1
|
Saito Y, Kobayashi M, Tamaki S, Nakamura K, Hirate D, Takahashi K, Takekuma Y, Sakakibara-Konishi J, Shimizu Y, Kinoshita I, Sugawara M. Risk factor analysis for cisplatin-induced nephrotoxicity with the short hydration method in diabetic patients. Sci Rep 2023; 13:17126. [PMID: 37816823 PMCID: PMC10564853 DOI: 10.1038/s41598-023-44477-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/09/2023] [Indexed: 10/12/2023] Open
Abstract
The occurrence of cisplatin (CDDP)-induced nephrotoxicity (CIN) has decreased with advancements in supportive care. In contrast, we reported that baseline diabetes mellitus (DM) complications significantly worsen CIN. This study aimed to determine further risk factors associated with CIN development in DM patients. Patients with thoracic cancer requiring DM pharmacotherapy, who received CDDP (≥ 60 mg/m2)-containing regimens using the short hydration method (n = 140), were enrolled in this retrospective multicenter observational study. The primary endpoint of the present study was the elucidation of risk factors (patient factors, DM medication influence, and treatment-related factors) associated with CIN development in patients with DM. Cisplatin-induced nephrotoxicity occurred in 22.1% of patients with DM. The median worst variation of serum creatinine levels and creatinine clearance (worst level - baseline level) was 0.16 mg/dL (range: - 0.12-1.41 mg/dL) and - 15.9 mL/min (- 85.5-24.3 mL/min), respectively. Multivariate logistic regression analyses identified female sex as the singular risk factor for CIN development in the DM population (adjusted odds ratio; 2.87, 95% confidence interval; 1.08-7.67, P = 0.04). Diabetes mellitus medication and treatment-related factors did not affect CIN development. In conclusion, our study revealed that female sex is significantly associated with CIN development in patients with DM and thoracic cancer.
Collapse
Affiliation(s)
- Yoshitaka Saito
- Department of Clinical Pharmaceutics & Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 4-1, Maeda 7-Jo 15-Chome, Teine-Ku, Sapporo, 006-8585, Japan.
- Department of Pharmacy, Hokkaido University Hospital, Kita 14-Jo, Nishi 5-Chome, Kita-Ku, Sapporo, 060-8648, Japan.
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-Jo, Nishi 6-Chome, Kita-Ku, Sapporo, 060-0812, Japan
| | - Shinya Tamaki
- Department of Pharmacy, KKR Sapporo Medical Center, 3-40, Hiragishi 1-Jo 6-Chome, Toyohira-Ku, Sapporo, 062-0931, Japan
| | - Katsuyuki Nakamura
- Division of Hospital Pharmacy, Sapporo Medical University, 291, Minami 1-Jo, Nishi 16-Chome, Chuo-Ku, Sapporo, 060-8543, Japan
| | - Daisuke Hirate
- Department of Pharmacy, Teine Keijinkai Hospital, 1-40, Maeda 1-Jo 12-Chome, Teine-Ku, Sapporo, 006-8555, Japan
| | - Kenta Takahashi
- Department of Pharmacy, NTT Medical Center Sapporo, Minami 1-Jo, Nishi 15-Chome, Chuo-Ku, Sapporo, 060-0061, Japan
| | - Yoh Takekuma
- Department of Pharmacy, Hokkaido University Hospital, Kita 14-Jo, Nishi 5-Chome, Kita-Ku, Sapporo, 060-8648, Japan
| | - Jun Sakakibara-Konishi
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Kita 15-Jo, Nishi 7-Chome, Kita-Ku, Sapporo, 060-8638, Japan
| | - Yasushi Shimizu
- Department of Medical Oncology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15-Jo, Nishi 7-Chome, Kita-Ku, Sapporo, 060-8638, Japan
| | - Ichiro Kinoshita
- Department of Medical Oncology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15-Jo, Nishi 7-Chome, Kita-Ku, Sapporo, 060-8638, Japan
| | - Mitsuru Sugawara
- Department of Pharmacy, Hokkaido University Hospital, Kita 14-Jo, Nishi 5-Chome, Kita-Ku, Sapporo, 060-8648, Japan
- Laboratory of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-Jo, Nishi 6-Chome, Kita-Ku, Sapporo, 060-0812, Japan
| |
Collapse
|
2
|
Interactions of Analgesics with Cisplatin: Modulation of Anticancer Efficacy and Potential Organ Toxicity. MEDICINA (KAUNAS, LITHUANIA) 2021; 58:medicina58010046. [PMID: 35056355 PMCID: PMC8781901 DOI: 10.3390/medicina58010046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022]
Abstract
Cisplatin (CDDP), one of the most eminent cancer chemotherapeutic agents, has been successfully used to treat more than half of all known cancers worldwide. Despite its effectiveness, CDDP might cause severe toxic adverse effects on multiple body organs during cancer chemotherapy, including the kidneys, heart, liver, gastrointestinal tract, and auditory system, as well as peripheral nerves causing severely painful neuropathy. The latter, among other pains patients feel during chemotherapy, is an indication for the use of analgesics during treatment with CDDP. Different types of analgesics, such as acetaminophen, non-steroidal anti-inflammatory drugs (NSAIDS), and narcotic analgesics, could be used according to the severity of pain. Administered analgesics might modulate CDDP’s efficacy as an anticancer drug. NSAIDS, on one hand, might have cytotoxic effects on their own and few of them can potentiate CDDP’s anticancer effects via inhibiting the CDDP-induced cyclooxygenase (COX) enzyme, or through COX-independent mechanisms. On the other hand, some narcotic analgesics might ameliorate CDDP’s anti-neoplastic effects, causing chemotherapy to fail. Concerning safety, some analgesics share the same adverse effects on normal tissues as CDDP, augmenting its potentially hazardous effects on organ impairment. This article offers an overview of the reported literature on the interactions between analgesics and CDDP, paying special attention to possible mechanisms that modulate CDDP’s cytotoxic efficacy and potential adverse reactions.
