1
|
Marinescu M. Bisindole Compounds-Synthesis and Medicinal Properties. Antibiotics (Basel) 2024; 13:1212. [PMID: 39766602 PMCID: PMC11727274 DOI: 10.3390/antibiotics13121212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/15/2025] Open
Abstract
The indole nucleus stands out as a pharmacophore, among other aromatic heterocyclic compounds with remarkable therapeutic properties, such as benzimidazole, pyridine, quinoline, benzothiazole, and others. Moreover, a series of recent studies refer to strategies for the synthesis of bisindole derivatives, with various medicinal properties, such as antimicrobial, antiviral, anticancer, anti-Alzheimer, anti-inflammatory, antioxidant, antidiabetic, etc. Also, a series of natural bisindole compounds are mentioned in the literature for their various biological properties and as a starting point in the synthesis of other related bisindoles. Drawing from these data, we have proposed in this review to provide an overview of the synthesis techniques and medicinal qualities of the bisindolic compounds that have been mentioned in recent literature from 2010 to 2024 as well as their numerous uses in the chemistry of materials, nanomaterials, dyes, polymers, and corrosion inhibitors.
Collapse
Affiliation(s)
- Maria Marinescu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Soseaua Panduri, 030018 Bucharest, Romania
| |
Collapse
|
2
|
Yang Y, Rao T, Wei S, Cheng J, Zhan Y, Lin T, Chen J, Zhong X, Jiang Y, Yang S. Role of inflammatory cytokines and the gut microbiome in vascular dementia: insights from Mendelian randomization analysis. Front Microbiol 2024; 15:1398618. [PMID: 39247699 PMCID: PMC11380139 DOI: 10.3389/fmicb.2024.1398618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/10/2024] [Indexed: 09/10/2024] Open
Abstract
Background Both inflammatory cytokines and the gut microbiome are susceptibility factors for vascular dementia (VaD). The trends in the overall changes in the dynamics of inflammatory cytokines and in the composition of the gut microbiome are influenced by a variety of factors, making it difficult to fully explain the different effects of both on the different subtypes of VaD. Therefore, this Mendelian randomization (MR) study identified the inflammatory cytokines and gut microbiome members that influence the risk of developing VaD and their causal effects, and investigated whether inflammatory cytokines are gut microbiome mediators affecting VaD. Methods We obtained pooled genome-wide association study (GWAS) data for 196 gut microbiota and 41 inflammatory cytokines and used GWAS data for six VaD subtypes, namely, VaD (mixed), VaD (multiple infarctions), VaD (other), VaD (subcortical), VaD (sudden onset), and VaD (undefined). We used the inverse-variance weighted (IVW) method as the primary MR analysis method. We conducted sensitivity analyses and reverse MR analyses to examine reverse causal associations, enhancing the reliability and stability of the conclusions. Finally, we used multivariable MR (MVMR) analysis to assess the direct causal effects of inflammatory cytokines and the gut microbiome on the risk of VaD, and performed mediation MR analysis to explore whether inflammatory factors were potential mediators. Results Our two-sample MR study revealed relationships between the risk of six VaD subtypes and inflammatory cytokines and the gut microbiota: 7 inflammatory cytokines and 14 gut microbiota constituents were positively correlated with increased VaD subtype risk, while 2 inflammatory cytokines and 11 gut microbiota constituents were negatively correlated with decreased VaD subtype risk. After Bonferroni correction, interleukin-18 was correlated with an increased risk of VaD (multiple infarctions); macrophage migration inhibitory factor was correlated with an increased risk of VaD (sudden onset); interleukin-4 was correlated with a decreased risk of VaD (other); Ruminiclostridium 6 and Bacillales were positively and negatively correlated with the risk of VaD (undefined), respectively; Negativicutes and Selenomonadales were correlated with a decreased risk of VaD (mixed); and Melainabacteria was correlated with an increased risk of VaD (multiple infarctions). Sensitivity analyses revealed no multilevel effects or heterogeneity and no inverse causality between VaD and inflammatory cytokines or the gut microbiota. The MVMR results further confirmed that the causal effects of Negativicutes, Selenomonadales, and Melainabacteria on VaD remain significant. Mediation MR analysis showed that inflammatory cytokines were not potential mediators. Conclusion This study helps us to better understand the pathological mechanisms of VaD and suggests the potential value of targeting increases or decreases in inflammatory cytokines and gut microbiome members for VaD prevention and intervention.
