1
|
Rose O, Croonenberg T, Clemens S, Hinteregger T, Eppacher S, Huber-Cantonati P, Garcia-Miralles M, Liuni R, Dossena S. Cisplatin-Induced Hearing Loss, Oxidative Stress, and Antioxidants as a Therapeutic Strategy-A State-of-the-Art Review. Antioxidants (Basel) 2024; 13:1578. [PMID: 39765905 PMCID: PMC11673797 DOI: 10.3390/antiox13121578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/03/2025] Open
Abstract
Cisplatin is an established component of treatment protocols for various solid malignancies but carries a significant potential for serious adverse effects. Ototoxicity from cisplatin treatment is an important dose-limiting toxicity that manifests as bilateral, progressive, irreversible, dose-dependent sensorineural hearing loss, ear pain, tinnitus, and vestibular dysfunction. Despite the recent approval of sodium thiosulphate for the prevention of cisplatin-induced hearing loss (CIHL) in pediatric patients, structured prevention programs are not routinely implemented in most hospitals, and reducing platinum-induced ototoxicity in adults remains an important clinical problem without established treatment options. Cochlear oxidative stress plays a fundamental role in CIHL. Here, we review the molecular mechanisms leading to oxidative stress in CIHL and the clinical and preclinical studies testing antioxidants in CIHL to guide future clinical trials in assessing the efficacy and safety of candidate antioxidant compounds in this clinical setting.
Collapse
Affiliation(s)
- Olaf Rose
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria (S.C.)
- Center of Public Health and Health Services Research, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Tim Croonenberg
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria (S.C.)
| | - Stephanie Clemens
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria (S.C.)
- Center of Public Health and Health Services Research, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Tobias Hinteregger
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria (S.C.)
| | - Stefanie Eppacher
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria (S.C.)
| | - Petra Huber-Cantonati
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria (S.C.)
| | - Marta Garcia-Miralles
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria (S.C.)
| | - Raffaella Liuni
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
- Research and Innovation Center Regenerative Medicine & Novel Therapies (FIZ RM&NT), Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
2
|
Dai D, Chen C, Lu C, Guo Y, Li Q, Sun C. Apoptosis, autophagy, ferroptosis, and pyroptosis in cisplatin-induced ototoxicity and protective agents. Front Pharmacol 2024; 15:1430469. [PMID: 39380912 PMCID: PMC11459463 DOI: 10.3389/fphar.2024.1430469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Cisplatin is widely used to treat various solid tumors. However, its toxicity to normal tissues limits its clinical application, particularly due to its ototoxic effects, which can result in hearing loss in patients undergoing chemotherapy. While significant progress has been made in preclinical studies to elucidate the cellular and molecular mechanisms underlying cisplatin-induced ototoxicity (CIO), the precise mechanisms remain unclear. Moreover, the optimal protective agent for preventing or mitigating cisplatin-induced ototoxicity has yet to be identified. This review summarizes the current understanding of the roles of apoptosis, autophagy, ferroptosis, pyroptosis, and protective agents in cisplatin-induced ototoxicity. A deeper understanding of these cell death mechanisms in the inner ear, along with the protective agents, could facilitate the translation of these agents into clinical therapeutics, help identify new therapeutic targets, and provide novel strategies for cisplatin-based cancer treatment.
