1
|
Ehambarampillai D, Wan MLY. A comprehensive review of Schisandra chinensis lignans: pharmacokinetics, pharmacological mechanisms, and future prospects in disease prevention and treatment. Chin Med 2025; 20:47. [PMID: 40205412 PMCID: PMC11984061 DOI: 10.1186/s13020-025-01096-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
Lignans derived from Schisandra chinensis have attracted significant attention for their diverse pharmacological activities and clinical potential. This review presents a comprehensive analysis of the pharmacological properties of Schisandra chinensis lignans, including their antioxidant, anti-inflammatory, neuroprotective, hepatoprotective, antibacterial/viral, antidiabetic and anticancer effects. Their multifaceted mechanisms of action hold promise for therapeutic areas such as cancer, neurodegenerative diseases and metabolic disorders, aligning with urgent clinical needs. Additionally, this review explores the pharmacokinetics of these bioactive compounds, highlighting challenges in their absorption, distribution, metabolism and excretion, which impact their bioavailability. Recent advancements in drug delivery systems are discussed, highlighting their potential to enhance therapeutic efficacy in clinical settings. Furthermore, the synergistic effects of combining these lignans with other therapeutic agents are considered a strategy to increase their efficacy. Future research is imperative to identify additional active components and elucidate novel mechanisms of action, paving the way for expanded therapeutic applications and unlocking the full clinical potential of Schisandra chinensis in disease prevention and treatment.
Collapse
Affiliation(s)
- Danushiya Ehambarampillai
- School of Medicine, Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, PO1 2DT, Portsmouth, United Kingdom
| | - Murphy Lam Yim Wan
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Lund, 221 84, Sweden.
- School of Medicine, Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, PO1 2DT, Portsmouth, United Kingdom.
| |
Collapse
|
2
|
Hou J, Yi J, Wang Y, Cui L, Xia W, Liang Z, Ye L, Wang Z, Gao S, Wang Z. Quantification of β-Elemene by GC-MS and Preliminary Evaluation of Its Relationship With Antitumor Efficacy in Cancer Patients. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2025; 2025:6694947. [PMID: 40201224 PMCID: PMC11972858 DOI: 10.1155/jamc/6694947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/24/2025] [Indexed: 04/10/2025]
Abstract
Objectives: To establish and validate a sensitive and robust gas chromatography-mass spectrometry (GC-MS) method for the quantification of β-elemene in human plasma and assess the correlation between antitumor effect and β-elemene concentration in vivo. Methods: The chromatographic column was HP-5 ms (30 m × 0.25 mm, 0.25 μm, Agilent, United States of America). The carrier gas was helium (purity > 99.5%). The flow rate was 1.0 mL/min and the total run time was 11.0 min. The plasma sample was pretreated with protein precipitation plus liquid-liquid extraction. Cancer patients were enrolled and their samples were collected for analysis. Results: Calibration range of β-elemene was 200.0-20,000.0 ng/mL, with correlation coefficients > 0.99. The intra- and interday precision and accuracy were less than 5.8% and within the range of -10.4%-6.6%. The exposure level of β-elemene in the responder group ranged from 278.13 to 11,886.27 ng/mL, with a median of 3568.91 ng/mL, while in the nonresponder group, the range was from 675.92 to 9716.52 ng/mL, with a median of 3351.94 ng/mL. No difference was found in the β-elemene exposure level between the two groups (p > 0.05). Conclusions: This method was effectively developed, validated, and utilized to quantify β-elemene in cancer patients. The initial findings indicated no significant relationship between therapeutic efficacy and the concentration of β-elemene.
