1
|
Kawamura M, Hariya N, Ishiyama S, Tanaka Y, Ozato K, Mochizuki K. Effects of feeding the medium-chain triacylglycerol on GLP-1 secretion in aged Brd4-heterozygous mice, which are a mouse model of aging. Nutrition 2024; 131:112656. [PMID: 39708424 DOI: 10.1016/j.nut.2024.112656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/03/2024] [Accepted: 11/19/2024] [Indexed: 12/23/2024]
Abstract
OBJECTIVES Gastrointestinal hormones, such as glucagon-like peptide 1 (GLP-1), gastric inhibitory polypeptide, and peptide YY (PYY) are important for reducing malnutrition at older ages because they are related to assimilation and feeding behavior. Medium-chain triacylglycerol (MCT) ameliorates metabolic symptoms and frailty in adults; however, whether it has the same effect in old age is unknown. To address this, we examined the changes in insulin and gastrointestinal hormones in aged Brd4 (+/-) mice exhibiting symptoms of old age. RESEARCH METHODS AND PROCEDURES Aged male wild-type and Brd4 (+/-) mice were fed a long-chain triacylglycerol (LCT)- or MCT diet. Feeding, blood glucose, and plasma active GLP-1 protein concentrations were determined at 9 weeks using a meal tolerance test, and those gastrointestinal hormone genes were determined at 10 weeks. RESULTS The liver and stomach weights and mRNA expression of Gcg (encodes GLP-1 protein) and Pyy in the colon were lower in LCT-fed Brd4 (+/-) mice than those in LCT-fed wild-type mice; these were restored by the MCT diet. The blood concentration of active GLP-1 protein at 15 and 30 minutes postload was higher in MCT-fed Brd4 (+/-) mice than that in those fed an LCT diet. CONCLUSIONS Aged Brd4 (+/-) mice showed lower mRNA expression of Gcg and Pyy genes, and active GLP-1 protein secretion in the blood, which were as restored and enhanced with MCT feeding.
Collapse
Affiliation(s)
- Musashi Kawamura
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Kofu, Yamanashi, Japan; Department of Local Produce and Food Sciences, Laboratory of Food and Nutritional Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Natsuyo Hariya
- Department of Nutrition and Dietetics, Faculty of Family and Consumer Sciences, Kamakura Women's University, Kamakura, Kanagawa, Japan
| | - Shiori Ishiyama
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Kofu, Yamanashi, Japan; Department of Local Produce and Food Sciences, Laboratory of Food and Nutritional Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Yuji Tanaka
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Keiko Ozato
- Laboratory of Molecular Growth Regulation, NICHD, NIH, Bethesda, Maryland, USA
| | - Kazuki Mochizuki
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Kofu, Yamanashi, Japan; Department of Local Produce and Food Sciences, Laboratory of Food and Nutritional Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, Japan.
| |
Collapse
|
2
|
Vasanth K, Minakshi GC, Velu K, Priya T, Kumar RM, Kaliappan I, Dubey GP. Anti‐adipogenic β‐sitosterol and lupeol from
Moringa oleifera
suppress adipocyte differentiation through regulation of cell cycle progression. J Food Biochem 2022; 46:e14170. [DOI: 10.1111/jfbc.14170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/22/2022] [Accepted: 03/22/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Karunamoorthy Vasanth
- Division of Molecular Biology Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology Kattankulathur India
| | - Guha Chowdhury Minakshi
- Division of Molecular Biology Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology Kattankulathur India
| | - Karthick Velu
- Centre for Ocean Research Sathyabama Institute of Science and Technology Chennai India
| | - Tanu Priya
- Division of Molecular Biology Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology Kattankulathur India
| | - R. Mohan Kumar
- Division of Phytochemistry Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology Kattankulathur India
| | - Ilango Kaliappan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy SRM Institute of Science and Technology Kattankulathur India
| | - Govind Prasad Dubey
- National Facility for Tribal and Herbal Medicine Institute of Medical Sciences, Banaras Hindu University Varanasi India
| |
Collapse
|
3
|
Kawamura M, Goda N, Hariya N, Kimura M, Ishiyama S, Kubota T, Mochizuki K. Medium-chain fatty acids enhance expression and histone acetylation of genes related to lipid metabolism in insulin-resistant adipocytes. Biochem Biophys Rep 2022; 29:101196. [PMID: 35028437 PMCID: PMC8741418 DOI: 10.1016/j.bbrep.2021.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/07/2021] [Accepted: 12/22/2021] [Indexed: 11/05/2022] Open
Abstract
Background The expressions of genes related to lipid metabolism are decreased in adipocytes with insulin resistance. In this study, we examined the effects of fatty acids on the reduced expressions and histone acetylation of lipid metabolism-related genes in 3T3-L1 adipocytes treated with insulin resistance induced by tumor necrosis factor (TNF)-α. Methods Short-, medium-, and long-chain fatty acid were co-administered with TNF-α in 3T3-L1 adipocytes. Then, mRNA expressions and histone acetylation of genes involved in lipid metabolism were determined using mRNA microarrays, qRT-PCR, and chromatin immunoprecipitation assays. Results We found in microarray and subsequent qRT-PCR analyses that the expression levels of several lipid metabolism-related genes, including Gpd1, Cidec, and Cyp4b1, were reduced by TNF-α treatment and restored by co-treatment with a short-chain fatty acid (C4: butyric acid) and medium-chain fatty acids (C8: caprylic acid and C10: capric acid). The pathway analysis of the microarray showed that capric acid enhanced mRNA levels of genes in the PPAR signaling pathway and adipogenesis genes in the TNF-α-treated adipocytes. Histone acetylation around Cidec and Gpd1 genes were also reduced by TNF-α treatment and recovered by co-administration with short- and medium-chain fatty acids. General significance Medium- and short-chain fatty acids induce the expressions of Cidec and Gpd1, which are lipid metabolism-related genes in insulin-resistant adipocytes, by promoting histone acetylation around these genes. Expressions of lipid metabolism genes are reduced in insulin-resistant adipocytes. Short- and medium-chain fatty acids inhibit lipid metabolism gene downregulation. Capric acid enhances expressions of PPAR signaling and adipogenesis genes. This mechanism involves recovery of histone acetylation in lipid metabolism genes.