Collapse
Affiliation(s)
- Yihan Yang
- The Institution of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ting Rao
- The Institution of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine Subsidiary Rehabilitation Hospital, Fuzhou, China
| | - Sheng Wei
- Department of General Practice, The Second Affiliated Hospital of Wannan Medical College, Anhui, China
| | - Jing Cheng
- Fujian Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine Subsidiary Rehabilitation Hospital, Fuzhou, China
| | - Ying Zhan
- The Institution of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Teng Lin
- The First Clinical Medical College, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jincheng Chen
- The Institution of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine Subsidiary Rehabilitation Hospital, Fuzhou, China
| | - Xiaoling Zhong
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yijing Jiang
- Fujian Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine Subsidiary Rehabilitation Hospital, Fuzhou, China
| | - Shanli Yang
- Fujian Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine Subsidiary Rehabilitation Hospital, Fuzhou, China
| |
Collapse
|
3
|
Chen CA, Li CX, Zhang ZH, Xu WX, Liu SL, Ni WC, Wang XQ, Cheng FF, Wang QG. Qinzhizhudan formula dampens inflammation in microglia polarization of vascular dementia rats by blocking MyD88/NF-κB signaling pathway: Through integrating network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116769. [PMID: 37400007 DOI: 10.1016/j.jep.2023.116769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 07/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qinzhizhudan Formula (QZZD) is composed of Scutellaria baicalensis Georgi (Huang Qin) extract, Gardenia jasminoides (Zhizi) extract and Suis Fellis Pulvis (Zhudanfen) (ratio of 4:5:6). This formula is optimized from Qingkailing (QKL) injection. Regarding brain injury, QZZD is protective. However, the mechanism by which QZZD treats vascular dementia (VD) has not been elucidated. AIM OF THE STUDY To ascertain QZZD's effect on the treatment of VD and further investigate the molecular mechanisms. MATERIALS AND METHODS In this study, we screened the possible components and targets of QZZD against VD and microglia polarization using network pharmacology (NP), then an animal model of bilateral common carotid artery ligation method (2VO) was induced. Afterward, The Morris water maze was employed to evaluate cognitive ability, and pathological alterations in the CA1 area of the hippocampus were detected using HE and Nissl staining. To confirm the affect of QZZD on VD and its molecular mechanism, the contents of inflammatory factors IL-1β, TNF-α, IL-4, and IL-10 were performed to detect by ELISA, the phenotype polarization of microglia cells was detected by immunofluorescence staining, and the expressions of MyD88, p-IκBα and p-NF-κB p65 in brain tissue were detected by western blot. RESULTS A total of 112 active compounds and 363 common targets of QZZD, microglia polarization, and VD were identified, according to the NP analysis. 38 hub targets were screened out from the PPI network. GO analysis and KEGG pathway analysis showed that QZZD may regulate microglia polarization through anti-inflammatory mechanism such as Toll-like receptor signaling pathway and NF-κB signaling pathway. The further results showed that QZZD can alleviate the memory impairment induced by 2VO. QZZD profoundly rescued brain hippocampus neuronal damage and increased the number of neurons. These advantageous outcomes were linked to the control of microglia polarization. QZZD decreased M1 phenotypic marker expression while increasing M2 phenotypic marker expression. QZZD may controll the polarization of the M1 microglia by blocking the core part of Toll-like receptor signaling pathway, that is the MyD88/NF-κB signaling pathway, which reduced the neurotoxic effects of the microglia. CONCLUSION Here, we explored the anti-VD microglial polarization characteristic of QZZD for the first time and clarified its mechanisms. These findings will provide valuable clues for the discovery of anti-VD agents.