Collapse
Affiliation(s)
- Juanjuan Hou
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan, China
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Jia Yi
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Yan Wang
- Department of Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Lili Cui
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Wenwen Xia
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan, China
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Zhengyan Liang
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan, China
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Liya Ye
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan, China
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Zhipeng Wang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Shouhong Gao
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan, China
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Zhan Wang
- Department of Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| |
Collapse
|
3
|
Sun J, Wang Z, Yun Y, Feng Y, Liu Z, Cui L, Tang M, Ye L, Liang Z, Chen W, Gao S. Schisandrin B exerts anti-colorectal cancer effect through CXCL2/ERK/DUSP11 signaling pathway. Cancer Cell Int 2025; 25:97. [PMID: 40089741 PMCID: PMC11909884 DOI: 10.1186/s12935-025-03727-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Schisandrin B (Sch B) is an active component in Schisandra chinensis exerting anti-cancer effect, but the mechanism is obscure. This study was designed to explore the mechanism of Sch B against colorectal cancer (CRC). METHOD Apparent experiments including cell proliferation, transwell, colony formation, etc. were carried out to assess the anti-cancer effect of Sch B to CRC cell lines, and the RNA-seq was performed prior to bioinformatics analysis to explore the key transcriptome alterations, furthermore, an untargeted metabolomics was carried out to profile the metabolic alterations after the treatment with Sch B and an integrated analysis and experiment validation were completed based on RNA-seq and metabolomics to find the critical mechanism. RESULT The Sch B showed obviously inhibitory effect to cell proliferation, invasion and migration of CRC cell lines with a IC50 value at 75 µM. The RNA-seq and bioinformatics analysis found the ERK/MAPK pathway has been significantly suppressed by the Sch B treatment, while the chemokine, CXCL2, could activate the ERK pathway when binding to its receptor CXCR2. The metabolomics revealed the metabolic profile of CRC cell was remarkably influenced by the Sch B, focusing on the arginine and proline metabolism, ubiquinone, etc. Importantly, the integrated analysis found the DUSP11 connected the ERK pathway and the metabolisms, may mediate the anti-cancer effect of Sch B. CONCLUSION Sch B showed obviously anti-cancer effect to the CRC through inhibiting CXCL2/ERK/DUSP11 axis, but more experiments are needed to figure out the target of Sch B and validate this mechanism in vivo.
Collapse
Affiliation(s)
- Jianguo Sun
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, No. 415, Fengyang Road, Shanghai, 200003, P. R. China
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, P. R. China
| | - Zhipeng Wang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, No. 415, Fengyang Road, Shanghai, 200003, P. R. China
| | - Yunlei Yun
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, No. 415, Fengyang Road, Shanghai, 200003, P. R. China
| | - Yingqi Feng
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P. R. China
| | - Zhijun Liu
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, No. 415, Fengyang Road, Shanghai, 200003, P. R. China
| | - Lili Cui
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, No. 415, Fengyang Road, Shanghai, 200003, P. R. China
| | - Mao Tang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, No. 415, Fengyang Road, Shanghai, 200003, P. R. China
| | - Liya Ye
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, P. R. China
| | - Zhengyan Liang
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, P. R. China
| | - Wansheng Chen
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, No. 415, Fengyang Road, Shanghai, 200003, P. R. China.
| | - Shouhong Gao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, No. 415, Fengyang Road, Shanghai, 200003, P. R. China.
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, P. R. China.
| |
Collapse
|
4
|
Fang Y, Lv X, Li G, Wang P, Zhang L, Wang R, Jia L, Liang S. Schisandrin B targets CDK4/6 to suppress proliferation and enhance radiosensitivity in nasopharyngeal carcinoma by inducing cell cycle arrest. Sci Rep 2025; 15:8452. [PMID: 40069371 PMCID: PMC11897163 DOI: 10.1038/s41598-025-92992-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 03/04/2025] [Indexed: 03/15/2025] Open
Abstract
Nasopharyngeal carcinoma (NPC) is notably prevalent in East and Southeast Asia, where despite advancements in radiotherapy leading to high control rates, challenges like radioresistance and collateral tissue damage remain significant. While Schisandrin B (SchB) has been demonstrated antitumor effects in various tumors, its efficacy in NPC remains unexplored. In this study, we explored the antitumor potential of Sch B on NPC, particularly its effects on cell proliferation and radiosensitivity. Our research demonstrates that Sch B effectively inhibits the proliferation of NPC cell lines HONE-1 and CNE-1 by inducing cell cycle G1 phase arrest, specifically through the down-regulation of cyclin-dependent kinase 4/6, without impacting the normal nasopharyngeal epithelial cell line NP69. This selective inhibitory effect positions Sch B as a targeted therapeutic agent, sparing healthy tissue from adverse effects. Furthermore, we observed that Sch B enhances the efficacy of radiotherapy in NPC cells by obstructing DNA double-strand break repair mechanisms, suggesting that a combined treatment regimen of Sch B and radiation could offer a superior therapeutic strategy. These findings propose Sch B not only as a potent inhibitor of NPC cell proliferation but also as an enhancer of radiosensitivity, providing a promising avenue for improving NPC treatment outcomes.
