1
|
Ino Y, Maruyama M, Shimizu M, Morita R, Sakamoto A, Suzuki H, Sakai A. TSLP in DRG neurons causes the development of neuropathic pain through T cells. J Neuroinflammation 2023; 20:200. [PMID: 37660072 PMCID: PMC10474733 DOI: 10.1186/s12974-023-02882-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Peripheral nerve injury to dorsal root ganglion (DRG) neurons develops intractable neuropathic pain via induction of neuroinflammation. However, neuropathic pain is rare in the early life of rodents. Here, we aimed to identify a novel therapeutic target for neuropathic pain in adults by comprehensively analyzing the difference of gene expression changes between infant and adult rats after nerve injury. METHODS A neuropathic pain model was produced in neonatal and young adult rats by spared nerve injury. Nerve injury-induced gene expression changes in the dorsal root ganglion (DRG) were examined using RNA sequencing. Thymic stromal lymphopoietin (TSLP) and its siRNA were intrathecally injected. T cells were examined using immunofluorescence and were reduced by systemic administration of FTY720. RESULTS Differences in changes in the transcriptome in injured DRG between infant and adult rats were most associated with immunological functions. Notably, TSLP was markedly upregulated in DRG neurons in adult rats, but not in infant rats. TSLP caused mechanical allodynia in adult rats, whereas TSLP knockdown suppressed the development of neuropathic pain. TSLP promoted the infiltration of T cells into the injured DRG and organized the expressions of multiple factors that regulate T cells. Accordingly, TSLP caused mechanical allodynia through T cells in the DRG. CONCLUSION This study demonstrated that TSLP is causally involved in the development of neuropathic pain through T cell recruitment.
Collapse
Affiliation(s)
- Yuka Ino
- Department of Anesthesiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
- Department of Pharmacology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Motoyo Maruyama
- Department of Pharmacology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
- Division of Laboratory Animal Science, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Masumi Shimizu
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Rimpei Morita
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Atsuhiro Sakamoto
- Department of Anesthesiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Hidenori Suzuki
- Department of Pharmacology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Atsushi Sakai
- Department of Pharmacology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| |
Collapse
|
2
|
Cheng XW, Narisawa M, Wang H, Piao L. Overview of multifunctional cysteinyl cathepsins in atherosclerosis-based cardiovascular disease: from insights into molecular functions to clinical implications. Cell Biosci 2023; 13:91. [PMID: 37202785 DOI: 10.1186/s13578-023-01040-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/01/2023] [Indexed: 05/20/2023] Open
Abstract
Cysteinyl cathepsins (CTSs) are widely known to have a proteolysis function that mediates recycling of unwanted proteins in endosomes and lysosomes, and investigation of CTSs has greatly improved with advances in live-imaging techniques both in vivo and in vitro, leading to three key findings. (1) CTSs are relocated from the lysosomes to other cellular spaces (i.e., cytosol, nucleus, nuclear membrane, plasma membrane, and extracellular milieu). (2) In addition to acidic cellular compartments, CTSs also exert biological activity in neutral environments. (3) CTSs also exert multiple nontraditional functions in, for example, extracellular matrix metabolism, cell signaling transduction, protein processing/trafficking, and cellular events. Various stimuli regulate the expression and activities of CTSs in vivo and vitro-e.g., inflammatory cytokines, oxidative stress, neurohormones, and growth factors. Accumulating evidence has confirmed the participation of CTSs in vascular diseases characterized by atherosclerosis, plaque rupture, thrombosis, calcification, aneurysm, restenosis/in-stent-restenosis, and neovasel formation. Circulating and tissue CTSs are promising as biomarkers and as a diagnostic imaging tool in patients with atherosclerosis-based cardiovascular disease (ACVD), and pharmacological interventions with their specific and non-specific inhibitors, and cardiovascular drugs might have potential for the therapeutic targeting of CTSs in animals. This review focuses on the update findings on CTS biology and the involvement of CTSs in the initiation and progression of ACVD and discusses the potential use of CTSs as biomarkers and small-molecule targets to prevent deleterious nontraditional functions in ACVD.
Collapse
Affiliation(s)
- Xian Wu Cheng
- Department of Cardiology and Hypertension, Yanbian University Hospital, 1327 Juzijie, Yanjin, Jilin, 133000, People's Republic of China.
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanjin, 133000, Jilin, People's Republic of China.
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, 1327 Juzijie, Yanji, Jilin PR. 133000, China.
| | - Megumi Narisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, 4668550, Japan
| | - Hailong Wang
- Department of Cardiology and Hypertension, Yanbian University Hospital, 1327 Juzijie, Yanjin, Jilin, 133000, People's Republic of China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanjin, 133000, Jilin, People's Republic of China
| | - Limei Piao
- Department of Cardiology and Hypertension, Yanbian University Hospital, 1327 Juzijie, Yanjin, Jilin, 133000, People's Republic of China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanjin, 133000, Jilin, People's Republic of China
| |
Collapse
|
3
|
van Dalen FJ, Bakkum T, van Leeuwen T, Groenewold M, Deu E, Koster AJ, van Kasteren SI, Verdoes M. Application of a Highly Selective Cathepsin S Two-step Activity-Based Probe in Multicolor Bio-Orthogonal Correlative Light-Electron Microscopy. Front Chem 2021; 8:628433. [PMID: 33644004 PMCID: PMC7903248 DOI: 10.3389/fchem.2020.628433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/31/2020] [Indexed: 11/13/2022] Open
Abstract
Cathepsin S is a lysosomal cysteine protease highly expressed in immune cells such as dendritic cells, B cells and macrophages. Its functions include extracellular matrix breakdown and cleavage of cell adhesion molecules to facilitate immune cell motility, as well as cleavage of the invariant chain during maturation of major histocompatibility complex II. The identification of these diverse specific functions has brought the challenge of delineating cathepsin S activity with great spatial precision, relative to related enzymes and substrates. Here, the development of a potent and highly selective two-step activity-based probe for cathepsin S and the application in multicolor bio-orthogonal correlative light-electron microscopy is presented. LHVS, which has been reported as a selective inhibitor of cathepsin S with nanomolar potency, formed the basis for our probe design. However, in competitive activity-based protein profiling experiments LHVS showed significant cross-reactivity toward Cat L. Introduction of an azide group in the P2 position expanded the selectivity window for cathepsin S, but rendered the probe undetectable, as demonstrated in bio-orthogonal competitive activity-based protein profiling. Incorporation of an additional azide handle for click chemistry on the solvent-exposed P1 position allowed for selective labeling of cathepsin S. This highlights the influence of click handle positioning on probe efficacy. This probe was utilized in multicolor bio-orthogonal confocal and correlative light-electron microscopy to investigate the localization of cathepsin S activity at an ultrastructural level in bone marrow-derived dendritic cells. The tools developed in this study will aid the characterization of the variety of functions of cathepsin S throughout biology.
