1
|
Borgonetti V, Morozzi M, Galeotti N. Neuroinflammation evoked mechanisms for neuropathic itch in the spared nerve injury mouse model of neuropathic pain. Neuropharmacology 2024; 259:110120. [PMID: 39159835 DOI: 10.1016/j.neuropharm.2024.110120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/11/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
A large portion of neuropathic pain suffering patients may also concurrently experience neuropathic itch, with a negative impact on the quality of life. The limited understanding of neuropathic itch and the low efficacy of current anti-itch therapies dictate the urgent need of a better comprehension of molecular mechanisms involved and development of relevant animal models. This study was aimed to characterize the itching phenotype in a model of trauma-induced peripheral neuropathy, the spared nerve injury (SNI), and the molecular events underlying the overlap with the nociceptive behavior. SNI mice developed hyperknesis and spontaneous itch 7-14 days after surgery that was prevented by gabapentin treatment. Itch was associated with pain hypersensitivity, loss of intraepidermal nerve fiber (IENF) density and increased epidermal thickness. In coincidence with the peak of scratching behavior, SNI mice showed a spinal overexpression of IBA1 and GFAP, microglia and astrocyte markers respectively. An increase of the itch neuropeptide B-type natriuretic peptide (BNP) in NeuN+ cells, of its downstream effector interleukin 17 (IL17) along with increased pERK1/2 levels occurred in the spinal cord dorsal horn and DRG. A raise in BNP and IL17 was also detected at skin level. Stimulation of HaCat cells with conditioned medium from BV2-stimulated SH-SY5Y cells produced a dramatic reduction of HaCat cell viability. This study showed that SNI mice might represent a model for neuropathic itch and pain. Collectively, our finding suggest that neuropathic itch might initiate at spinal level, then affecting skin epidermis events, through a glia-mediated neuroinflammation-evoked BNP/IL17 mechanism.
Collapse
Affiliation(s)
- Vittoria Borgonetti
- Department of Neurosciences, Psychology, Drug Research and Child Health (Neurofarba), University of Florence, Viale G. Pieraccini 6, Florence, Italy
| | - Martina Morozzi
- Department of Neurosciences, Psychology, Drug Research and Child Health (Neurofarba), University of Florence, Viale G. Pieraccini 6, Florence, Italy
| | - Nicoletta Galeotti
- Department of Neurosciences, Psychology, Drug Research and Child Health (Neurofarba), University of Florence, Viale G. Pieraccini 6, Florence, Italy.
| |
Collapse
|
2
|
Bush K, Wairkar Y, Tang SJ. Nucleoside Reverse Transcriptase Inhibitors Are the Major Class of HIV Antiretroviral Therapeutics That Induce Neuropathic Pain in Mice. Int J Mol Sci 2024; 25:9059. [PMID: 39201745 PMCID: PMC11354254 DOI: 10.3390/ijms25169059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 09/03/2024] Open
Abstract
The development of combination antiretroviral therapy (cART) has transformed human immunodeficiency virus (HIV) infection from a lethal diagnosis into a chronic disease, and people living with HIV on cART can experience an almost normal life expectancy. However, these individuals often develop various complications that lead to a decreased quality of life, some of the most significant of which are neuropathic pain and the development of painful peripheral sensory neuropathy (PSN). Critically, although cART is thought to induce pain pathogenesis, the relative contribution of different classes of antiretrovirals has not been systematically investigated. In this study, we measured the development of pathological pain and peripheral neuropathy in mice orally treated with distinct antiretrovirals at their translational dosages. Our results show that only nucleoside reverse transcriptase inhibitors (NRTIs), not other types of antiretrovirals such as proteinase inhibitors, non-nucleoside reverse transcriptase inhibitors, integrase strand transfer inhibitors, and CCR5 antagonists, induce pathological pain and PSN. Thus, these findings suggest that NRTIs are the major class of antiretrovirals in cART that promote the development of neuropathic pain. As NRTIs form the essential backbone of multiple different current cART regimens, it is of paramount clinical importance to better understand the underlying mechanism to facilitate the design of less toxic forms of these drugs and/or potential mitigation strategies.
