1
|
Ferreira Alves G, Oliveira JG, Nakashima MA, Delfrate G, Sordi R, Assreuy J, da Silva-Santos JE, Collino M, Fernandes D. Cardiovascular effects of Roflumilast during sepsis: Risks or benefits? Eur J Pharmacol 2024; 983:177015. [PMID: 39332796 DOI: 10.1016/j.ejphar.2024.177015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/06/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND Phosphodiesterase-4 (PDE4) is responsible for terminating cyclic adenosine monophosphate (cAMP) signalling. PDE4 inhibitors, such as roflumilast (RFM), have anti-inflammatory activity and have been studied in inflammation-induced tissue damage in sepsis. However, the role of RFM on cardiovascular derangements induced by sepsis is still unknown. Thus, we aimed to evaluate the potential effects of RFM on cardiovascular collapse and multiorgan damage caused by sepsis. METHODS Sepsis was induced by cecal ligation and puncture (CLP) in male rats. Six hours after the CLP or sham procedure, animals were randomly assigned to receive either RFM (0.3 mg/kg) or vehicle subcutaneously, and cardiovascular parameters were assessed 24 h after the surgery and organ/plasma samples were collected for further analyses. RESULTS Sepsis induced hypotension, tachycardia, reduced renal blood flow (RBF) and hyporeactivity to vasoconstrictors both in vivo and ex vivo. RFM treatment increased systemic cAMP levels and RBF. RFM also attenuated hypoperfusion and liver damage induced by CLP. Furthermore, RFM reduced systemic nitric oxide (NO) levels in septic rats, while there were no changes in hepatic NOS-2 expression. Nevertheless, RFM exacerbated sepsis-induced hypotension and tachycardia without ameliorating vascular hyporeactivity. CONCLUSION Our data show that PDE-4 inhibition protects septic rats from hepatic injury and improves renal perfusion. However, RFM worsened hemodynamic parameters and showed no protection against sepsis-induced cardiovascular dysfunction and mortality. Thus, despite the anti-inflammatory benefits of RFM, its application in sepsis should be approached cautiously.
Collapse
Affiliation(s)
- Gustavo Ferreira Alves
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil; Department of Neurosciences "Rita Levi Montalcini", University of Turin, Turin, Italy
| | | | | | - Gabrielle Delfrate
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Regina Sordi
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Jamil Assreuy
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Massimo Collino
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Daniel Fernandes
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
2
|
Delfrate G, Albino LB, Assreuy J, Fernandes D. CECAL SLURRY AS AN ALTERNATIVE MODEL TO CECAL LIGATION AND PUNCTURE FOR THE STUDY OF SEPSIS-INDUCED CARDIOVASCULAR DYSFUNCTION. Shock 2024; 62:547-555. [PMID: 38888572 DOI: 10.1097/shk.0000000000002412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
ABSTRACT Sepsis is a life-threatening condition widely studied by animal models. Cecal ligation and puncture (CLP) is still regarded as the gold standard model for sepsis. However, CLP has limitations due to its invasiveness and variability. Cecal slurry (CS) model is a nonsurgical and thus less invasive alternative. However, the lack of standardization of the CS model in the literature limits its practical application. Additionally, it is not well studied whether CS model reproduces septic cardiovascular dysfunction in rats, which is a crucial issue in septic patients. Thus, this study aimed to standardize the CS model in Wistar rats and evaluate sepsis-induced cardiovascular dysfunction compared to CLP. Our results showed that CS model induced important features of sepsis cardiovascular dysfunction 24 h after its onset, such as hypotension, tachycardia, and decreased contractile response to vasoconstrictors both in vivo and ex vivo as well changes in renal blood flow. Increases in blood lactate, AST, ALT, creatinine, and urea indicated organ dysfunction. CS model also induced increased production of nitric oxide metabolites and bacterial spread to tissues. CS model causes less animal suffering, it is a nonsurgical model, and, more importantly, it replicates the cardiovascular dysfunction induced by sepsis with better homogeneity than CLP. Therefore, CS model serves as an alternative and possibly as a better model for sepsis research.
