1
|
Shi R, Sun W, Yin S, Sun T, Yang N, Zhang H, Yao Y, Lai K, Chen X, Yu P. Qihuang Zhuyu formula modulates mitochondrial function to inhibit platelet activation via endocannabinoid signaling mediated by the SIRT1/PPARα pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119006. [PMID: 39500463 DOI: 10.1016/j.jep.2024.119006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/12/2024] [Accepted: 10/26/2024] [Indexed: 11/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Developing effective drugs is urgent for preventing platelet activation and atherosclerotic diseases. Qihuang Zhuyu formula (QHZYF) is a curative medical plants formula in clinic while its molecular mechanism remains to be further elucidated. AIM OF THE STUDY To investigate how QHZYF, via the sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor alpha (PPARα) pathway, mediates the endocannabinoid system, regulates mitochondrial function, and inhibits platelet activation, thereby offering novel strategies for the prevention and treatment of cardiovascular diseases. METHODS The chemical constituents of QHZYF were characterized by ultra-performance liquid chromatography tandem with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS). For the in vivo experiments, an atherosclerosis rat model was developed. Platelet activation and endocannabinoid levels were assessed by ELISA, while the expression of PPARα was evaluated by immunofluorescence. Additionally, the expression of endocannabinoid-degrading enzymes was analyzed by Western blotting. In the in vitro studies, the protein-protein interaction between SIRT1 and PPARα was initially investigated using co-immunoprecipitation (Co-IP). Thereafter, platelets were co-cultured with human umbilical vein endothelial cells (HUVECs) stimulated by oxidized low-density lipoprotein (ox-LDL). The mitochondrial function of platelets was examined by flow cytometry. Platelet activation and endocannabinoid levels were quantified using ELISA, and the expression of PPARα, endocannabinoid-degrading enzymes and proteins reflecting mitochondrial function were determined by Western blotting. Subsequently, QHZYF was incorporated into the aforementioned system, and the entire experimental protocol was replicated to explore how QHZYF influences platelet activation through the SIRT1/PPARα pathway-mediated endocannabinoid system. RESULTS In the in vivo experiments, it was observed that QHZYF significantly augmented the levels of PPARα, concurrently with a decrease in the expression of endocannabinoid-degrading enzymes. This was paralleled by a rise in endogenous cannabinoid levels and a reduction in platelet activation, a process that was found to be regulated by SIRT1. The co-immunoprecipitation (Co-IP) analysis substantiated the cooperative interaction between SIRT1 and PPARα, underscoring their role in mediating the endocannabinoid system, regulating mitochondrial function, and consequently influencing platelet activation. In the in vitro studies, a co-culture system involving platelets and HUVECs stimulated with ox-LDL was employed. It was noted that the SIRT1/PPARα pathway mediates the endocannabinoid system in regulating mitochondrial function, which in turn affects platelet activation. The incorporation of QHZYF-containing serum into this system produced outcomes consistent with those observed in the in vivo experiments. These findings suggest that QHZYF operates by modulating the endocannabinoid system via the SIRT1/PPARα pathway, thereby controlling mitochondrial function and inhibiting platelet activation. CONCLUSION SIRT1 may mediate endocannabinoid signaling through its interaction with PPARα, regulating mitochondrial function and subsequently influencing platelet activation. QHZYF effectively modulates the endocannabinoid system via the SIRT1/PPARα pathway, thereby inhibiting platelet activation.
Collapse
Affiliation(s)
- Ruijie Shi
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weixin Sun
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China; Department of Cardiology, Yancheng Hospital of Traditional Chinese Medicine, Yancheng, China
| | - Siyuan Yin
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tong Sun
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ning Yang
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haosheng Zhang
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China; Institute of Modern Biology, Nanjing University, Nanjing, China
| | - Yun Yao
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China; Jiangning District Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Kailun Lai
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaohu Chen
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.
| | - Peng Yu
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.