Collapse
Affiliation(s)
- Yanhua Fang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China
| | - Xinhui Lv
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China
| | - Ge Li
- Department of Oncology, Dalian Hospital of Traditional Chinese Medicine, No.321 Jiefang Street, Zhongshan District, Dalian, 116013, Liaoning, China
| | - Piao Wang
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China
- Department of Oncology, Central Hospital of Liwan, Guangzhou, 510170, China
| | - Lingling Zhang
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Ruoyu Wang
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| | - Shanshan Liang
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China.
| |
Collapse
|
5
|
Niu C, Zhang J, Okolo PI, Daglilar E. Plant polyphenols in gastric cancer: Nature's healing touch. Semin Oncol 2025; 52:152333. [PMID: 40073717 DOI: 10.1053/j.seminoncol.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 03/14/2025]
Abstract
Globally, gastric cancer ranks as the fifth most common cancer and is the third most common cause of malignancy-associated mortality. Although surgery is the primary treatment option for gastric cancer, adjuvant chemotherapy improves survival in patients following surgery. Proverbially, plant polyphenols have many beneficial health effects, including anticancer properties. Extensive studies have shown that plant polyphenols exhibit potential anticancer effects against gastric cancer in vitro and in vivo, as well as very few human studies. However, this topic has not yet been reviewed. The present review shows that the potential anticancer effect of plant polyphenols on gastric cancer was preliminarily attributed to their antiproliferative, antimetastatic, and antiangiogenic effects and modulations of apoptosis, autophagy, and intracellular reactive oxygen species. Moreover, conventional therapeutics combined with plant polyphenols make gastric cancer cells more sensitive to conventional therapy. We also discuss challenges and opportunities in translating plant polyphenol-based therapy to clinical applications. The content provided in this review is of interest to pharmacologists, ethnobotanists, and oncologists who are involved in phytomedicine.
Collapse
Affiliation(s)
- Chengu Niu
- Internal medicine residency program, Rochester General Hospital, Rochester, NY, USA.
| | - Jing Zhang
- Rainier Springs Behavioral Health Hospital, Vancouver, WA, USA
| | - Patrick I Okolo
- Division of Gastroenterology, Carillion Clinic, Roanoke, VA, USA
| | - Ebubekir Daglilar
- Division of Gastroenterology, Charleston Area Medical Center/CAMC Institute for Academic Medicine Program, Charleston, WV, USA
| |
Collapse
|
6
|
Zhou C, Wu K, Gu M, Yang Y, Tu J, Huang X. Reversal of chemotherapy resistance in gastric cancer with traditional Chinese medicine as sensitizer: potential mechanism of action. Front Oncol 2025; 15:1524182. [PMID: 40052129 PMCID: PMC11882405 DOI: 10.3389/fonc.2025.1524182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025] Open
Abstract
Gastric cancer (GC) remains one of the most common types of cancer, ranking fifth among cancer-related deaths worldwide. Chemotherapy is an effective treatment for advanced GC. However, the development of chemotherapy resistance, which involves the malfunction of several signaling pathways and is the consequence of numerous variables interacting, seriously affects patient treatment and leads to poor clinical outcomes. Therefore, in order to treat GC, it is imperative to find novel medications that will increase chemotherapy sensitivity and reverse chemotherapy resistance. Traditional Chinese medicine (TCM) has been extensively researched as an adjuvant medication in recent years. It has been shown to have anticancer benefits and to be crucial in enhancing chemotherapy sensitivity and reducing chemotherapy resistance. Given this, the mechanism of treatment resistance in GC is summed up in this work. The theoretical foundation for TCM as a sensitizer in adjuvant treatment of GC is established by introducing the primary signal pathways and possible targets implicated in improving chemotherapy sensitivity and reversing chemotherapy resistance of GC by TCM and active ingredients.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuan Huang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese
Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Fang Y, Pan J, Wang P, Wang R, Liang S. A comprehensive review of Schisandrin B's preclinical antitumor activity and mechanistic insights from network pharmacology. Front Pharmacol 2025; 16:1528533. [PMID: 39995410 PMCID: PMC11847788 DOI: 10.3389/fphar.2025.1528533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
As an active constituent in the extract of dried fruits of Schisandra chinensis, Schisandrin B exhibits diverse pharmacological effects, including liver protection, anti-inflammatory and anti-oxidant. Numerous studies have demonstrated that Schisandrin B exhibits significant antitumor activity against various malignant tumors in preclinical studies, which is achieved by inhibiting cell proliferation and metastasis and promoting apoptosis. As a potential antitumor agent, Schisandrin B holds broad application prospects. This review systematically elaborates on the antitumor effect of Schisandrin B and the related molecular mechanism, and preliminarily predicts its antitumor targets by network pharmacology, thereby pave the way for further research, development, and clinical application.