Collapse
Affiliation(s)
- Gabrielle Delfrate
- Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | | | | |
Collapse
|
3
|
Kumar V, Barwal A, Sharma N, Mir DS, Kumar P, Kumar V. Therapeutic proteins: developments, progress, challenges, and future perspectives. 3 Biotech 2024; 14:112. [PMID: 38510462 PMCID: PMC10948735 DOI: 10.1007/s13205-024-03958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Proteins are considered magic molecules due to their enormous applications in the health sector. Over the past few decades, therapeutic proteins have emerged as a promising treatment option for various diseases, particularly cancer, cardiovascular disease, diabetes, and others. The formulation of protein-based therapies is a major area of research, however, a few factors still hinder the large-scale production of these therapeutic products, such as stability, heterogenicity, immunogenicity, high cost of production, etc. This review provides comprehensive information on various sources and production of therapeutic proteins. The review also summarizes the challenges currently faced by scientists while developing protein-based therapeutics, along with possible solutions. It can be concluded that these proteins can be used in combination with small molecular drugs to give synergistic benefits in the future.
Collapse
Affiliation(s)
- Vimal Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Arti Barwal
- Department of Microbial Biotechnology, Panjab University, South Campus, Sector-25, Chandigarh, 160014 India
| | - Nitin Sharma
- Department of Biotechnology, Chandigarh Group of Colleges, Mohali, Punjab 140307 India
| | - Danish Shafi Mir
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Pradeep Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| | - Vikas Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| |
Collapse
|
4
|
Zhao K, Hua D, Yang C, Wu X, Mao Y, Sheng Y, Sun W, Li Y, Kong X, Li P. Nuclear import of Mas-related G protein-coupled receptor member D induces pathological cardiac remodeling. Cell Commun Signal 2023; 21:181. [PMID: 37488545 PMCID: PMC10364433 DOI: 10.1186/s12964-023-01168-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/14/2023] [Indexed: 07/26/2023] Open
Abstract
Alamandine (Ala), a ligand of Mas-related G protein-coupled receptor, member D (MrgD), alleviates angiotensin II (AngII)-induced cardiac hypertrophy. However, the specific physiological and pathological role of MrgD is not yet elucidated. Here, we found that MrgD expression increased under various pathological conditions. Then, MrgD knockdown prevented AngII-induced cardiac hypertrophy and fibrosis via inactivating Gαi-mediacted downstream signaling pathways, including the phosphorylation of p38 (p-P38), while MrgD overexpression induced pathological cardiac remodeling. Next, Ala, like silencing MrgD, exerted its cardioprotective effects by inhibiting Ang II-induced nuclear import of MrgD. MrgD interacted with p-P38 and promoted its entry into the nucleus under Ang II stimulation. Our results indicated that Ala was a blocking ligand of MrgD that inhibited downstream signaling pathway, which unveiled the promising cardioprotective effect of silencing MrgD expression on alleviating cardiac remodeling. Video Abstract.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Dongxu Hua
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Chuanxi Yang
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoguang Wu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Yukang Mao
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yanhui Sheng
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Wei Sun
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Yong Li
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| | - Xiangqing Kong
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Peng Li
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
5
|
Chen XS, Wang SH, Liu CY, Gao YL, Meng XL, Wei W, Shou ST, Liu YC, Chai YF. Losartan attenuates sepsis-induced cardiomyopathy by regulating macrophage polarization via TLR4-mediated NF-κB and MAPK signaling. Pharmacol Res 2022; 185:106473. [PMID: 36182039 DOI: 10.1016/j.phrs.2022.106473] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/25/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022]
Abstract
Sepsis-induced cardiomyopathy (SIC) is a serious complication of sepsis with high mortality but no effective treatment. The renin angiotensin (Ang) aldosterone system (RAAS) is activated in patients with sepsis but it is unclear how the Ang II/Ang II type 1 receptor (AT1R) axis contributes to SIC. This study examined the link between the Ang II/AT1R axis and SIC as well as the protective effect of AT1R blockers (ARBs). The Ang II level in peripheral plasma and AT1R expression on monocytes were significantly higher in patients with SIC compared with those in non-SIC patients and healthy controls and were correlated with the degree of myocardial injury. The ARB losartan reduced the infiltration of neutrophils, monocytes, and macrophages into the heart and spleen of SIC mice. Additionally, losartan regulated macrophage polarization from the M1 to the M2 subtype via nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, thereby maintaining the mitochondrial dynamics balance in cardiomyocytes and reducing oxidative stress and cardiomyocyte apoptosis. In conclusion, the plasma Ang II level and AT1R expression on plasma monocytes are an important biomarker in SIC. Therapeutic targeting of AT1R, for example with losartan, can potentially protect against myocardial injury in SIC.