| |
Collapse
|
2
|
Xing ZY, Zhang CJ, Liu LJ. Targeting both ferroptosis and pyroptosis may represent potential therapies for acute liver failure. World J Gastroenterol 2024; 30:3791-3798. [PMID: 39351426 PMCID: PMC11438622 DOI: 10.3748/wjg.v30.i33.3791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
In this editorial, we comment on the article published in the recent issue of the World Journal of Gastroenterology. Acute liver failure (ALF) is a fatal disease that causes uncontrolled massive hepatocyte death and rapid loss of liver function. Ferroptosis and pyroptosis, cell death forms that can be initiated or blocked concurrently, can play significant roles in developing inflammation and various malignancies. However, their roles in ALF remain unclear. The article discovered the positive feedback between ferroptosis and pyroptosis in the progression of ALF, and revealed that the silent information regulator sirtuin 1 (SIRT1) inhibits both pathways through p53, dramatically reducing inflammation and protecting hepatocytes. This suggests the potential use of SIRT1 and its downstream molecules as therapeutics for ALF. Thus, we will discuss the role of ferroptosis and pyroptosis in ALF and the crosstalk between these cell death mechanisms. Additionally, we address potential treatments that could alleviate ALF by simultaneously inhibiting both cell death pathways, as well as examples of SIRT1 activators being used as disease treatment strategies, providing new insights into the therapy of ALF.
Collapse
Affiliation(s)
- Zhong-Yuan Xing
- Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Chuan-Jie Zhang
- Department of Children Health Care, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430061, Hubei Province, China
| | - Li-Juan Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
3
|
Li H, Zhao Y, Wang J, Peng C, Tang K, Sun M, Yang Y, Liu Q, Liu F. Screening of potential antioxidant bioactive Q-markers of paeoniae radix rubra based on an integrated multimodal strategy. Front Pharmacol 2024; 15:1447959. [PMID: 39211775 PMCID: PMC11357914 DOI: 10.3389/fphar.2024.1447959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Background Paeoniae Radix Rubra (PRR) has been used widely to promote blood circulation and eliminate blood stasis in China clinical practice owing to its extensive pharmacological effects. However, the "quality markers" (Q-markers) of the antioxidant effects remains unknown. Object To explore the Q-markers of antioxidant activity based on multiple strategies, which would provide reference for the quality evaluation of PRR based on specific pharmacodynamic-oriented. Methods Firstly, the "fingerprint" profiles of 15 batches of PRR were acquired and identified by ultrahigh performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF MS/MS) and the common peaks extracted. Meanwhile, the MTT assay was used to evaluate the effect of 15 batches of PRR on H2O2-induced oxidative stress in HT-22 cells. The antioxidant activity of PRR was investigated simultaneously by superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) commercial kits. The relationship between common peaks and antioxidant indexes were constructed by grey relational analysis (GRA) and partial least squares-discriminant analysis (PLS-DA) for the identification of preselected Q-markers. Secondly, experimental verification was conducted to investigate the protective effect of the preliminary components on HT-22 cells undergoing oxidative stress. Finally, for the further validation of effectiveness of antioxidant Q-markers, network pharmacology was applied to explore potential targets, and the molecular docking technology was used to value the binding ability of the potential active components of PRR to the antioxidant targets. Results Thirty-seven common peaks from 15 batches of PRR were identified qualitatively by UHPLC-Q-TOF MS/MS. The MTT assay showed that PRR could reduce the oxidative damage induced by H2O2 upon HT-22 cells according to the index of MDA, SOD and GSH. Eight potential antioxidant components were screened by spectrum-effect correlation analysis: paeoniflorin, galloylpaeoniflorin, albiflorin, 1,2,3,4,6-o-pentagalloylglucose, benzoylpaeoniflorin, pinocembrin, oleanic acid, and isorhamnetin-3-o-nehesperidine. Each of these preliminary components showed significant protections on cellular oxidative stress (P < 0.05). Interleukin-6 (IL-6), protein kinase B (AKT1), and tumor necrosis factor (TNF) were predicted to be the major potential targets of PRR, and the good binding ability were presented between the potential active components of PRR and each target as a whole. Conclusion Eight components were identified as the antioxidant Q-markers of PRR based on an integrated multimodal strategy.
