1
|
Nakajima T, Tamura S, Kawabata-Iwakawa R, Itoh H, Hasegawa H, Kobari T, Harasawa S, Sekine A, Nishiyama M, Kurabayashi M, Imoto K, Kaneko Y, Nakatani Y, Horie M, Ishii H. Novel KCNQ1 Q234K variant, identified in patients with long QT syndrome and epileptiform activity, induces both gain- and loss-of-function of slowly activating delayed rectifier potassium currents. Front Physiol 2024; 15:1401822. [PMID: 39100276 PMCID: PMC11294085 DOI: 10.3389/fphys.2024.1401822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/10/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction KCNQ1 and KCNE1 form slowly activating delayed rectifier potassium currents (IKs). Loss-of-function of IKs by KCNQ1 variants causes type-1 long QT syndrome (LQTS). Also, some KCNQ1 variants are reported to cause epilepsy. Segment 4 (S4) of voltage-gated potassium channels has several positively-charged amino acids that are periodically aligned, and acts as a voltage-sensor. Intriguingly, KCNQ1 has a neutral-charge glutamine at the third position (Q3) in the S4 (Q234 position in KCNQ1), which suggests that the Q3 (Q234) may play an important role in the gating properties of IKs. We identified a novel KCNQ1 Q234K (substituted for a positively-charged lysine) variant in patients (a girl and her mother) with LQTS and epileptiform activity on electroencephalogram. The mother had been diagnosed with epilepsy. Therefore, we sought to elucidate the effects of the KCNQ1 Q234K on gating properties of IKs. Methods Wild-type (WT)-KCNQ1 and/or Q234K-KCNQ1 were transiently expressed in tsA201-cells with KCNE1 (E1) (WT + E1-channels, Q234K + E1-channels, and WT + Q234K + E1-channels), and membrane currents were recorded using whole-cell patch-clamp techniques. Results At 8-s depolarization, current density (CD) of the Q234K + E1-channels or WT + Q234K + E1-channels was significantly larger than the WT + E1-channels (WT + E1: 701 ± 59 pA/pF; Q234K + E1: 912 ± 50 pA/pF, p < 0.01; WT + Q234K + E1: 867 ± 48 pA/pF, p < 0.05). Voltage dependence of activation (VDA) of the Q234K + E1-channels or WT + Q234K + E1-channels was slightly but significantly shifted to depolarizing potentials in comparison to the WT + E1-channels ([V1/2] WT + E1: 25.6 ± 2.6 mV; Q234K + E1: 31.8 ± 1.7 mV, p < 0.05; WT + Q234K + E1: 32.3 ± 1.9 mV, p < 0.05). Activation rate of the Q234K + E1-channels or WT + Q234K + E1-channels was significantly delayed in comparison to the WT + E1-channels ([half activation time] WT + E1: 664 ± 37 ms; Q234K + E1: 1,417 ± 60 ms, p < 0.01; WT + Q234K + E1: 1,177 ± 71 ms, p < 0.01). At 400-ms depolarization, CD of the Q234K + E1-channels or WT + Q234K + E1-channels was significantly decreased in comparison to the WT + E1-channels (WT + E1: 392 ± 42 pA/pF; Q234K + E1: 143 ± 12 pA/pF, p < 0.01; WT + Q234K + E1: 209 ± 24 pA/pF, p < 0.01) due to delayed activation rate and depolarizing shift of VDA. Conclusion The KCNQ1 Q234K induced IKs gain-of-function during long (8-s)-depolarization, while loss of-function during short (400-ms)-depolarization, which indicates that the variant causes LQTS, and raises a possibility that the variant may also cause epilepsy. Our data provide novel insights into the functional consequences of charge addition on the Q3 in the S4 of KCNQ1.