Collapse
|
3
|
Iqbal MO, Sial AS, Akhtar I, Naeem M, Hazafa A, Ansari RA, Rizvi SAA. The nephroprotective effects of Daucus carota and Eclipta prostrata against cisplatin-induced nephrotoxicity in rats. Bioengineered 2021; 12:12702-12721. [PMID: 34949157 PMCID: PMC8810007 DOI: 10.1080/21655979.2021.2009977] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
The overuse of cisplatin (>50 mg/m2) is limited to nephrotoxicity, ototoxicity, gastrotoxicity, myelosuppression, and allergic reactions. The objective of this study was to investigate the nephroprotective effects of Daucus carota and Eclipta prostrata extracts on cisplatin-induced nephrotoxicity in Wistar albino rats. The study involved male Wistar albino rats of 8 weeks weighing 220-270 g. A single injection of 5 mg/kg was injected into the rats for nephrotoxicity. Rats were divided into four groups based on dose conentrations. Blood and urine samples of rats were collected on the 0, 7th, 14th, and 21st days for nephrological analysis. The results showed that Cis + DC/Cis + EP (600 mg/kg) significantly (p < 0.001) increased the body weight and reduced the kidney weight of cisplatin-induced nephrotoxicity in rats (p < 0.001) as compared to Cis group. The results showed that 600 mg/kg administration of Cis + DC/Cis +EP successfully (p < 0.005) improved the urine and plasmin creatinine, Na, and K level compared to the Cis group. Histopathological results confirmed that Cis + EP/Cis + DC effectively improved the renal abnormalities. It is concluded that the co-administration of Cis + EP extract showed exceptional nephroprotective effects at a dose rate of 600 mg/kg.
Collapse
Affiliation(s)
- Muhammad Omer Iqbal
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Asad Saleem Sial
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Imran Akhtar
- Department of Pharmacology, Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Abu Hazafa
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Rais A. Ansari
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Syed A. A. Rizvi
- Department of Pharmaceutical Sciences, Hampton University School of Pharmacy, Hampton, VA, USA
| |
Collapse
|
4
|
Genotoxicity and 28-day repeated dose oral toxicity study of ovatodiolide in rats. Toxicol Rep 2021; 8:1783-1791. [PMID: 34722163 PMCID: PMC8536504 DOI: 10.1016/j.toxrep.2021.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/27/2021] [Accepted: 10/09/2021] [Indexed: 12/18/2022] Open
Abstract
Ovatodiolide is a bioactive cembrane-type diterpenoid isolated from Anisomeles indica (L.) Kuntze. It has been proven that ovatodiolide is anti-inflammatory, anti-tumorigenic, anti-melanogenic and attenuates asthma by regulating signaling pathways. The aim of this study was to evaluate the safety of ovatodiolide by conducting genotoxicity tests and 28-day oral toxicity tests in rats. Genotoxicity assays were conducted by using a bacterial reverse mutation test and mammalian chromosomal aberration test to assess whether ovatodiolide causes reverse mutations and mutagenicity with or without metabolism activation. For the in vivo mammalian erythrocyte micronucleus test, mice were administered a single dose of 0, 250, 500 or 1000 mg/kg b.w. ovatodiolide by single gavage. In the acute oral toxicity test, rats were given a single dose of ovatodiolide 1000 mg/kg b.w. by single gavage. In the 28-day oral toxicity test, groups were divided into a control, ovatodiolide 10, 25 and 50 mg/kg b.w. The results showed that there was no mutagenicity in the bacterial reverse mutation test or the mammalian chromosomal aberration test with or without S9 fraction. Ovatodiolide did not produce an increase in micronucleated reticulocytes in the micronucleus test. The results revealed that the acute oral toxicity of ovatodiolide is over 1000 mg/kg b.w. in rats. Moreover, 10, 25 and 50 mg/kg b.w. of ovatodiolide did not cause a significant effect in rats. According to the results of the genotoxicity and oral toxicity studies in rats, ovatodiolide did not produce any adverse effects, and the tested doses can serve as clinical references.