Collapse
Affiliation(s)
- Musashi Kawamura
- Graduate School of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi, 400-8510, Japan
| | - Naoki Goda
- Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi, 400-8510, Japan
| | - Natsuyo Hariya
- Department of Nutrition, Faculty of Health and Nutrition, Yamanashi Gakuin University, 2-4-5, Sakaori, Kofu, Yamanashi, 400-8575, Japan
| | - Mayu Kimura
- Graduate School of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi, 400-8510, Japan
| | - Shiori Ishiyama
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi, 400-8510, Japan.,Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi, 400-8510, Japan
| | - Takeo Kubota
- Department of Child Studies, Faculty of Child Studies, Seitoku University, 550, Iwase, Matsudo, Chiba, 271-8555, Japan
| | - Kazuki Mochizuki
- Graduate School of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi, 400-8510, Japan.,Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi, 400-8510, Japan.,Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi, 400-8510, Japan
| |
Collapse
|
4
|
Mochizuki K, Ishiyama S, Hariya N, Goda T. Regulation of Carbohydrate-Responsive Metabolic Genes by Histone Acetylation and the Acetylated Histone Reader BRD4 in the Gene Body Region. Front Mol Biosci 2021; 8:682696. [PMID: 34336926 PMCID: PMC8321877 DOI: 10.3389/fmolb.2021.682696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
Studies indicate that induction of metabolic gene expression by nutrient intake, and in response to subsequently secreted hormones, is regulated by transcription factors binding to cis-elements and associated changes of epigenetic memories (histone modifications and DNA methylation) located in promoter and enhancer regions. Carbohydrate intake-mediated induction of metabolic gene expression is regulated by histone acetylation and the histone acetylation reader bromodomain-containing protein 4 (BRD4) on the gene body region, which corresponds to the transcribed region of the gene. In this review, we introduce carbohydrate-responsive metabolic gene regulation by (i) transcription factors and epigenetic memory in promoter/enhancer regions (promoter/enhancer-based epigenetics), and (ii) histone acetylation and BRD4 in the gene body region (gene body-based epigenetics). Expression of carbohydrate-responsive metabolic genes related to nutrient digestion and absorption, fat synthesis, inflammation in the small intestine, liver and white adipose tissue, and in monocytic/macrophage-like cells are regulated by various transcription factors. The expression of these metabolic genes are also regulated by transcription elongation via histone acetylation and BRD4 in the gene body region. Additionally, the expression of genes related to fat synthesis, and the levels of acetylated histones and BRD4 in fat synthesis-related genes, are downregulated in white adipocytes under insulin resistant and/or diabetic conditions. In contrast, expression of carbohydrate-responsive metabolic genes and/or histone acetylation and BRD4 binding in the gene body region of these genes, are upregulated in the small intestine, liver, and peripheral leukocytes (innate leukocytes) under insulin resistant and/or diabetic conditions. In conclusion, histone acetylation and BRD4 binding in the gene body region as well as transcription factor binding in promoter/enhancer regions regulate the expression of carbohydrate-responsive metabolic genes in many metabolic organs. Insulin resistant and diabetic conditions induce the development of metabolic diseases, including type 2 diabetes, by reducing the expression of BRD4-targeted carbohydrate-responsive metabolic genes in white adipose tissue and by inducing the expression of BRD4-targeted carbohydrate-responsive metabolic genes in the liver, small intestine, and innate leukocytes including monocytes/macrophages and neutrophils.
Collapse
Affiliation(s)
- Kazuki Mochizuki
- Department of Local Produce and Food Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Yamanashi, Japan
| | - Shiori Ishiyama
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Yamanashi, Japan
| | - Natsuyo Hariya
- Department of Nutrition, Faculty of Health and Nutrition, Yamanashi Gakuin University, Yamanashi, Japan
| | - Toshinao Goda
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|