Collapse
Affiliation(s)
- Tadashi Nakajima
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shuntaro Tamura
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi, Japan
| | - Hideki Itoh
- Division of Patient Safety, Hiroshima University Hospital, Hiroshima, Japan
| | - Hiroshi Hasegawa
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takashi Kobari
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shun Harasawa
- Division of Neurology, Japanese Red Cross Maebashi Hospital, Maebashi, Japan
| | - Akiko Sekine
- Division of Neurology, Japanese Red Cross Maebashi Hospital, Maebashi, Japan
| | | | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Keiji Imoto
- National Institutes of Natural Sciences, Tokyo, Japan
| | - Yoshiaki Kaneko
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yosuke Nakatani
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Minoru Horie
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Ohtsu, Japan
| | - Hideki Ishii
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
2
|
Kojima A, Fukushima Y, Matsuura H. Prediction of anesthetic torsadogenicity using a human ventricular cell model. J Anesth 2023; 37:806-810. [PMID: 37524993 DOI: 10.1007/s00540-023-03238-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
This simulation study was designed to predict the torsadogenicity of sevoflurane and propofol in healthy control, as well as type 1 and type 2 long QT syndrome (LQT1 and LQT2, respectively), using the O'Hara-Rudy dynamic model. LQT1 and LQT2 models were simulated by decreasing the conductances of slowly and rapidly activating delayed rectifier K+ currents (IKs and IKr, respectively) by 50%, respectively. Action potential duration at 50% repolarization level (APD50) and diastolic intracellular Ca2+ concentration were measured in epicardial cell during administration of sevoflurane (1 ~ 5%) and propofol (1 ~ 10 μM). Torsadogenicity can be predicted from the relationship between APD50 and diastolic intracellular Ca2+ concentration, which is classified by the decision boundary. Whereas the relationships in control and LQT1 models were distributed on nontorsadogenic side in the presence of sevoflurane at all tested concentrations, those in LQT2 models were shifted to torsadogenic side by concentrations of ≥ 2%. In all three models, propofol shifted the relationships in a direction away from the decision boundary on nontorsadogenic side. Our findings suggest that sevoflurane, but not propofol, exerts torsadogenicity in patients with reduced IKr, such as LQT2 patients. Caution should be paid to the occurrence of arrhythmia during sevoflurane anesthesia in patients with reduced IKr.
Collapse
Affiliation(s)
- Akiko Kojima
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan.
| | - Yutaka Fukushima
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
3
|
Dokuchaev A, Kursanov A, Balakina-Vikulova NA, Katsnelson LB, Solovyova O. The importance of mechanical conditions in the testing of excitation abnormalities in a population of electro-mechanical models of human ventricular cardiomyocytes. Front Physiol 2023; 14:1187956. [PMID: 37362439 PMCID: PMC10285544 DOI: 10.3389/fphys.2023.1187956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Background: Populations of in silico electrophysiological models of human cardiomyocytes represent natural variability in cell activity and are thoroughly calibrated and validated using experimental data from the human heart. The models have been shown to predict the effects of drugs and their pro-arrhythmic risks. However, excitation and contraction are known to be tightly coupled in the myocardium, with mechanical loads and stretching affecting both mechanics and excitation through mechanisms of mechano-calcium-electrical feedback. However, these couplings are not currently a focus of populations of cell models. Aim: We investigated the role of cardiomyocyte mechanical activity under different mechanical conditions in the generation, calibration, and validation of a population of electro-mechanical models of human cardiomyocytes. Methods: To generate a population, we assumed 11 input parameters of ionic currents and calcium dynamics in our recently developed TP + M model as varying within a wide range. A History matching algorithm was used to generate a non-implausible parameter space by calibrating the action potential and calcium transient biomarkers against experimental data and rejecting models with excitation abnormalities. The population was further calibrated using experimental data on human myocardial force characteristics and mechanical tests involving variations in preload and afterload. Models that passed the mechanical tests were validated with additional experimental data, including the effects of drugs with high or low pro-arrhythmic risk. Results: More than 10% of the models calibrated on electrophysiological data failed mechanical tests and were rejected from the population due to excitation abnormalities at reduced preload or afterload for cell contraction. The final population of accepted models yielded action potential, calcium transient, and force/shortening outputs consistent with experimental data. In agreement with experimental and clinical data, the models demonstrated a high frequency of excitation abnormalities in simulations of Dofetilide action on the ionic currents, in contrast to Verapamil. However, Verapamil showed a high frequency of failed contractions at high concentrations. Conclusion: Our results highlight the importance of considering mechanoelectric coupling in silico cardiomyocyte models. Mechanical tests allow a more thorough assessment of the effects of interventions on cardiac function, including drug testing.