Collapse
Affiliation(s)
- Keegan Bush
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Yogesh Wairkar
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shao-Jun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Stony Brook University Pain and Analgesia Research Center and Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
3
|
Xu S, Li H, Ai Z, Guo R, Cheng H, Wang Y. Exploring viral neuropathic pain: Molecular mechanisms and therapeutic implications. PLoS Pathog 2024; 20:e1012397. [PMID: 39116040 PMCID: PMC11309435 DOI: 10.1371/journal.ppat.1012397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
As the Coronavirus Disease 2019 (COVID-19) pandemic continues, there is a growing concern regarding the relationship between viral infections and neuropathic pain. Chronic neuropathic pain resulting from virus-induced neural dysfunction has emerged as a significant issue currently faced. However, the molecular mechanisms underlying this phenomenon remain unclear, and clinical treatment outcomes are often suboptimal. Therefore, delving into the relationship between viral infections and neuropathic pain, exploring the pathophysiological characteristics and molecular mechanisms of different viral pain models, can contribute to the discovery of potential therapeutic targets and methods, thereby enhancing pain relief and improving the quality of life for patients. This review focuses on HIV-related neuropathic pain (HNP), postherpetic neuralgia (PHN), and neuropathic pain caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections, examining rodent models and relevant cellular molecular pathways. Through elucidating the connection between viral infections and neuropathic pain, it aims to delineate the current limitations and challenges faced by treatments, thereby providing insights and directions for future clinical practice and research.
Collapse
Affiliation(s)
- Songchao Xu
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Huili Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhangran Ai
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ruijuan Guo
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hao Cheng
- Department of Anesthesiology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yun Wang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Ciapała K, Mika J. Advances in Neuropathic Pain Research: Selected Intracellular Factors as Potential Targets for Multidirectional Analgesics. Pharmaceuticals (Basel) 2023; 16:1624. [PMID: 38004489 PMCID: PMC10675751 DOI: 10.3390/ph16111624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Neuropathic pain is a complex and debilitating condition that affects millions of people worldwide. Unlike acute pain, which is short-term and starts suddenly in response to an injury, neuropathic pain arises from somatosensory nervous system damage or disease, is usually chronic, and makes every day functioning difficult, substantially reducing quality of life. The main reason for the lack of effective pharmacotherapies for neuropathic pain is its diverse etiology and the complex, still poorly understood, pathophysiological mechanism of its progression. Numerous experimental studies, including ours, conducted over the last several decades have shown that the development of neuropathic pain is based on disturbances in cell activity, imbalances in the production of pronociceptive factors, and changes in signaling pathways such as p38MAPK, ERK, JNK, NF-κB, PI3K, and NRF2, which could become important targets for pharmacotherapy in the future. Despite the availability of many different analgesics, relieving neuropathic pain is still extremely difficult and requires a multidirectional, individual approach. We would like to point out that an increasing amount of data indicates that nonselective compounds directed at more than one molecular target exert promising analgesic effects. In our review, we characterize four substances (minocycline, astaxanthin, fisetin, and peimine) with analgesic properties that result from a wide spectrum of actions, including the modulation of MAPKs and other factors. We would like to draw attention to these selected substances since, in preclinical studies, they show suitable analgesic properties in models of neuropathy of various etiologies, and, importantly, some are already used as dietary supplements; for example, astaxanthin and fisetin protect against oxidative stress and have anti-inflammatory properties. It is worth emphasizing that the results of behavioral tests also indicate their usefulness when combined with opioids, the effectiveness of which decreases when neuropathy develops. Moreover, these substances appear to have additional, beneficial properties for the treatment of diseases that frequently co-occur with neuropathic pain. Therefore, these substances provide hope for the development of modern pharmacological tools to not only treat symptoms but also restore the proper functioning of the human body.