Collapse
Affiliation(s)
- Yanhua Fang
- The Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Juan Pan
- The Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Piao Wang
- The Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
- Department of Oncology, Central Hospital of Liwan, Guangzhou, China
| | - Ruoyu Wang
- The Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Shanshan Liang
- The Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| |
Collapse
|
8
|
Lee PK, Co VA, Yang Y, Wan MLY, El-Nezami H, Zhao D. Bioavailability and interactions of schisandrin B with 5-fluorouracil in a xenograft mouse model of colorectal cancer. Food Chem 2025; 463:141371. [PMID: 39332376 DOI: 10.1016/j.foodchem.2024.141371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Schisandrin B (Sch B) is a predominant bioactive lignan from the fruit of a Chinese medicine food homology plant, Schisandra chinensis. Previously, we observed potent anti-tumor effect of Sch-B in colorectal cancer (CRC) and enhanced chemotherapy efficacy with fluorouracil (5-FU). However, their bioavailability and reciprocal interactions under CRC conditions are unclear. In this study, we first compared the bioavailability, metabolism and tissue distribution of Sch-B between non-tumor-bearing and xenograft CRC tumor-bearing mice. Next, we examined SchB-5-FU interactions via investigating alterations in drug metabolism and multidrug resistance. Using a validated targeted metabolomics approach, five active metabolites, including Sch-B and fluorodeoxyuridine triphosphate, were found tumor-accumulative. Co-treatment resulted in higher levels of Sch-B and 5-FU metabolites, showing improved phytochemical and drug bioavailability. Multidrug resistance gene (MDR1) was significantly downregulated upon co-treatment. Overall, we demonstrated the potential of Sch-B to serve as a promising chemotherapy adjuvant via improving drug bioavailability and metabolism, and attenuating MDR.
Collapse
Affiliation(s)
- Pui-Kei Lee
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, SAR, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, China; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, SAR, China.
| | - Vanessa Anna Co
- School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China; Department of Microbiology, The University of Hong Kong, and Centre for Virology, Vaccinology and Therapeutics, Hong Kong, SAR, China.
| | - Yang Yang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, SAR, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, China.
| | - Murphy Lam Yim Wan
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom; Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund 221 84, Sweden.
| | - Hani El-Nezami
- School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio FI-70211, Finland.
| | - Danyue Zhao
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, SAR, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, China; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, SAR, China.
| |
Collapse
|
9
|
Wang Z, Xie S, Li L, Liu Z, Zhou W. Schisandrin C inhibits AKT1-regulated cell proliferation in A549 cells. Int Immunopharmacol 2024; 142:113110. [PMID: 39260306 DOI: 10.1016/j.intimp.2024.113110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related mortality. Cancer poses a significant challenge to human health and remains a persistent and pressing issue. Schisandrin C is one of the active ingredients of Schisandra chinensis and has various biological and pharmacological activities. This study aimed to investigate the effects of Schisandrin C on lung cancer and the underlying mechanism involved. METHODS A network pharmacology strategy was used to screen the target genes and pathways involved in the relationship between Schisandrin and lung cancer. Next, a single-cell RNA sequencing (scRNA-seq) assay revealed the expression of genes specifically expressed in lung cancer epithelial cells. A549 cells were subsequently treated with Schisandrin C for 24 h or 48 h, cell viability was assessed via MTT and EdU staining experiments, and target gene expression was measured via RT-qPCR and immunofluorescence assays. Moreover, lung cancer patient tissues were observed via multiplex immunofluroscence staining. RESULTS AKT1, CA9, BRAF, EGFR, ERBB2 and PIK3CA were overlapping target genes for network pharmacology and the scRNA-seq strategy. In vitro, the RT-qPCR results indicated that Schisandrin C inhibited the mRNA expression of the AKT1, CA9, FASN, MMP1, EGFR and BRAF genes. In clinical samples from patients with lung cancer, the expression levels of CA9 and AKT1 were found to be significantly higher in lung tumor tissues than in the adjacent normal (TAN) tissues. Moreover, the administration of an AKT kinase inhibitor reversed the inhibitory effect of Schisandrin C on A549 cells proliferation, whereas the administration of a CA9 inhibitor failed to have a similar effect. CONCLUSIONS Schisandrin C effectively suppressed the proliferation and viability of A549 cells. Its mechanism was related to the inhibition of the AKT1 signaling pathway.