Collapse
|
5
|
Okamoto K, Ueda H, Saito Y, Narumi K, Furugen A, Kobayashi M. Diclofenac potentiates the antitumor effect of cisplatin in a xenograft mouse model transplanted with cisplatin-resistant cells without enhancing cisplatin-induced nephrotoxicity. Drug Metab Pharmacokinet 2021; 41:100417. [PMID: 34619549 DOI: 10.1016/j.dmpk.2021.100417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 12/16/2022]
Abstract
Cisplatin (CDDP) is a well-known anticancer agent, and CDDP-induced nephrotoxicity (CIN) is one of the most serious adverse effects. Previously, we revealed that while celecoxib reduces CIN, diclofenac does not appear to enhance it. Furthermore, we reported that diclofenac additively enhances the cytotoxic effect of CDDP on CDDP-resistant A549 cells (A549/DDP cells) and their spheroids. In addition, celecoxib reduces the cytotoxic effect of CDDP on A549/DDP cells while demonstrating an anticancer effect; however, it enhanced the effect of CDDP cytotoxicity on spheroids. Therefore, we evaluated the effects of diclofenac or celecoxib on CIN and the antitumor effect of CDDP in a xenograft mouse model transplanted with A549/DDP cells. Although CDDP did not decrease tumor size and tumor weight, these parameters were significantly reduced following co-administration with diclofenac when compared with the control group. Conversely, celecoxib marginally suppressed the antitumor effect of CDDP. Moreover, CDDP increased the mRNA levels of kidney injury molecule 1 (Kim-1), a renal disorder marker, in the kidneys of xenograft mice; treatment with celecoxib and diclofenac did not impact Kim-1 mRNA levels increased by CDDP. In conclusion, diclofenac potentiated the antitumor effect of CDDP without enhancing CIN.
Collapse
Affiliation(s)
- Keisuke Okamoto
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Hinata Ueda
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Yoshitaka Saito
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo, 060-8648, Japan
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
6
|
Pavitrakar V, Mody R, Ravindran S. Amelioration of Cisplatin-induced renal inflammation by Recombinant Human Golimumab in Mice. Curr Pharm Biotechnol 2021; 23:970-977. [PMID: 35135447 DOI: 10.2174/1389201022666210810141139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/31/2021] [Accepted: 06/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND One of the most commonly used anti-cancer agents, Cisplatin (CDDP) often causes nephrotoxicity by eliciting inflammation and oxidative stress. Golimumab, an anti-TNF biologic, is prescribed for the management of numerous inflammatory ailments like psoriatic and rheumatoid arthritis ulcerative colitis, and ankylosing spondylitis. OBJECTIVE Current study has explored the effects of anti-TNF biologics golimumab on mice due to cisplatin-induced nephrotoxicity. METHOD Renal toxicity was caused by administration of single cisplatin injection at 25 mg/kg by intraperitoneal (i/p) route. Golimumab (24 mg/kg, s.c.) was administered consecutively for 7 days. The parameters such as renal functions, oxidative stress, inflammation, and renal damage were evaluated on the 7th day of experiments. RESULTS Cisplatin administration caused nephrotoxicity as shown by a significant elevation of various parameters viz; serum creatinine, neutrophil gelatinase-associated lipocalin (NGAL), urea nitrogen (BUN), and cystatin C. There was a significant rise in urinary clusterin, kidney injury molecule 1 (KIM-1), and β-N-acetylglucosaminidase (NAG) concentrations in the animals treated with cisplatin-. The markers of oxidative stress (malondialdehyde, reduced glutathione, and catalase), inflammation (IL-6, TNF-α, IL-10, IL-1β, MCP-1, ICAM-1, and TGF-β1), and apoptosis (caspase-3) were also altered in serum and/or kidneys of cisplatin animals. Further, cisplatin-caused histopathological changes in proximal tubular cells as observed in the H&E staining of renal tissue. Golimumab treatment reduced all markers of kidney injury and attenuated cell death. Golimumab significantly reduced inflammatory cytokines TNFα, IL- 6, MCP-1, IL- 1β, ICAM-1, and TGF-β1 and increased anti-inflammatory cytokine IL-10 in cisplatin-intoxicated mice. CONCLUSION The study results suggest that golimumab prevented nephrotoxicity induced by cisplatin- through inhibition of oxidative stress, apoptotic cell death inflammatory response, thus improving renal function.
