregulation is associated with many diseases. Metformin may alter miRs levels in the treatment of various diseases by AMPK-dependent or AMPK-independent mechanisms. Here, we summarized the therapeutic role of metformin by modifying the aberrant expression of miRs as potential biomarkers or therapeutic targets in diseases in which IR plays a key role.
Collapse
Affiliation(s)
- Nahid Alimoradi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reihaneh Fatehi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Role of MicroRNAs in Human Osteosarcoma: Future Perspectives. Biomedicines 2021; 9:biomedicines9050463. [PMID: 33922820 PMCID: PMC8146779 DOI: 10.3390/biomedicines9050463] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Osteosarcoma (OS) is a rare form of cancer with high death rate but is one of the most frequent forms of bone cancer in children and adolescents. MiRNAs are small endogenous RNAs that regulate gene expression post-transcriptionally. The discovery of miRNAs could allow us to obtain an earlier diagnosis, predict prognosis and chemoresistance, and lead to the discovery of new treatments in different types of tumors, including OS. Despite the fact that there is currently only one clinical trial being carried out on a single miRNA for solid tumors, it is very probable that the number of clinical trials including miRNAs as prognostic and diagnostic biomarkers, as well as potential therapeutic targets, will increase in the near future. This review summarizes the different miRNAs related to OS and their possible therapeutic application.
Collapse
|
8
|
Safa A, Bahroudi Z, Shoorei H, Majidpoor J, Abak A, Taheri M, Ghafouri-Fard S. miR-1: A comprehensive review of its role in normal development and diverse disorders. Biomed Pharmacother 2020; 132:110903. [PMID: 33096351 DOI: 10.1016/j.biopha.2020.110903] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
MicroRNA-1 (miR-1) is a conserved miRNA with high expression in the muscle tissues. In humans, two discrete genes, MIRN1-1 and MIRN1-2 residing on a genomic region on 18q11.2 produce a single mature miRNA which has 21 nucleotides. miR-1 has a regulatory role on a number of genes including heat shock protein 60 (HSP60), Kruppel-like factor 4 (KLF4) and Heart And Neural Crest Derivatives Expressed 2 (HAND2). miR-1 has critical roles in the physiological processes in the smooth and skeletal muscles as well as other tissues, thus being involved in the pathogenesis of a wide range of disorders. Moreover, dysregulation of miR-1 has been noted in diverse types of cancers including gastric, colorectal, breast, prostate and lung cancer. In the current review, we provide the summary of the data regarding the role of this miRNA in the normal development and the pathogenic processes.
Collapse
Affiliation(s)
- Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Department of Medical Genetic, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciecnes, Tehran, Iran.
| |
Collapse
|
9
|
Nantsupawat T, Wongcharoen W, Chattipakorn SC, Chattipakorn N. Effects of metformin on atrial and ventricular arrhythmias: evidence from cell to patient. Cardiovasc Diabetol 2020; 19:198. [PMID: 33234131 PMCID: PMC7687769 DOI: 10.1186/s12933-020-01176-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/15/2020] [Indexed: 12/23/2022] Open
Abstract
Metformin has been shown to have various cardiovascular benefits beyond its antihyperglycemic effects, including a reduction in stroke, heart failure, myocardial infarction, cardiovascular death, and all-cause mortality. However, the roles of metformin in cardiac arrhythmias are still unclear. It has been shown that metformin was associated with decreased incidence of atrial fibrillation in diabetic patients with and without myocardial infarction. This could be due to the effects of metformin on preventing the structural and electrical remodeling of left atrium via attenuating intracellular reactive oxygen species, activating 5′ adenosine monophosphate-activated protein kinase, improving calcium homeostasis, attenuating inflammation, increasing connexin-43 gap junction expression, and restoring small conductance calcium-activated potassium channels current. For ventricular arrhythmias, in vivo reports demonstrated that activation of 5′ adenosine monophosphate-activated protein kinase and phosphorylated connexin-43 by metformin played a key role in ischemic ventricular arrhythmias reduction. However, metformin failed to show anti-ventricular arrhythmia benefits in clinical trials. In this review, in vitro and in vivo reports regarding the effects of metformin on both atrial arrhythmias and ventricular arrhythmias are comprehensively summarized and presented. Consistent and controversial findings from clinical trials are also summarized and discussed. Due to limited numbers of reports, further studies are needed to elucidate the mechanisms and effects of metformin on cardiac arrhythmias. Furthermore, randomized controlled trials are needed to clarify effects of metformin on cardiac arrhythmias in human.