Collapse
Affiliation(s)
- Hengli Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Center for standardization and functional engineering of traditional Chinese medicine in Hunan province, Changsha, Hunan, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, Hunan, China
| | - Yu Zhao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jiaqi Wang
- School of Informatics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Caiwang Peng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Center for standardization and functional engineering of traditional Chinese medicine in Hunan province, Changsha, Hunan, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, Hunan, China
| | - Keyan Tang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Center for standardization and functional engineering of traditional Chinese medicine in Hunan province, Changsha, Hunan, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, Hunan, China
| | - Mu Sun
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Center for standardization and functional engineering of traditional Chinese medicine in Hunan province, Changsha, Hunan, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, Hunan, China
| | - Yantao Yang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Center for standardization and functional engineering of traditional Chinese medicine in Hunan province, Changsha, Hunan, China
| | - Qingping Liu
- School of Informatics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Fang Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Center for standardization and functional engineering of traditional Chinese medicine in Hunan province, Changsha, Hunan, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
4
|
Saengboonmee C, Thithuan K, Mahalapbutr P, Taebprakhon C, Aman A, Rungrotmongkol T, Kamkaew A, Schevenels FT, Chompupong T, Wongkham S, Lekphrom R. Anti-proliferative Effects of Pinocembrin Isolated From Anomianthus dulcis on Hepatocellular Carcinoma Cells. Integr Cancer Ther 2024; 23:15347354241237519. [PMID: 38462928 DOI: 10.1177/15347354241237519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer. Anomianthus dulcis (Dunal) J.Sinclair (syn. Uvaria dulcis) has been used in Thai traditional medicine in various therapeutic indications. Phytochemical constituents of A. dulcis have been isolated and identified. However, their effects on liver cancer and the associated mechanisms have not been elucidated. METHODS Dry flowers of A. dulcis were extracted using organic solvents, and chromatographic methods were used to purify the secondary metabolites. The chemical structures of the pure compounds were elucidated by analysis of spectroscopic data. Cytotoxicity against HCC cells was examined using SRB assay, and the effects on cell proliferation were determined using flow cytometry. The mechanisms underlying HCC inhibition were examined by molecular docking and verified by Western blot analysis. RESULTS Among 3 purified flavonoids, pinocembrin, pinostrobin, and chrysin, and 1 indole alkaloid (3-farnesylindole), only pinocembrin showed inhibitory effects on the proliferation of 2 HCC cell lines, HepG2 and Li-7, whereas chrysin showed specific toxicity to HepG2. Pinocembrin was then selected for further study. Flow cytometric analyses revealed that pinocembrin arrested the HCC cell cycle at the G1 phase with a minimal effect on cell death induction. Pinocembrin exerted the suppression of STAT3, as shown by the molecular docking on STAT3 with a better binding affinity than stattic, a known STAT3 inhibitor. Pinocembrin also suppressed STAT3 phosphorylation at both Tyr705 and Ser727. Cell cycle regulatory proteins under the modulation of STAT3, namely cyclin D1, cyclin E, CDK4, and CDK6, are substantially suppressed in their expression levels. CONCLUSION Pinocembrin extracted from A. dulcis exerted a significant growth inhibition on HCC cells via suppressing STAT3 signaling pathways and its downstream-regulated genes.