Collapse
Affiliation(s)
- Cong-Ai Chen
- Dongzhimen Hospital Beijing University of Chinese Medicine, Beijing, 100700, China; Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Chang-Xiang Li
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Ze-Han Zhang
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Wen-Xiu Xu
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shu-Ling Liu
- Dongzhimen Hospital Beijing University of Chinese Medicine, Beijing, 100700, China; Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Wen-Chao Ni
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xue-Qian Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Fa-Feng Cheng
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Qing-Guo Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
4
|
Bao M, Bade R, Liu H, Tsambaa B, Shao G, Borjigidai A, Cheng Y. Astragaloside IV against Alzheimer's disease via microglia-mediated neuroinflammation using network pharmacology and experimental validation. Eur J Pharmacol 2023; 957:175992. [PMID: 37598923 DOI: 10.1016/j.ejphar.2023.175992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/11/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases in the world. The effective therapeutic methods and drugs are still not clear. Astragaloside IV (AS-IV), a triterpenoid saponin isolated from the root of Huangqi, has a beneficial effect in the treatment of AD. However, whether AS-IV alters microglia in the inflammation of AD is still ambiguous. In our study, 99 common targets were collected between AS-IV and AD. BCL2 apoptosis regulator (Bcl-2), pro-apoptotic BCL-2 protein BAX, epidermal growth factor receptor (EGFR), and receptor tyrosine phosphatase type C (PTPRC) were screened for inflammation and microglia in the above targets by network pharmacology. Interleukin-1β (IL-1β) and EGFR both interact with signal transducer and activator of transcription 3 (STAT3) by a protein interaction network, and IL-1β had a higher affinity for AS-IV based on molecular docking. Enrichment revealed targets involved in the regulation of neuronal cell bodies, growth factor receptor binding, EGFR tyrosine kinase inhibitor resistance., etc. Besides, AS-IV alleviated the reduced cell proliferation in amyloid-beta (Aβ)-treated microglial BV2 cells. AS-IV affected BV2 cell morphological changes and decreased cluster of differentiation 11b (CD11b) gene, IL-1β, and EGFR mRNA levels increment during lipopolysaccharide (LPS) injury in BV2 cell activation. Therefore, AS-IV may regulate microglial activation and inflammation via EGFR-dependent pathways in AD. EGFR and IL-1β are vital targets that may relate to each other to coregulate downstream molecular functions in the cure of AD. Our study provides a candidate drug and disease target for the treatment of neurodegenerative diseases in the clinic.
Collapse
Affiliation(s)
- MuLan Bao
- Key Laboratory for Ethnomedicine for Ministry of Education, Minzu University of China, Beijing 100081, China; Center on Translational Neuroscience, Minzu University of China, Beijing 100081, China; Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, School of Medical Technology and Anesthesiology, Baotou Medical College, Baotou 014040, China
| | - RenGui Bade
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, School of Medical Technology and Anesthesiology, Baotou Medical College, Baotou 014040, China
| | - Hua Liu
- Key Laboratory for Ethnomedicine for Ministry of Education, Minzu University of China, Beijing 100081, China; Center on Translational Neuroscience, Minzu University of China, Beijing 100081, China
| | - Battseren Tsambaa
- Botanic Garden and Research Institute, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia
| | - Guo Shao
- Center for Translational Medicine, The Third People's Hospital of Longgang District, Shenzhen 518112, China
| | - Almaz Borjigidai
- Key Laboratory for Ethnomedicine for Ministry of Education, Minzu University of China, Beijing 100081, China.
| | - Yong Cheng
- Key Laboratory for Ethnomedicine for Ministry of Education, Minzu University of China, Beijing 100081, China; Center on Translational Neuroscience, Minzu University of China, Beijing 100081, China; Institute of National Security, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
5
|
Uludag N, Üstün E, Serdaroğlu G. Strychnos alkaloids: total synthesis, characterization, DFT investigations, and molecular docking with AChE, BuChE, and HSA. Heliyon 2022; 8:e11990. [DOI: 10.1016/j.heliyon.2022.e11990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/23/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
|
6
|
Mohammadi Ziarani G, Khademi M, Mohajer F, Badiei A, Varma RS. The Synthesis of 2,2-BIS(1-INDOL-3-YL)Acenaphthylene-1(2)-Ones Using Nanocatalysis: Fluorescent Sensing for Cu 2+ Ions. ECOLOGICAL CHEMISTRY AND ENGINEERING S 2022; 29:463-475. [DOI: 10.2478/eces-2022-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Abstract
2,2-bis(1H-indol-3-yl)acenaphthylene-1(2H)-ones were synthesised by the reaction of acenaphthenequinone and 2 equivalents of indole using Fe3O4@SiO2@Si-Pr-NH-CH2CH2NH2 as the basic magnetic nanocatalyst, assembled under greener and sustainable conditions in high purity and yields. Furthermore, the photoluminescence properties of 2,2-bis(2-methyl-1H-indol-3-yl)acenaphthylene-1(2H)-one were exploited for the sensing of copper ions in the mixed solvent systems comprising H2O and CH3CN in excitation wavelength at 410 nm with a detection limit of 9.5 ∙ 10–6 M.