Collapse
Affiliation(s)
- Arsenii Dokuchaev
- Laboratory of Mathematical Physiology, Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia
| | - Alexander Kursanov
- Laboratory of Mathematical Physiology, Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia
- Laboratory of Mathematical Modeling in Physiology and Medicine Based on Supercomputers, Ural Federal University, Ekaterinburg, Russia
| | - Nathalie A. Balakina-Vikulova
- Laboratory of Mathematical Physiology, Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia
- Laboratory of Mathematical Modeling in Physiology and Medicine Based on Supercomputers, Ural Federal University, Ekaterinburg, Russia
| | - Leonid B. Katsnelson
- Laboratory of Mathematical Physiology, Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia
- Laboratory of Mathematical Modeling in Physiology and Medicine Based on Supercomputers, Ural Federal University, Ekaterinburg, Russia
| | - Olga Solovyova
- Laboratory of Mathematical Physiology, Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia
- Laboratory of Mathematical Modeling in Physiology and Medicine Based on Supercomputers, Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
4
|
Abstract
The physiological heart function is controlled by a well-orchestrated interplay of different ion channels conducting Na+, Ca2+ and K+. Cardiac K+ channels are key players of cardiac repolarization counteracting depolarizating Na+ and Ca2+ currents. In contrast to Na+ and Ca2+, K+ is conducted by many different channels that differ in activation/deactivation kinetics as well as in their contribution to different phases of the action potential. Together with modulatory subunits these K+ channel α-subunits provide a wide range of repolarizing currents with specific characteristics. Moreover, due to expression differences, K+ channels strongly influence the time course of the action potentials in different heart regions. On the other hand, the variety of different K+ channels increase the number of possible disease-causing mutations. Up to now, a plethora of gain- as well as loss-of-function mutations in K+ channel forming or modulating proteins are known that cause severe congenital cardiac diseases like the long-QT-syndrome, the short-QT-syndrome, the Brugada syndrome and/or different types of atrial tachyarrhythmias. In this chapter we provide a comprehensive overview of different K+ channels in cardiac physiology and pathophysiology.
Collapse
|
5
|
Kojima A, Mi X, Fukushima Y, Ding WG, Omatsu-Kanbe M, Matsuura H. Elevation of propofol sensitivity of cardiac I Ks channel by KCNE1 polymorphism D85N. Br J Pharmacol 2021; 178:2690-2708. [PMID: 33763865 DOI: 10.1111/bph.15460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The slowly activating delayed rectifier K+ channel (IKs ), composed of pore-forming KCNQ1 α-subunits and ancillary KCNE1 β-subunits, regulates ventricular repolarization in human heart. Propofol, at clinically used concentrations, modestly inhibits the intact (wild-type) IKs channels and is therefore unlikely to appreciably prolong QT interval in ECG during anaesthesia. However, little information is available concerning the inhibitory effect of propofol on IKs channel associated with its gene variants implicated in QT prolongation. The KCNE1 single nucleotide polymorphism leading to D85N is associated with drug-induced QT prolongation and therefore regarded as a clinically important genetic variant. This study examined whether KCNE1-D85N affects the sensitivity of IKs to inhibition by propofol. EXPERIMENTAL APPROACH Whole-cell patch-clamp and immunostaining experiments were conducted in HEK293 cells and/or mouse cardiomyocyte-derived HL-1 cells, transfected with wild-type KCNQ1, wild-type or variant KCNE1 cDNAs. KEY RESULTS Propofol inhibited KCNQ1/KCNE1-D85N current more potently than KCNQ1/KCNE1 current in HEK293 cells and HL-1 cells. Immunostaining experiments in HEK293 cells revealed that pretreatment with propofol (10 μM) did not appreciably affect cell membrane expression of KCNQ1 and KCNE1 proteins in KCNQ1/KCNE1 and KCNQ1/KCNE1-D85N channels. CONCLUSION AND IMPLICATIONS The KCNE1 polymorphism D85N significantly elevates the sensitivity of IKs to inhibition by propofol. This study detects a functionally important role of KCNE1-D85N polymorphism in conferring genetic susceptibility to propofol-induced QT prolongation and further suggests the possibility that the inhibitory action of anaesthetics on ionic currents becomes exaggerated in patients carrying variants in genes encoding ion channels.
Collapse
Affiliation(s)
- Akiko Kojima
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Japan
| | - Xinya Mi
- Department of Physiology, Shiga University of Medical Science, Otsu, Japan
| | - Yutaka Fukushima
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Japan
| | - Wei-Guang Ding
- Department of Physiology, Shiga University of Medical Science, Otsu, Japan
| | | | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|