Collapse
Affiliation(s)
- Floris J van Dalen
- Department of Tumor Immunology and the Institute for Chemical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Thomas Bakkum
- Leiden Institute of Chemistry and the Institute for Chemical Immunology, Leiden University, Leiden, Netherlands
| | - Tyrza van Leeuwen
- Leiden Institute of Chemistry and the Institute for Chemical Immunology, Leiden University, Leiden, Netherlands
| | - Mirjam Groenewold
- Leiden Institute of Chemistry and the Institute for Chemical Immunology, Leiden University, Leiden, Netherlands
| | - Edgar Deu
- Chemical Biology Approaches to Malaria Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Abraham J Koster
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Sander I van Kasteren
- Leiden Institute of Chemistry and the Institute for Chemical Immunology, Leiden University, Leiden, Netherlands
| | - Martijn Verdoes
- Department of Tumor Immunology and the Institute for Chemical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
4
|
Tchetina EV, Glemba KE, Markova GA, Naryshkin EA, Taskina EA, Makarov MA, Lila AM. Development of Postoperative Pain in Patients with End-Stage Knee Osteoarthritis Is Associated with Upregulation of Genes Related to Extracellular Matrix Degradation, Inflammation, and Apoptosis Measured in the Peripheral Blood before Knee Surgery. Life (Basel) 2020; 10:life10100224. [PMID: 33007930 PMCID: PMC7600231 DOI: 10.3390/life10100224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
Osteoarthritis (OA) pain implies an indication for joint replacement in patients with end-stage OA. However, chronic postoperative pain is observed in 10–40% of patients with OA. Here, we identified genes whose expression in the peripheral blood before surgery could denote the risk of postoperative pain development. We examined the peripheral blood of 26 healthy subjects and 50 patients with end-stage OA prior to joint replacement surgery. Pain was evaluated before surgery using the visual analog scale (VAS) index and neuropathic pain questionnaires, Douleur Neuropathique 4 Questions (DN4) and PainDETECT questionnaires. Functional activity was assessed using the Western Ontario and McMaster Universities osteoarthritis index (WOMAC). Three and six months after surgery, pain indices according to VAS of 30% and higher were considered. Metalloproteinase (MMP)-9 and tissue inhibitor of metalloproteinase (TIMP)1 protein levels were measured using ELISA in the peripheral blood mononuclear cells (PBMCs). Total RNA isolated from whole blood was analysed using quantitative real-time RT-PCR for caspase-3, MMP-9, TIMP1, cathepsins K and S, tumour necrosis factor (TNF)α, interleukin (IL)-1β, and cyclooxygenase (COX)-2 gene expression. Seventeen patients reported post-surgical pain. Expression of cathepsins K and S, caspase-3, TIMP1, IL-1β, and TNFα genes before surgery was significantly higher in these patients compared to pain-free patients with OA. Receiver-operating characteristic (ROC) curve analyses confirmed significant associations between these gene expressions and the likelihood of pain development after arthroplasty. High baseline expression of genes associated with extracellular matrix destruction (cathepsins S and K, TIMP1), inflammation (IL-1β, TNFα), and apoptosis (caspase-3) measured in the peripheral blood of patients with end-stage OA before knee arthroplasty might serve as an important biomarker of postoperative pain development.
Collapse
Affiliation(s)
- Elena V. Tchetina
- Immunology and Molecular Biology Department, Nasonova Research Institute of Rheumatology, 115522 Moscow, Russia;
- Correspondence:
| | - Kseniya E. Glemba
- Surgery Department, Nasonova Research Institute of Rheumatology, 115522 Moscow, Russia; (K.E.G.); (E.A.N.); (M.A.M.)
| | - Galina A. Markova
- Immunology and Molecular Biology Department, Nasonova Research Institute of Rheumatology, 115522 Moscow, Russia;
| | - Evgeniy A. Naryshkin
- Surgery Department, Nasonova Research Institute of Rheumatology, 115522 Moscow, Russia; (K.E.G.); (E.A.N.); (M.A.M.)
| | - Elena A. Taskina
- Osteoartritis Laboratory, Nasonova Research Institute of Rheumatology, 115522 Moscow, Russia; (E.A.T.); (A.M.L.)
| | - Maksim A. Makarov
- Surgery Department, Nasonova Research Institute of Rheumatology, 115522 Moscow, Russia; (K.E.G.); (E.A.N.); (M.A.M.)
| | - Aleksandr M. Lila
- Osteoartritis Laboratory, Nasonova Research Institute of Rheumatology, 115522 Moscow, Russia; (E.A.T.); (A.M.L.)
| |
Collapse
|