Collapse
Affiliation(s)
- Ghodsi Mohammadi Ziarani
- Department of Organic Chemistry, Faculty of Chemistry , University of Alzahra , Tehran , Iran , P.O. Box: 1993893973, phone/fax: +98821 6613927
| | - Mahdieh Khademi
- Department of Organic Chemistry, Faculty of Chemistry , University of Alzahra , Tehran , Iran , P.O. Box: 1993893973, phone/fax: +98821 6613927
| | - Fatemeh Mohajer
- Department of Organic Chemistry, Faculty of Chemistry , University of Alzahra , Tehran , Iran , P.O. Box: 1993893973, phone/fax: +98821 6613927
| | - Alireza Badiei
- School of Chemistry, College of Science , University of Tehran , Iran
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute , Palacky University , Šlechtitelů 27, 783 71 Olomouc , Czech Republic
| |
Collapse
|
7
|
Yang Y, Zhao X, Zhu Z, Zhang L. Vascular dementia: A microglia's perspective. Ageing Res Rev 2022; 81:101734. [PMID: 36113763 DOI: 10.1016/j.arr.2022.101734] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/28/2022] [Accepted: 09/11/2022] [Indexed: 01/31/2023]
Abstract
Vascular dementia (VaD) is a second most common form of age-related dementia. It is characterized by cognitive impairment associated with vascular pathology, symptoms mainly caused by cerebral damage due to inadequate blood flow to the brain. The pathogenesis of VaD is complex, and a growing body of literature emphasizes on the involvement of microglia in disease development and progression. Here, we review the current knowledge on the role of microglia in regulating neuroinflammation under the pathogenesis of VaD. The commonly used animal and cell models for understanding the disease pathogenesis were summarized. The mechanisms by which microglia contribute to VaD are multifactorial, and we specifically focus on some of the predominant functions of microglia, including chemotaxis, secretory property, phagocytosis, and its crosstalk with other neurovascular unit cells. Finally, potential therapeutic strategies targeting microglia-modulated neuroinflammation are discussed.
Collapse
Affiliation(s)
- Yi Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| | - Xinyuan Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China
| | - Zirui Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China
| | - Lihui Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
8
|
Zheng C, Yang C, Gao D, Zhang L, Li Y, Li L, Zhang L. Cornel Iridoid Glycoside Alleviates Microglia-Mediated Inflammatory Response via the NLRP3/Calpain Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11967-11980. [PMID: 36104266 DOI: 10.1021/acs.jafc.2c03851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Vascular dementia (VaD) is associated with cerebral hypoperfusion, which results in long-term cognitive impairment and memory loss. Cornel iridoid glycoside (CIG) is the major active constituent isolated from the ripe fruit of Cornus officinalis. Previous studies have shown that CIG enhances neurological function in VaD rats. In the present research, we attempted to clarify the molecular processes underlying the role of CIG in neuroinflammation in VaD. We created a chronic cerebral ischemia rat model by ligation of the bilateral common carotid arteries (2VO) and then treated rats with different concentrations of CIG. Comprehensive analyses revealed that CIG ameliorated myelin integrity and neuronal loss. Furthermore, we also found that CIG inhibited polarized microglia activation and attenuated inflammasome-mediated production of proinflammatory cytokines in BV2 microglia cells induced by LPS/IFN-γ and in the brains of 2VO rats. To further elucidate the role of CIG in microglia-mediated inflammatory response, we investigated the expression and activity of calpain. CIG inhibited the expression and activity of calpain 1/2, which was characterized by decreased calpastatin and spectrin αII expression. In particular, intra- and extracellular calpain 1 levels were reduced by CIG. However, CIG showed weak interaction with calpain 1. In addition, we found that CG administration significantly repressed the assembly of the NOD-like receptor protein 3 (NLRP3) inflammasome, including NLRP3, ASC, and caspase-1. In conclusion, our knowledge of the mechanisms by which CIG regulates NLRP3/calpain signaling to influence inflammatory responses offers further insights into potential therapeutic strategies to treat VaD.
Collapse
Affiliation(s)
- Cengceng Zheng
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Cuicui Yang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Dan Gao
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Li Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Yali Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| |
Collapse
|
9
|
Liu S, Cheng F, Ren B, Xu W, Chen C, Ma C, Zhang X, Tang F, Wang Q, Wang X. Qinzhi Zhudan formula improves memory and alleviates neuroinflammation in vascular dementia rats partly by inhibiting the TNFR1-mediated TNF pathway. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|