Collapse
Affiliation(s)
| | - Shengyang Xie
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Li Li
- Zhejiang Hospital, Hangzhou 310013, China
| | - Zhengcheng Liu
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Wencheng Zhou
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China.
| |
Collapse
|
10
|
Ribeiro E, Costa B, Marques L, Vasques-Nóvoa F, Vale N. Enhancing Urological Cancer Treatment: Leveraging Vasodilator Synergistic Potential with 5-FU for Improved Therapeutic Outcomes. J Clin Med 2024; 13:4113. [PMID: 39064153 PMCID: PMC11277888 DOI: 10.3390/jcm13144113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Backgroud: This study investigates the potential of vasodilator drugs as additive therapy in the treatment of urological cancers, particularly in combination with the antineoplastic agent 5-fluorouracil (5-FU). Methods: The study evaluated the cytotoxic effects of sildenafil, tezosentan and levosimendan alone and in combination with 5-FU on urological cancer cell lines. The assessment included MTT assays, colony formation assays and wound healing assays to determine cell viability, proliferative capacity, and migratory behavior, respectively. Results: Sildenafil and tezosentan showed limited cytotoxic effects, while levosimendan demonstrated moderate anticancer activity. The combination of levosimendan and 5-FU exhibited an additive interaction, enhancing cytotoxicity against cancer cells while sparing normal cells. Levosimendan also inhibited cell migration and proliferation, potentially through mechanisms involving the modulation of cAMP levels and nitric oxide production. Conclusions: The findings suggest that levosimendan can be used in conjunction with 5-FU to reduce the required dose of 5-FU, thereby minimizing side effects without compromising therapeutic efficacy. This study offers a new perspective for enhancing therapeutic outcomes in patients with urological cancers.
Collapse
Affiliation(s)
- Eduarda Ribeiro
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (E.R.); (B.C.); (L.M.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- ICBAS—School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Barbara Costa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (E.R.); (B.C.); (L.M.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Lara Marques
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (E.R.); (B.C.); (L.M.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Francisco Vasques-Nóvoa
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (E.R.); (B.C.); (L.M.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
11
|
Chen H, Wang Z, Gong L, Chen J, Huang Y, Guo W, Zhang Q, Li Y, Bao G, Li D, Chen Y. Attenuation effect of a polysaccharide from large leaf yellow tea by activating autophagy. Int J Biol Macromol 2024; 265:130697. [PMID: 38490395 DOI: 10.1016/j.ijbiomac.2024.130697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
Chemotherapy, the most common class of anticancer drugs, is considerably limited owing to its adverse side effects. In this study, we aimed to evaluate the protective effect and mechanism of action of large-leaf yellow tea polysaccharides (ULYTP-1, 1.29 × 104 Da) against chemotherapeutic 5-fluorouracil (5-Fu). Structural characterisation revealed that ULYTP-1 was a β-galactopyranouronic acid. Furthermore, ULYTP-1 promoted autolysosome formation, activating autophagy and reducing the oxidative stress and inflammation caused by 5-Fu. Our in vivo study of 4 T1 tumour-bearing mice revealed that ULYTP-1 also attenuated 5-Fu toxicity through modulation of the gut microbiota. Moreover, ULYTP-1 effectively protected immune organs and the liver from 5-Fu toxicity, while promoting its tumour-inhibitory properties. The current findings provide a new strategy for optimising chemotherapy regimens in the clinic.
Collapse
Affiliation(s)
- Hao Chen
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Zhuang Wang
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Lei Gong
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Jielin Chen
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yuzhe Huang
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Wenqiang Guo
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Qiang Zhang
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yong Li
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Guanhu Bao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| | - Yan Chen
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China.