Collapse
Affiliation(s)
- Xin-Sen Chen
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Shu-Hang Wang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Chen-Yan Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Yu-Lei Gao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Xiang-Long Meng
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Wei Wei
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Song-Tao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Yan-Cun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China.
| | - Yan-Fen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China.
| |
Collapse
|
6
|
Shi S, Pan X, Feng H, Zhang S, Shi S, Lin W. Identification of transcriptomics biomarkers for the early prediction of the prognosis of septic shock from pneumopathies. BMC Infect Dis 2021; 21:1190. [PMID: 34836493 PMCID: PMC8619650 DOI: 10.1186/s12879-021-06888-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 11/19/2021] [Indexed: 11/21/2022] Open
Abstract
Background Identifying the biological subclasses of septic shock might provide specific targeted therapies for the treatment and prognosis of septic shock. It might be possible to find biological markers for the early prediction of septic shock prognosis. Methods The data were obtained from the Gene Expression Omnibus databases (GEO) in NCBI. GO enrichment and KEGG pathway analyses were performed to investigate the functional annotation of up- and downregulated DEGs. ROC curves were drawn, and their areas under the curves (AUCs) were determined to evaluate the predictive value of the key genes. Results 117 DEGs were obtained, including 36 up- and 81 downregulated DEGs. The AUC for the MME gene was 0.879, as a key gene with the most obvious upregulation in septic shock. The AUC for the THBS1 gene was 0.889, as a key downregulated gene with the most obvious downregulation in septic shock. Conclusions The upregulation of MME via the renin-angiotensin system pathway and the downregulation of THBS1 through the PI3K–Akt signaling pathway might have implications for the early prediction of prognosis of septic shock in patients with pneumopathies.
Collapse
Affiliation(s)
- Songchang Shi
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital South Branch, Fujian Provincial Hospital Jinshan Branch, Fuzhou, 350001, Fujian, People's Republic of China
| | - Xiaobin Pan
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital South Branch, Fujian Provincial Hospital Jinshan Branch, Fuzhou, 350001, Fujian, People's Republic of China
| | - Hangwei Feng
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital South Branch, Fujian Provincial Hospital Jinshan Branch, Fuzhou, 350001, Fujian, People's Republic of China
| | - Shujuan Zhang
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital South Branch, Fujian Provincial Hospital Jinshan Branch, Fuzhou, 350001, Fujian, People's Republic of China
| | - Songjing Shi
- Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No.134 East Street, Gulou District, Fuzhou, 350001, Fujian, People's Republic of China.
| | - Wei Lin
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No.134 East Street, Gulou District, Fuzhou, 350001, Fujian, People's Republic of China.
| |
Collapse
|
7
|
Laghlam D, Jozwiak M, Nguyen LS. Renin-Angiotensin-Aldosterone System and Immunomodulation: A State-of-the-Art Review. Cells 2021; 10:cells10071767. [PMID: 34359936 PMCID: PMC8303450 DOI: 10.3390/cells10071767] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
The renin–angiotensin system (RAS) has long been described in the field of cardiovascular physiology as the main player in blood pressure homeostasis. However, other effects have since been described, and include proliferation, fibrosis, and inflammation. To illustrate the immunomodulatory properties of the RAS, we chose three distinct fields in which RAS may play a critical role and be the subject of specific treatments. In oncology, RAS hyperactivation has been associated with tumor migration, survival, cell proliferation, and angiogenesis; preliminary data showed promise of the benefit of RAS blockers in patients treated for certain types of cancer. In intensive care medicine, vasoplegic shock has been associated with severe macro- and microcirculatory imbalance. A relative insufficiency in angiotensin II (AngII) was associated to lethal outcomes and synthetic AngII has been suggested as a specific treatment in these cases. Finally, in solid organ transplantation, both AngI and AngII have been associated with increased rejection events, with a regional specificity in the RAS activity. These elements emphasize the complexity of the direct and indirect interactions of RAS with immunomodulatory pathways and warrant further research in the field.
Collapse
|