Collapse
Affiliation(s)
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31-343 Kraków, Poland;
| |
Collapse
|
5
|
Li H, Wang X, Hu C, Li H, Xu Z, Lei P, Luo X, Hao Y. JUN and PDGFRA as Crucial Candidate Genes for Childhood Autism Spectrum Disorder. Front Neuroinform 2022; 16:800079. [PMID: 35655651 PMCID: PMC9152672 DOI: 10.3389/fninf.2022.800079] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/19/2022] [Indexed: 01/11/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder, characterized by marked genetic heterogeneity. In this study, two independent microarray datasets of cerebellum of ASD were integrative analyzed by NetworkAnalyst to screen candidate crucial genes. NetworkAnalyst identified two up-regulated genes, Jun proto-oncogene (JUN) and platelet derived growth factor receptor alpha (PDGFRA), as the most crucial genes in cerebellum of ASD patients. Based on KEGG pathway database, genes associated with JUN in the cerebellum highlight the pathways of Th17 cell differentiation and Th1 and Th2 cell differentiation. Genes associated with PDGFRA in the cerebellum were found enriched in pathways in EGFR tyrosine kinase inhibitor resistance and Rap1 signaling pathway. Analyzing all differentially expressed genes (DEGs) from the two datasets, Gene Set Enrichment Analysis (GSEA) brought out IL17 signaling pathway, which is related to the expression of JUN and PDGFRA. The ImmuCellAI found the elevated expression of JUN and PDGFRA correlating with increased Th17 and monocytes suggests JUN and PDGFRA may regulate Th17 cell activation and monocytes infiltrating. Mice model of maternal immune activation demonstrated that JUN and PDGFRA are up-regulated and related to the ASD-like behaviors that provide insights into the molecular mechanisms underlying the altered IL17 signaling pathway in ASD and may enable novel therapeutic strategies.
Collapse
Affiliation(s)
- Heli Li
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyuan Wang
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Hu
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Li
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuoshuo Xu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Lei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Hao
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yan Hao
| |
Collapse
|
6
|
Bai X, Xiao K, Yang Z, Zhang Z, Li J, Yan Z, Cao K, Zhang W, Zhang X. Stem cells from human exfoliated deciduous teeth relieve pain via downregulation of c-Jun in a rat model of trigeminal neuralgia. J Oral Rehabil 2021; 49:219-227. [PMID: 34386989 DOI: 10.1111/joor.13243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/10/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Stem cells from human exfoliated deciduous teeth (SHED) have excellent immunomodulatory and neuroprotective abilities. It is possible that systemic SHED transplantation could ameliorate trigeminal neuralgia. The phosphorylation of c-Jun contributes to the development of hyperalgesia and allodynia. OBJECTIVE The present study aimed to evaluate whether systemic SHED transplantation could lead to analgesic effects by regulating peripheral c-Jun in the trigeminal ganglia (TG) in a rat model of trigeminal neuralgia. METHODS Chronic constriction injury of the infraorbital nerve (CCI-ION) was performed to establish a rat pain model. SHED were obtained from discarded exfoliated deciduous teeth from children and transplanted by a single infusion through the tail vein. SHED were labelled with the PKH26 red fluorescent cell linker mini kit for tract distribution. The mechanical threshold was determined using von Frey filaments. The mRNA levels of c-Jun in the ipsilateral TG were quantified. The phosphorylation of c-Jun in the ipsilateral TG was assessed by immunohistochemistry and Western blotting. RESULTS PKH26-labelled SHED were distributed to both sides of TG, lung, liver and spleen. Systemic SHED transplantation significantly elevated the mechanical thresholds in CCI-ION rats and blocked the upregulation of c-Jun mRNA levels in the TG caused by nerve ligation. The activation of c-Jun in the TG was blocked by SHED transplantation. CONCLUSIONS These findings demonstrate that systemic SHED administration reverts trigeminal neuralgia via downregulation of c-Jun in the TG.