| |
Collapse
|
12
|
Co V, El-Nezami H, Liu Y, Twum B, Dey P, Cox PA, Joseph S, Agbodjan-Dossou R, Sabzichi M, Draheim R, Wan MLY. Schisandrin B Suppresses Colon Cancer Growth by Inducing Cell Cycle Arrest and Apoptosis: Molecular Mechanism and Therapeutic Potential. ACS Pharmacol Transl Sci 2024; 7:863-877. [PMID: 38481680 PMCID: PMC10928902 DOI: 10.1021/acsptsci.4c00009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 11/15/2024]
Abstract
Colon cancer is among the most lethal and prevalent malignant tumors in the world, and the lack of effective therapies highlights the need for novel therapeutic approaches. Schisandrin B (Sch B), a lignan extracted from the fruit ofSchisandra chinensis, has been reported for its anticancer properties. However, to date, no studies have been done to characterize the exact molecular mechanisms underlying the antitumorigenic effects of Sch B in colon cancer. This study aimed to explore the antitumorigenic effects of Sch B in colon cancer and to understand the underlying therapeutic mechanism. A comprehensive analysis of the molecular mechanism underlying the antitumorigenic effects of Sch B on human colon cancer cells was performed using a combination of Raman spectroscopy, RNA-seq, computational docking, and molecular biological experiments. The in vivo efficacy was evaluated by a mouse xenograft model. Sch B reduced cell proliferation and triggered apoptosis in human colon cancer cell lines. Raman spectroscopy, computational, RNA-seq, and molecular and cellular studies revealed that Sch B activated unfolded protein responses by interacting with CHOP and upregulating CHOP, which thereby induced apoptosis. CHOP knockdown alleviated the Sch B-induced reduction in cell viability and apoptosis. Sch B reduced colon tumor growth in vivo. Our findings demonstrated that Sch B induced apoptosis and inhibited cell proliferation and tumor growth in vitro and in vivo. These results provided an essential background for clinical trials examining the effects of Sch B in patients with colon cancer.
Collapse
Affiliation(s)
- Vanessa
Anna Co
- School
of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences
Building, The University of Hong Kong, Pokfulam Hong
Kong
| | - Hani El-Nezami
- School
of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences
Building, The University of Hong Kong, Pokfulam Hong
Kong
- Institute
of Public Health and Clinical Nutrition, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Yawen Liu
- School
of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Bonsra Twum
- School
of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Priyanka Dey
- School
of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Paul A. Cox
- School
of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Shalu Joseph
- School
of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Roland Agbodjan-Dossou
- School
of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Mehdi Sabzichi
- School
of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Roger Draheim
- School
of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Murphy Lam Yim Wan
- School
of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
- Division
of Microbiology, Immunology and Glycobiology, Department of Laboratory
Medicine, Faculty of Medicine, Lund University, 222 42 Lund, Sweden
| |
Collapse
|
13
|
Jafernik K, Motyka S, Calina D, Sharifi-Rad J, Szopa A. Comprehensive review of dibenzocyclooctadiene lignans from the Schisandra genus: anticancer potential, mechanistic insights and future prospects in oncology. Chin Med 2024; 19:17. [PMID: 38267965 PMCID: PMC10809469 DOI: 10.1186/s13020-024-00879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024] Open
Abstract
Cancer remains one of the leading causes of mortality worldwide. The search for novel and effective anticancer agents has been a significant area of research. Dibenzocyclooctadiene lignans (DBCLS), derived from the Schisandra genus plants like: S. chinensis, S. sphenanthera, S. henryi, S. rubriflora, S. grandiflora, S. propinqua, and S. glabra, have been traditionally used in various medicinal systems and are known for their myriad health benefits, including anticancer properties. This comprehensive review aimed to collate and critically analyse the recent literature on the anticancer properties of DBCLS, focusing on their mechanistic approaches against different cancer types. An exhaustive literature search was performed using databases like PubMed/MedLine, Scopus, Web of Science, Embase, TRIP database and Google Scholar from 1980 to 2023. Peer-reviewed articles that elucidated the mechanistic approach of these lignans on cancer cell lines, in vivo models and preliminary clinical studies were included. Studies were assessed for their experimental designs, cancer types studied, and the mechanistic insights provided. The studies demonstrate that the anticancer effects of DBCLS compounds are primarily driven by their ability to trigger apoptosis, arrest the cell cycle, induce oxidative stress, modulate autophagy, and disrupt essential signaling pathways, notably MAPK, PI3K/Akt, and NF-κB. Additionally, these lignans have been shown to amplify the impact of traditional chemotherapy treatments, suggesting their potential role as supportive adjuncts in cancer therapy. Notably, several studies also emphasise their capacity to target cancer stem cells and mitigate multi-drug resistance specifically. DBCLS from the Schisandra genus have showcased significant potential as anticancer agents. Their multi-targeted mechanistic approach makes them promising candidates for further research, potentially leading to developing of new therapeutic strategies in cancer management.