Collapse
Affiliation(s)
- Dingyuan Dai
- Department of Otolaryngology Head and Neck Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Chen
- Department of Otolaryngology Head and Neck Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen Lu
- Department of Otolaryngology Head and Neck Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Guo
- Department of Otolaryngology Head and Neck Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Li
- Department of Otolaryngology Head and Neck Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
- Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Chen Sun
- Department of Otolaryngology Head and Neck Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Nong H, Song X, Li Y, Xu Y, Wang F, Wang Y, Zhang J, Chen C, Li J. AdipoRon reduces cisplatin-induced ototoxicity in hair cells:possible relation to the regulation of mitochondrial biogenesis. Neurosci Lett 2024; 819:137577. [PMID: 38072030 DOI: 10.1016/j.neulet.2023.137577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
AdipoRon (AR) can exert antidiabetic and anti-inflammatory effects by maintaining mitochondrial structure and function. The present study was designed to explore whether AR protects the auditory cells from cisplatin-induced damage and, if so, to probe the possible mechanisms underlying its action on this type of cells. Cell viability and apoptosis in House Ear Institute-Organization of Corti 1 (HEI-OC1 cells) and mouse cochlea hair cells (HCs) were detected by CCK8 and immunofluorescence. The expressions of apoptosis-related proteins (cleaved caspase-3 and Bcl-2), adiponectin receptor 1 (AdipoR 1) and the key factors relevant to mitochondrial biogenesis(SIRT1 and TFAM)were determined by Western blot and immunofluorescence. Changes in apoptotic rate and expression of SIRT1 and TFAM after silencing of AdipoR 1 (AdipoR 1-siRNA) in HEI-OC1 cells were measured by flow cytometry and Western blot. The levels of reactive oxygen species (ROS) were evaluated by MitoSox red staining. We found that 30 μM cisplatin exposure induced severe cellular damage, which resulted from activation of the mitochondrial apoptotic pathway. Cisplatin decreased the expression of AdipoR 1, SIRT1, and TFAM proteins, leading to impaired mitochondrial biogenesis and increased mitochondrial ROS production. 10 μM AR pre-treatment enhanced mitochondrial biogenesis, decreased mitochondrial ROS levels, alleviated imbalances in the mitochondrial apoptotic pathway, thus reducing cisplatin-induced apoptosis. Taken together, this work reveals that AR exerts anti-apoptotic effects, possibly via regulating mitochondrial biogenesis and function. Interestingly, AR might possess the promising potential to be a novel drug for the prevention and/ or treatment of cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Huiming Nong
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Xinlei Song
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Yanan Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Yue Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Fan Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Yajie Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Junhong Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Chengfang Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China.
| | - Jianfeng Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; Central Lab, Shandong Provincial Hospital Affiliated to Shandong First University, Jinan, Shandong 250021, China; Shandong Provincial Key Laboratory of Otology, Jinan, Shandong, China.
| |
Collapse
|
4
|
Osakabe N, Modafferi S, Ontario ML, Rampulla F, Zimbone V, Migliore MR, Fritsch T, Abdelhameed AS, Maiolino L, Lupo G, Anfuso CD, Genovese E, Monzani D, Wenzel U, Calabrese EJ, Vabulas RM, Calabrese V. Polyphenols in Inner Ear Neurobiology, Health and Disease: From Bench to Clinics. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2045. [PMID: 38004094 PMCID: PMC10673256 DOI: 10.3390/medicina59112045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
There is substantial experimental and clinical interest in providing effective ways to both prevent and slow the onset of hearing loss. Auditory hair cells, which occur along the basilar membrane of the cochlea, often lose functionality due to age-related biological alterations, as well as from exposure to high decibel sounds affecting a diminished/damaged auditory sensitivity. Hearing loss is also seen to take place due to neuronal degeneration before or following hair cell destruction/loss. A strategy is necessary to protect hair cells and XIII cranial/auditory nerve cells prior to injury and throughout aging. Within this context, it was proposed that cochlea neural stem cells may be protected from such aging and environmental/noise insults via the ingestion of protective dietary supplements. Of particular importance is that these studies typically display a hormetic-like biphasic dose-response pattern that prevents the occurrence of auditory cell damage induced by various model chemical toxins, such as cisplatin. Likewise, the hormetic dose-response also enhances the occurrence of cochlear neural cell viability, proliferation, and differentiation. These findings are particularly important since they confirmed a strong dose dependency of the significant beneficial effects (which is biphasic), whilst having a low-dose beneficial response, whereas extensive exposures may become ineffective and/or potentially harmful. According to hormesis, phytochemicals including polyphenols exhibit biphasic dose-response effects activating low-dose antioxidant signaling pathways, resulting in the upregulation of vitagenes, a group of genes involved in preserving cellular homeostasis during stressful conditions. Modulation of the vitagene network through polyphenols increases cellular resilience mechanisms, thus impacting neurological disorder pathophysiology. Here, we aimed to explore polyphenols targeting the NF-E2-related factor 2 (Nrf2) pathway to neuroprotective and therapeutic strategies that can potentially reduce oxidative stress and inflammation, thus preventing auditory hair cell and XIII cranial/auditory nerve cell degeneration. Furthermore, we explored techniques to enhance their bioavailability and efficacy.