Collapse
Affiliation(s)
- Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kanyarat Thithuan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Cheerapinya Taebprakhon
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Aamir Aman
- Program in Bioinformatics and Computational Biology, Graduate school, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate school, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | | | - Tanakiat Chompupong
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Ratsami Lekphrom
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
5
|
Li J, Li Y, Wang X, Xie Y, Lou J, Yang Y, Jiang S, Ye M, Chen H, Diao W, Xu S. Pinocembrin alleviates pyroptosis and apoptosis through ROS elimination in random skin flaps via activation of SIRT3. Phytother Res 2023; 37:4059-4075. [PMID: 37150741 DOI: 10.1002/ptr.7864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/09/2023]
Abstract
Random skin flap grafting is the most common skin grafting technique in reconstructive surgery. Despite progress in techniques, the incidence of distal flap necrosis still exceeds 3%, which limits its use in clinical practice. Current methods for treating distal flap necrosis are still lacking. Pinocembrin (Pino) can inhibit reactive oxygen species (ROS) and cell death in a variety of diseases, such as cardiovascular diseases, but the role of Pino in random flaps has not been explored. Therefore, we explore how Pino can enhance flap survival and its specific upstream mechanisms via macroscopic examination, Doppler, immunohistochemistry, and western blot. The results suggested that Pino can enhance the viability of random flaps by inhibiting ROS, pyroptosis and apoptosis. The above effects were reversed by co-administration of Pino with adeno-associated virus-silencing information regulator 2 homolog 3 (SIRT3) shRNA, proving the beneficial effect of Pino on the flaps relied on SIRT3. In addition, we also found that Pino up-regulates SIRT3 expression by activating the AMP-activated protein kinase (AMPK) pathway. This study proved that Pino can improve random flap viability by eliminating ROS, and ROS-induced cell death through the activation of SIRT3, which are triggered by the AMPK/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Jiafeng Li
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Li
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuanwei Wang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yamin Xie
- Department of Service Quality Management, Sanmen People's Hospital, Taizhou, China
| | - Junsheng Lou
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yute Yang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuai Jiang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meihan Ye
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huaizhi Chen
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiyi Diao
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sanzhong Xu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Ma J, Xu Y, Zhang M, Li Y. Geraniol ameliorates acute liver failure induced by lipopolysaccharide/D-galactosamine via regulating macrophage polarization and NLRP3 inflammasome activation by PPAR-γ methylation Geraniol alleviates acute liver failure. Biochem Pharmacol 2023; 210:115467. [PMID: 36849063 DOI: 10.1016/j.bcp.2023.115467] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/01/2023]
Abstract
Geraniol (Ger), a natural acyclic monoterpene alcohol, has been reported to exert protective effects through anti-inflammation in Acute liver failure (ALF). However, its specific roles and precise mechanisms underlying anti-inflammatory effects in ALF have not yet fully explored. We aimed to investigated the hepatoprotective effects and mechanisms of Ger against ALF induced by lipopolysaccharide (LPS)/D-galactosamine (GaIN). In this study, the liver tissue and serum of LPS/D-GaIN-induced mice were collected. The degree of liver tissue injury was evaluated by HE and TUNEL staining. Serum levels of liver injury markers (ALT and AST) and inflammatory factors were measured by ELISA assays. PCR and western blotting were conducted to determine the expression of inflammatory cytokines, NLRP3 inflammasome-related proteins, PPAR-γ pathway-related proteins, DNA Methyltransferases and M1/M2 polarization cytokines. Immunofluorescence staining was used to assess the localization and expression of macrophage markers (F4/80 and CD86), NLRP3 and PPAR-γ. In vitro experiments were performed in macrophages stimulated with LPS with or without IFN-γ. Purification of macrophages and cell apoptosis was analyzed using flow cytometry. We found that Ger effectively alleviated ALF in mice, specified by the attenuation of liver tissue pathological damage, inhibition of ALT, AST and inflammatory factor levels, and inactivation of NLRP3 inflammasome. Meanwhile, downregulation M1 macrophage polarization may involve in the protective effects of Ger. In vitro, Ger reduced the activation of NLRP3 inflammasome and apoptosis through regulating PPAR-γ methylation by inhibiting M1 macrophage polarization. In conclusion, Ger protects against ALF through suppressing NLRP3 inflammasome-mediated inflammation and LPS-induced macrophage M1 polarization via modulating PPAR-γ methylation.