Collapse
Affiliation(s)
- Teerapat Nantsupawat
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Wanwarang Wongcharoen
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Chiang Mai, 50200, Thailand. .,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand. .,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
10
|
Ma Y, Cheng N, Sun J, Lu JX, Abbasi S, Wu G, Lee AS, Sawamura T, Cheng J, Chen CH, Xi Y. Atherogenic L5 LDL induces cardiomyocyte apoptosis and inhibits K ATP channels through CaMKII activation. Lipids Health Dis 2020; 19:189. [PMID: 32825832 PMCID: PMC7441649 DOI: 10.1186/s12944-020-01368-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/11/2020] [Indexed: 12/30/2022] Open
Abstract
Background Cardiac Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation plays a critical role in cardiomyocyte (CM) apoptosis and arrhythmia. Functional ATP-sensitive potassium (KATP) channels are essential for cardiac protection during ischemia. In cultured CMs, L5 low-density lipoprotein (LDL) induces apoptosis and QTc prolongation. L5 is a highly electronegative and atherogenic aberrant form of LDL, and its levels are significantly higher in patients with cardiovascular-related diseases. Here, the role of L5 in cardiac injury was studied by evaluating the effects of L5 on CaMKII activity and KATP channel physiology in CMs. Methods Cultured neonatal rat CMs (NRCMs) were treated with a moderate concentration (ie, 7.5 μg/mL) of L5 or L1 (the least electronegative LDL subfraction). NRCMs were examined for apoptosis and viability, CaMKII activity, and the expression of phosphorylated CaMKIIδ and NOX2/gp91phox. The function of KATP and action potentials (APs) was analyzed by using the patch-clamp technique. Results In NRCMs, L5 but not L1 significantly induced cell apoptosis and reduced cell viability. Furthermore, L5 decreased Kir6.2 expression by more than 50%. Patch-clamp analysis showed that L5 reduced the KATP current (IKATP) density induced by pinacidil, a KATP opener. The partial recovery of the inward potassium current during pinacidil washout was susceptible to subsequent inhibition by the IKATP blocker glibenclamide. Suppression of IKATP by L5 significantly prolonged the AP duration. L5 also significantly increased the activity of CaMKII, the phosphorylation of CaMKIIδ, and the expression of NOX2/gp91phox. L5-induced apoptosis was prevented by the addition of the CaMKII inhibitor KN93 and the reactive oxygen species scavenger Mn (III)TBAP. Conclusions L5 but not L1 induces CM damage through the activation of the CaMKII pathway and increases arrhythmogenicity in CMs by modulating the AP duration. These results help to explain the harmful effects of L5 in cardiovascular-related disease.
Collapse
Affiliation(s)
- Yanzhuo Ma
- Department of Cardiology, Bethune International Peace Hospital, 398 Zhongshan Xilu, Shijiazhuang, 050082, Hebei, China.,Cardiac Electrophysiology Research Laboratory, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA
| | - Nancy Cheng
- Cardiac Electrophysiology Research Laboratory, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA
| | - Junping Sun
- Cardiac Electrophysiology Research Laboratory, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA
| | - Jonathan Xuhai Lu
- Vascular and Medicinal Research, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA.,InVitro Cell Research, LLC, 106 Grand Avenue, Suite 290, Englewood, NJ, 07631, USA
| | - Shahrzad Abbasi
- Molecular Cardiology Research, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, USA
| | - Geru Wu
- Cardiac Electrophysiology Research Laboratory, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA
| | - An-Sheng Lee
- Department of Medicine, Mackay Medical College, No. 46, Section 3, Zhongzheng Road, Sanzhi District, New Taipei City, Taiwan, 252.,Cardiovascular Research Laboratory, China Medical University Hospital, No. 2 Yude Road, North District, Taichung City, Taiwan
| | - Tatsuya Sawamura
- Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, 3-1-1, Asahi, Matsumoto, Nagano, 390-8621, Japan.,Department of Molecular Pathophysiology, Shinshu University School of Medicine, 3 Chome-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Jie Cheng
- Cardiac Electrophysiology Research Laboratory, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA. .,Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, 3-1-1, Asahi, Matsumoto, Nagano, 390-8621, Japan.
| | - Yutao Xi
- Department of Cardiology, Bethune International Peace Hospital, 398 Zhongshan Xilu, Shijiazhuang, 050082, Hebei, China. .,, 6770 Bertner Street, MC 2-255, Houston, TX, 77030, USA.
| |
Collapse
|