Collapse
Affiliation(s)
- Xiaofeng Bai
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Ke Xiao
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.,Painless Dental Treatment Center, Hospital of Stomatology, China Medical University, Shenyang, China
| | - Zhijie Yang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Ziqi Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Jing Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Ziyi Yan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Keda Cao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Weiqian Zhang
- Hospital of Stomatology, China Medical University, Shenyang, China
| | - Xia Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.,Painless Dental Treatment Center, Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
7
|
Carta G, Gambarotta G, Fornasari BE, Muratori L, El Soury M, Geuna S, Raimondo S, Fregnan F. The neurodynamic treatment induces biological changes in sensory and motor neurons in vitro. Sci Rep 2021; 11:13277. [PMID: 34168249 PMCID: PMC8225768 DOI: 10.1038/s41598-021-92682-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/14/2021] [Indexed: 11/08/2022] Open
Abstract
Nerves are subjected to tensile forces in various paradigms such as injury and regeneration, joint movement, and rehabilitation treatments, as in the case of neurodynamic treatment (NDT). The NDT induces selective uniaxial repeated tension on the nerve and was described to be an effective treatment to reduce pain in patients. Nevertheless, the biological mechanisms activated by the NDT promoting the healing processes of the nerve are yet still unknown. Moreover, a dose-response analysis to define a standard protocol of treatment is unavailable. In this study, we aimed to define in vitro whether NDT protocols could induce selective biological effects on sensory and motor neurons, also investigating the possible involved molecular mechanisms taking a role behind this change. The obtained results demonstrate that NDT induced significant dose-dependent changes promoting cell differentiation, neurite outgrowth, and neuron survival, especially in nociceptive neurons. Notably, NDT significantly upregulated PIEZO1 gene expression. A gene that is coding for an ion channel that is expressed both in murine and human sensory neurons and is related to mechanical stimuli transduction and pain suppression. Other genes involved in mechanical allodynia related to neuroinflammation were not modified by NDT. The results of the present study contribute to increase the knowledge behind the biological mechanisms activated in response to NDT and to understand its efficacy in improving nerve regenerational physiological processes and pain reduction.
Collapse
Affiliation(s)
- Giacomo Carta
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
- ASST Nord Milano, Sesto San Giovanni Hospital, Milan, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Benedetta Elena Fornasari
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Luisa Muratori
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Marwa El Soury
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy.
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy.
| | - Federica Fregnan
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, 10043, Orbassano, Italy
| |
Collapse
|
8
|
Musi CA, Agrò G, Santarella F, Iervasi E, Borsello T. JNK3 as Therapeutic Target and Biomarker in Neurodegenerative and Neurodevelopmental Brain Diseases. Cells 2020; 9:cells9102190. [PMID: 32998477 PMCID: PMC7600688 DOI: 10.3390/cells9102190] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 01/01/2023] Open
Abstract
The c-Jun N-terminal kinase 3 (JNK3) is the JNK isoform mainly expressed in the brain. It is the most responsive to many stress stimuli in the central nervous system from ischemia to Aβ oligomers toxicity. JNK3 activity is spatial and temporal organized by its scaffold protein, in particular JIP-1 and β-arrestin-2, which play a crucial role in regulating different cellular functions in different cellular districts. Extensive evidence has highlighted the possibility of exploiting these adaptors to interfere with JNK3 signaling in order to block its action. JNK plays a key role in the first neurodegenerative event, the perturbation of physiological synapse structure and function, known as synaptic dysfunction. Importantly, this is a common mechanism in many different brain pathologies. Synaptic dysfunction and spine loss have been reported to be pharmacologically reversible, opening new therapeutic directions in brain diseases. Being JNK3-detectable at the peripheral level, it could be used as a disease biomarker with the ultimate aim of allowing an early diagnosis of neurodegenerative and neurodevelopment diseases in a still prodromal phase.
Collapse
Affiliation(s)
- Clara Alice Musi
- Department of Pharmacological and Biomolecular Sciences, Milan University, 20133 Milan, Italy;
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (G.A.); (F.S.); (E.I.)
| | - Graziella Agrò
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (G.A.); (F.S.); (E.I.)
| | - Francesco Santarella
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (G.A.); (F.S.); (E.I.)
| | - Erika Iervasi
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (G.A.); (F.S.); (E.I.)
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genoa, Italy
| | - Tiziana Borsello
- Department of Pharmacological and Biomolecular Sciences, Milan University, 20133 Milan, Italy;
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (G.A.); (F.S.); (E.I.)
- Correspondence: or ; Tel.: +39-023-901-4469; Fax: +39-023-900-1916
| |
Collapse
|