Collapse
Affiliation(s)
- Jing Ma
- Infectious Disease Department, The Second XIANGYA Hospital of Central South University, Changsha, Hunan, China
| | - Yun Xu
- Infectious Disease Department, The Second XIANGYA Hospital of Central South University, Changsha, Hunan, China
| | - Min Zhang
- Infectious Disease Department, The Second XIANGYA Hospital of Central South University, Changsha, Hunan, China
| | - Yi Li
- Infectious Disease Department, The Second XIANGYA Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Current advances on the therapeutic potential of pinocembrin: An updated review. Biomed Pharmacother 2023; 157:114032. [PMID: 36481404 DOI: 10.1016/j.biopha.2022.114032] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022] Open
Abstract
Pinocembrin (5,7-dihydroxyflavone) is a major flavonoid found in many plants, fungi and hive products, mainly honey and propolis. Several in vitro and preclinical studies revealed numerous pharmacological activities of pinocembrin including antioxidant, anti-inflammatory, antimicrobial, neuroprotective, cardioprotective and anticancer activities. Here, we comprehensively review and critically analyze the studies carried out on pinocembrin. We also discuss its potential mechanisms of action, bioavailability, toxicity, and clinical investigations. The wide therapeutic window of pinocembrin makes it a promising drug candidate for many clinical applications. We recommend some future perspectives to improve its pharmacokinetic and pharmacodynamic properties for better delivery that may also lead to new therapeutic advances.
Collapse
|
8
|
Zeng Y, Fang Z, Lai J, Wu Z, Lin W, Yao H, Hu W, Chen J, Guo X, Chen X. Activation of Sirtuin-1 by Pinocembrin Treatment Contributes to Reduced Early Brain Injury after Subarachnoid Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2242833. [PMID: 36439686 PMCID: PMC9683949 DOI: 10.1155/2022/2242833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 10/03/2023]
Abstract
Subarachnoid hemorrhage (SAH) as a devastating neurological disorder is closely related to heightened oxidative insults and neuroinflammatory injury. Pinocembrin, a bioflavonoid, exhibits different biological functions, such as immunomodulatory, anti-inflammatory, antioxidative, and cerebroprotective activities. Herein, we examined the protective effects and molecular mechanisms of pinocembrin in a murine model of SAH. Using an endovascular perforation model in rats, pinocembrin significantly mitigated SAH-induced neuronal tissue damage, including inflammatory injury and free-radical insults. Meanwhile, pinocembrin improved behavior function and reduced neuronal apoptosis. We also revealed that sirtuin-1 (SIRT1) activation was significantly enhanced by pinocembrin. In addition, pinocembrin treatment evidently enhanced peroxisome proliferator-activated receptor-γ coactivator expression and suppressed ac-nuclear factor-kappa B levels. In contrast, EX-527, a selective SIRT1 inhibitor, blunted the protective effects of pinocembrin against SAH by suppressing SIRT1-mediated signaling. These results suggested that the cerebroprotective actions of pinocembrin after SAH were through SIRT1-dependent pathway, suggesting the potential application of pinocembrin for the treatment of SAH.
Collapse
Affiliation(s)
- Yile Zeng
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Zhongning Fang
- Department of Neurosurgery, The Jinjiang Municipal Hospital, Quanzhou, Fujian, China
| | - Jinqing Lai
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Zhe Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Weibin Lin
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Hao Yao
- Department of Neurosurgery, The Jinjiang Municipal Hospital, Quanzhou, Fujian, China
| | - Weipeng Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Junyan Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Xieli Guo
- Department of Neurosurgery, The Jinjiang Municipal Hospital, Quanzhou, Fujian, China
| | - Xiangrong Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
9
|
Wang JR, Song XH, Li LY, Gao SJ, Shang FH, Zhang XM, Yang Y. Metabolomic analysis reveals dynamic changes in secondary metabolites of Sophora japonica L. during flower maturation. FRONTIERS IN PLANT SCIENCE 2022; 13:916410. [PMID: 35991425 PMCID: PMC9386383 DOI: 10.3389/fpls.2022.916410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Sophora japonica L. is widely consumed in China because of its medicinal and nutritional value. Its quality is greatly affected by the accumulation of metabolites, which varies with the stage of flower development. However, changes in the characteristics of the secondary metabolites during flower maturity remain unclear. Ultra-high-performance liquid chromatography coupled with electrospray ionization-triple quadrupole-linear ion trap mass spectrometry (UPLC-ESI-QTRAP-MS/MS) revealed dynamic changes in the secondary metabolites of S. japonica during the five flower-maturity stages. We monitored 331 metabolites and screened 164. The differential metabolites showed seven trends during flower maturation, with flavonoids and phenolic acids having the most varied expressions. Flower buds (S2-S3) are rich in flavonoids and are thus suitable for use in high-quality medicine or industrial extraction. Our study provides an empirical basis for the informed harvesting of S. japonica based on its mode of utilization.