Collapse
Affiliation(s)
- Vishal Pavitrakar
- Biotechnology division, Vishal N. Pavitrakar, Lupin Limited, Pune. India
| | - Rustom Mody
- Biotechnology division, Rustom Mody, Lupin Limited, Pune. India
| | - Selvan Ravindran
- Faculty of health Sciences, Symbiosis School of Biological Sciences, Selvan Ravindran, Symbiosis International (Deemed) University, Pune. India
| |
Collapse
|
7
|
Okamoto K, Kitaichi F, Saito Y, Ueda H, Narumi K, Furugen A, Kobayashi M. Antioxidant effect of ascorbic acid against cisplatin-induced nephrotoxicity and P-glycoprotein expression in rats. Eur J Pharmacol 2021; 909:174395. [PMID: 34332922 DOI: 10.1016/j.ejphar.2021.174395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/04/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
Cisplatin (CDDP) is a highly potent anticancer drug that is widely used in the treatment of several cancers. CDDP-induced nephrotoxicity (CIN) is one of the most significant adverse effects, and oxidative stress is thought to be one of the mechanisms underlying CIN. Although there are some studies available on the variability in transporter expression in the kidney after a single CDDP dose, none have reported the change in renal transporter expression after multiple CDDP dose administrations. P-glycoprotein (P-gp), a transporter, is reported to be induced by oxidative stress. Ascorbic acid is a vitamin with antioxidant potential and therefore, may regulate the expression of P-gp transporter and affect CIN. In the present study, our aim was to assess the variability in expression of several renal transporters after multiple CDDP dose administrations and the antioxidant effect of ascorbic acid against transporter expression and CIN. Multiple doses of CDDP affected markers of kidney injury and antioxidants in the kidneys. Also, the expression of P-gp, breast cancer resistance protein, and multidrug resistance-associated protein 4 was upregulated by CDDP. Using a normal kidney cell line, we demonstrated that ascorbic acid attenuated CDDP-induced cytotoxicity due to its high superoxide scavenging ability. CDDP and ascorbic acid were injected into rats once a week for three weeks, and it was observed that co-administration of ascorbic acid attenuated CIN and regulated antioxidant marker. In addition, ascorbic acid reduced P-gp expression, which was upregulated by CDDP. In conclusion, ascorbic acid may attenuate CIN and reverse P-gp-mediated changes in drug pharmacokinetics.
Collapse
Affiliation(s)
- Keisuke Okamoto
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Fumi Kitaichi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Yoshitaka Saito
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo, 060-8648, Japan.
| | - Hinata Ueda
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan; Education Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
8
|
Anticancer effects of non-steroidal anti-inflammatory drugs against cancer cells and cancer stem cells. Toxicol In Vitro 2021; 74:105155. [PMID: 33785417 DOI: 10.1016/j.tiv.2021.105155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/04/2021] [Accepted: 03/25/2021] [Indexed: 01/06/2023]
Abstract
Certain non-steroidal anti-inflammatory drugs (NSAIDs) are known to have anticancer effects. However, it is unclear whether all NSAIDs have anticancer effects, and thus far, very few studies have compared the antitumor effects among multiple NSAIDs. Therefore, we aimed to identify NSAIDs that enhance the anticancer effect of cisplatin (CDDP); the effects of 17 NSAIDs in lung cancer cells and their spheroids as cancer stem cells (CSCs) were evaluated. Some of the NSAIDs showed cytotoxic effects against A549 and SBC-3 cells and their CDDP-resistant cell lines (A549/DDP and SBC-3/DDP cells, respectively). In addition, co-addition of CDDP and celecoxib, which showed cytotoxic effects, increased the resistance to CDDP by increasing SLC7A11, which is one of the CDDP resistance mechanisms, in A549/DDP and SBC-3/DDP cells. On the other hand, celecoxib also showed antitumor effects on the spheroids of A549/DDP and SBC-3/DDP cells, and enhanced the antitumor effect of CDDP while increasing the mRNA levels of SLC7A11. Moreover, diclofenac was also cytotoxic and enhanced the cytotoxic effect of CDDP in cancer cells and CSCs. In conclusion, some NSAIDs including celecoxib and diclofenac may enhance the therapeutic efficacy of CDDP.
Collapse
|