1
|
Zhang Q, Wang F, Huang Y, Gao P, Wang N, Tian H, Chen A, Li Y, Wang F. PGD2/PTGDR2 Signal Affects the Viability, Invasion, Apoptosis, and Stemness of Gastric Cancer Stem Cells and Prevents the Progression of Gastric Cancer. Comb Chem High Throughput Screen 2024; 27:933-946. [PMID: 37526190 DOI: 10.2174/1386207326666230731103112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/25/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Prostaglandin D2 (PGD2) has been shown to restrict the occurrence and development of multiple cancers; nevertheless, its underlying molecular mechanism has not been fully elucidated. The present study investigated the effect of PGD2 on the biological function of the enriched gastric cancer stem cells (GCSCs), as well as its underlying molecular mechanism, to provide a theoretical basis and potential therapeutic drugs for gastric cancer (GC) treatment. METHODS The plasma PGD2 levels were detected by Enzyme-linked immunosorbent assay (ELISA). Silencing of lipocalin prostaglandin D synthetases (L-PTGDS) and prostaglandin D2 receptor 2 (PTGDR2) was carried out in GCSCs from SGC-7901 and HGC-27 cell lines. Cell Counting Kit-8, transwell, flow cytometry, and western blotting assays were used to determine cell viability, invasion, apoptosis, and stemness of GCSCs. In vivo xenograft models were used to assess tumor growth. RESULTS Clinically, it was found that the plasma PGD2 level decreased significantly in patients with GC. PGD2 suppressed viability, invasion, and stemness and increased the apoptosis of GCSCs. Downregulating L-PTGDS and PTGDR2 promoted viability, invasion, and stemness and reduced the apoptosis of GCSCs. Moreover, the inhibition of GCSCs induced by PGD2 was eliminated by downregulating the expression of PTGDR2. The results of in vivo experiments were consistent with those of in vitro experiments. CONCLUSION Our data suggest that PGD2 may be an important marker and potential therapeutic target in the clinical management of GC. L-PTGDS/PTGDR2 may be one of the critical targets for GC therapy. The PGD2/PTGDR2 signal affects the viability, invasion, apoptosis, and stemness of GCSCs and prevents the progression of GC.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Feifan Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, China
| | - Yan Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, China
| | - Peiyao Gao
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, China
| | - Na Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, China
| | - Hengjin Tian
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, China
| | - Amin Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, China
| | - Yuyun Li
- School of Laboratory Medicine, Bengbu Medical College, Bengbu, China
| | - Fengchao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
2
|
Najar M, Alsabri SG, Guedi GG, Merimi M, Lavoie F, Grabs D, Pelletier JP, Martel-Pelletier J, Benderdour M, Fahmi H. Role of epigenetics and the transcription factor Sp1 in the expression of the D prostanoid receptor 1 in human cartilage. Front Cell Dev Biol 2023; 11:1256998. [PMID: 38099292 PMCID: PMC10720455 DOI: 10.3389/fcell.2023.1256998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
D prostanoid receptor 1 (DP1), a prostaglandin D2 receptor, plays a central role in the modulation of inflammation and cartilage metabolism. We have previously shown that activation of DP1 signaling downregulated catabolic responses in cultured chondrocytes and was protective in mouse osteoarthritis (OA). However, the mechanisms underlying its transcriptional regulation in cartilage remained poorly understood. In the present study, we aimed to characterize the human DP1 promoter and the role of DNA methylation in DP1 expression in chondrocytes. In addition, we analyzed the expression level and methylation status of the DP1 gene promoter in normal and OA cartilage. Deletion and site-directed mutagenesis analyses identified a minimal promoter region (-250/-120) containing three binding sites for specificity protein 1 (Sp1). Binding of Sp1 to the DP1 promoter was confirmed using electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assays. Treatment with the Sp1 inhibitor mithramycin A reduced DP1 promoter activity and DP1 mRNA expression. Inhibition of DNA methylation by 5-Aza-2'-deoxycytidine upregulated DP1 expression, and in vitro methylation reduced the DP1 promoter activity. Neither the methylation status of the DP1 promoter nor the DP1 expression level were different between normal and OA cartilage. In conclusion, our results suggest that the transcription factor Sp1 and DNA methylation are important determinants of DP1 transcription regulation. They also suggest that the methylation status and expression level of DP1 are not altered in OA cartilage. These findings will improve our understanding of the regulatory mechanisms of DP1 transcription and may facilitate the development of intervention strategies involving DP1.
Collapse
Affiliation(s)
- Mehdi Najar
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Sami G. Alsabri
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Gadid G. Guedi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Makram Merimi
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Frédéric Lavoie
- Departement of Orthopedic Surgery, University of Montreal Hospital Center (CHUM), Montréal, QC, Canada
| | - Detlev Grabs
- Research Unit in Clinical and Functional Anatomy, Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Mohamed Benderdour
- Orthopedics Research Laboratory, Research Center, Hôpital du Sacré-Cœur de Montréal, Université de Montréal, Montréal, QC, Canada
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
3
|
Yang F, Kong J, Zong Y, Li Z, Lyu M, Li W, Li W, Zhu H, Chen S, Zhao X, Wang J. Autophagy-Related Genes Are Involved in the Progression and Prognosis of Asthma and Regulate the Immune Microenvironment. Front Immunol 2022; 13:897835. [PMID: 35619697 PMCID: PMC9127139 DOI: 10.3389/fimmu.2022.897835] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Autophagy has been proven to play an important role in the pathogenesis of asthma and the regulation of the airway epithelial immune microenvironment. However, a systematic analysis of the clinical importance of autophagy-related genes (ARGs) regulating the immune microenvironment in patients with asthma remains lacking. Methods Clustering based on the k-means unsupervised clustering method was performed to identify autophagy-related subtypes in asthma. ARG-related diagnostic markers in low-autophagy subtypes were screened, the infiltration of immune cells in the airway epithelium was evaluated by the CIBERSORT, and the correlation between diagnostic markers and infiltrating immune cells was analyzed. On the basis of the expression of ARGs and combined with asthma control, a risk prediction model was established and verified by experiments. Results A total of 66 differentially expressed ARGs and 2 subtypes were identified between mild to moderate and severe asthma. Significant differences were observed in asthma control and FEV1 reversibility between the two subtypes, and the low-autophagy subtype was closely associated with severe asthma, energy metabolism, and hormone metabolism. The autophagy gene SERPINB10 was identified as a diagnostic marker and was related to the infiltration of immune cells, such as activated mast cells and neutrophils. Combined with asthma control, a risk prediction model was constructed, the expression of five risk genes was supported by animal experiments, was established for ARGs related to the prediction model. Conclusion Autophagy plays a crucial role in the diversity and complexity of the asthma immune microenvironment and has clinical value in treatment response and prognosis.
Collapse
Affiliation(s)
- Fan Yang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jingwei Kong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhan Zong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhuqing Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mingsheng Lyu
- Center of Respiratory, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing, China.,Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wanyang Li
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| | - Wenle Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Haoyue Zhu
- Beijing Hospital of Traditional Chinese Medicine (TCM), Capital Medical University, Beijing, China
| | - Shunqi Chen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoshan Zhao
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ji Wang
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|