Collapse
Affiliation(s)
- Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute Technology, Saitama 337-8570, Japan;
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Francesco Rampulla
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Vincenzo Zimbone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Maria Rita Migliore
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | | | - Ali S. Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Luigi Maiolino
- Department of Medical, Surgical Advanced Technologies “G. F. Ingrassia”, University of Catania, 95125 Catania, Italy;
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Elisabetta Genovese
- Department of Maternal and Child and Adult Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Daniele Monzani
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37100 Verona, Italy;
| | - Uwe Wenzel
- Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen, 35392 Giessen, Germany
| | - Edward J. Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA;
| | - R. Martin Vabulas
- Charité-Universitätsmedizin Berlin, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany;
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| |
Collapse
|
5
|
Li C, Wang X, Qiao X, Fan L, Zhu H, Chen Y, He Y, Zhang Z. 5,7-Dihydroxy-4-methylcoumarin modulates the JNK/FoxO1 signaling pathway to attenuate cisplatin-induced ototoxicity by suppressing oxidative stress and apoptosis in vitro. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119437. [PMID: 36754151 DOI: 10.1016/j.bbamcr.2023.119437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/12/2023] [Accepted: 01/29/2023] [Indexed: 02/08/2023]
Abstract
5,7-Dihydroxy-4-methylcoumarin (D4M) is attributed to free radical scavenging effects, with wide application for anti-oxidation. This work aimed to assess D4M's impact on cisplatin-induced ototoxicity. The cell viability was estimated with CCK-8 assay. Apoptosis was detected by the Annexin V-FITC and PI assay. The reactive oxygen species (ROS) level was determined by MitoSOX-Red and CellROX-Green probes. Mitochondrial membrane potential was analyzed with TMRM staining. Immunofluorescence was utilized for hair cells and spiral ganglion neuron detection. Apoptosis-associated proteins were assessed by cleaved caspase-3 and TUNEL staining. These results showed that D4M pretreatment protected hair cells from cisplatin-induced damage, increased cell viability, and decreased apoptosis in House Ear Institute-Organ of Corti1 (HEI-OC1) cells and neonatal mouse cochlear explants. D4M significantly inhibited cisplatin-induced mitochondrial apoptosis and reduced ROS accumulation. In addition, the protective effect of D4M on cisplatin-induced ototoxicity was also confirmed in cochlear hair cells and spiral ganglion neurons in neonatal mice. Mechanistic studies showed that D4M markedly downregulated p-JNK and elevated the expression ratio of p-FoxO1/FoxO1, thereby reducing cisplatin-induced caspase-dependent apoptosis. Meanwhile, D4M-related protection of HEI-OC1 cells was significantly blunted by JNK signaling induction with anisomycin. This study supports the possibility that D4M may be used as a new compound to prevent cisplatin-related hearing loss.
Collapse
Affiliation(s)
- Cai Li
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xue Wang
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiangyun Qiao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China
| | - Li Fan
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Huanhuan Zhu
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yutao Chen
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yingzi He
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China.
| | - Zhiyuan Zhang
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
6
|
Novel Application of Eupatilin for Effectively Attenuating Cisplatin-Induced Auditory Hair Cell Death via Mitochondrial Apoptosis Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1090034. [PMID: 35082962 PMCID: PMC8786471 DOI: 10.1155/2022/1090034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022]
Abstract
Eupatilin (5,7-dihydroxy-3′,4′,6-trimethoxyflavone) is a pharmacologically active flavone that has been isolated from a variety of medicinal plants and possesses a number of pharmacological properties. This study evaluates the antioxidant and antiapoptotic effects of eupatilin on cisplatin-induced ototoxicity using in vitro and in vivo models including HEI-OC1 cells, cochlear hair cells, and zebrafish. Employing a CCK8 assay and Annexin V-FITC/PI double staining, we found that eupatilin significantly alleviated cisplatin-induced apoptosis and increased hair cell viability. The level of reactive oxygen species (ROS) was evaluated by CellROX green and MitoSOX Red staining. The results showed that eupatilin possesses antioxidant activity. MitoTracker Red staining indicated that eupatilin remarkably decreased mitochondrial damage. Furthermore, we demonstrated that eupatilin protects hair cells from cisplatin-induced damage. Mechanistic studies in cisplatin-induced HEI-OC1 cells revealed that eupatilin promoted Bcl-2 expression, downregulated Bax expression, reversed the increase in caspase-3 and PARP activity, and reduced the expression of phosphorylated p38 and JNK. Our data suggest a novel role for eupatilin as a protective agent against ototoxic drug-induced hair cell apoptosis by inhibiting ROS generation and modulating mitochondrial-related apoptosis.
Collapse
|