Collapse
Affiliation(s)
- Ji-Rui Wang
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Chongqing, China
| | - Xu-Hong Song
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Chongqing, China
| | - Long-Yun Li
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Chongqing, China
| | - Si-Jia Gao
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Fang-Hong Shang
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Xiao-Mei Zhang
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Yong Yang
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| |
Collapse
|
10
|
Zhang Y, Yu C, Feng Y. Pinocembrin ameliorates lipopolysaccharide‑induced HK‑2 cell apoptosis and inflammation by regulating endoplasmic reticulum stress. Exp Ther Med 2022; 24:513. [PMID: 35837041 PMCID: PMC9257947 DOI: 10.3892/etm.2022.11440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/27/2022] [Indexed: 11/28/2022] Open
Abstract
Pinocembrin (PINO) is a natural flavonoid drug that possesses a range of biological activities, including antimicrobial, antioxidant and anti-inflammatory activities. The specific aim of the present study was to examine the pharmacological role of PINO in sepsis-mediated acute kidney injury (AKI), as well as to investigate the potential underlying mechanism. Human renal tubular epithelial cells (of the HK-2 cell line) were stimulated with lipopolysaccharide (LPS) for 24 h to simulate septic AKI in vitro, after which the experiments were repeated and the cells were pretreated with increasing concentrations of PINO (0, 50, 100 and 200 µg/ml). Using an MTT cell viability assay, PINO was revealed to be non-toxic to HK-2 cells. In LPS-treated HK-2 cells, PINO alleviated the loss of cell viability. Western blotting was used to analyze the expression levels of pro-inflammatory cytokines, including IL-1β, IL-6 and TNF-α, and the results revealed that PINO decreased the expression levels of these cytokines in a concentration-dependent manner. Furthermore, malondialdehyde (MDA) and glutathione (GSH) activities were assessed using MDA and GSH assay kits and it was revealed that PINO decreased the significantly increased level of malondialdehyde, while it also decreased the reduction in the level of GSH in LPS-challenged HK-2 cells. In addition, a TUNEL assay and western blotting were performed to examine cell apoptosis, and PINO was identified to significantly inhibit the level of apoptosis in LPS-induced HK-2 cells. Subsequently, the expression levels of endoplasmic reticulum stress (ERS)-associated factors, including activating transcription factor 4, C/EBP homologous protein and phosphorylated/total eukaryotic translation initiation factor 2 subunit 1 were examined by western blotting and it was demonstrated that ERS was triggered in HK-2 cells exposed to LPS, although this was partly circumvented through PINO treatment in a concentration-dependent manner. Furthermore, after the addition of tunicamycin, which acts as an agonist of ERS, the aforementioned experiments were performed again. Tunicamycin led to partial abolition of the protective function of PINO against inflammation, oxidative stress and apoptosis in LPS-challenged HK-2 cells. Overall, the results of the present study demonstrated that PINO was able to ameliorate the injuries sustained by LPS-challenged HK-2 cells via modulating ERS to reduce inflammation, oxidative stress and apoptosis; therefore, PINO may be a novel candidate drug for treating septic AKI.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200082, P.R. China
| | - Chenxi Yu
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200082, P.R. China
| | - Yi Feng
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200082, P.R. China
| |
Collapse
|
11
|
Tang K, Zhong B, Luo Q, Liu Q, Chen X, Cao D, Li X, Yang S. Phillyrin attenuates norepinephrine-induced cardiac hypertrophy and inflammatory response by suppressing p38/ERK1/2 MAPK and AKT/NF-kappaB pathways. Eur J Pharmacol 2022; 927:175022. [DOI: 10.1016/j.ejphar.2022.175022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022]
|