Collapse
Affiliation(s)
- Karolina Jafernik
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Sara Motyka
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9 St., 30-688, Kraków, Poland
- Doctoral School of Medical and Health Sciences, Medical College, Jagiellonian University, Łazarza 16 St., 31-530, Kraków, Poland
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9 St., 30-688, Kraków, Poland.
| |
Collapse
|
14
|
Li M, Tang Q, Li S, Yang X, Zhang Y, Tang X, Huang P, Yin D. Inhibition of autophagy enhances the anticancer effect of Schisandrin B on head and neck squamous cell carcinoma. J Biochem Mol Toxicol 2024; 38:e23585. [PMID: 37986106 DOI: 10.1002/jbt.23585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/10/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is among the most common malignant tumors worldwide and has a poor prognosis. Autophagy regulation has been proposed as a possible treatment option for HNSCC. Schisandrin B (Sch B) exerts anticancer effects by regulating apoptosis and autophagy, but the anticancer effect of Sch B in HNSCC remains unclear. This study aimed to investigate the effects of Sch B on human Cal27 HNSCC cells and to further reveal its potential regulatory mechanisms. The anticancer effect of Sch B was evaluated in vitro by flow cytometry, clonogenic assays, and Western blot analysis. The regulatory mechanism of Sch B-induced apoptosis and autophagy was further explored by polymerase chain reaction, luciferase assay, and reactive oxygen species (ROS) detection. The results showed that Sch B significantly induced apoptosis and autophagy in Cal27 cells and that inhibition of autophagy enhanced the apoptotic effect of Sch B on Cal27 cells. Additionally, Sch B-activated autophagy in Cal27 cells was dependent on the nuclear factor-kappa B (NF-κB) pathway, and ROS acted as a regulator of the NF-B pathway. N-acetylcysteine, a scavenger of ROS, inhibited Sch B-dependent autophagy via the NF-κB pathway. Based on the results, Sch B is a potential therapeutic agent for HNSCC and activates the NF-κB pathway by increasing ROS production, which subsequently promotes autophagy in HNSCC cells. Therefore, the strategy of enhancing the anticancer effect of Sch B by inhibiting autophagy deserves further attention.
Collapse
Affiliation(s)
- Mengmeng Li
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Qinglai Tang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Shisheng Li
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xinming Yang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Ying Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiaojun Tang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Peiying Huang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Danhui Yin
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
15
|
Meng B, Gao S, Chen J, Wang B, Mu Y, Liu Y, Wang Z, Chen W. A LC-MS/MS Method for Quantifying the Schisandrin B and Exploring Its Intracellular Exposure Correlating Antitumor Effect. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2023; 2023:8898426. [PMID: 37325704 PMCID: PMC10264713 DOI: 10.1155/2023/8898426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023]
Abstract
Schisandrin B (Sch.B) shows antineoplastic activity in colorectal cancer, but the mechanism is still obscure. The intracellular spatial distribution may be helpful in elucidating the mechanism. To investigate the intracellular drug distribution of Sch.B in cancer cells, a simple, rapid, and sensitive ultra-highperformance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method was established for the determination of Sch.B in colorectal cancer cells. Warfarin was utilized as an internal standard. The sample pretreatment was carried out with protein precipitation using methanol. The analyte was separated on an Atlantis T3-C18 column (3 μm, 2.1∗100 mm) using gradient elution with a mobile phase comprised of methanol and 0.2% formic acid in water. The flow rate was 0.4 mL/min. The linear range of Sch.B was 20.0-1000.0 ng/mL with a correlation coefficient (R) more than 0.99. The matrix effect and recovery ranged from 88.01% to 94.59% and from 85.25% to 91.71%; the interday and intraday precision and accuracy, stability, specificity, carryover, matrix effect, and recovery all conformed to the requirements of pharmacopoeia. Cell viability and apoptosis assays demonstrated that Sch.B has an inhibitory effect in a dose-dependent way on HCT116 proliferation and achieved significant suppression at 75 μM (IC50). It was found that in HCT116 cell, nucleus, and mitochondria, exposure levels of Sch.B peaked at 36 h and then decreased, and mitochondria possessed more Sch.B than nucleus. These results may help to elucidate the antitumor effect of Sch.B.
Collapse
Affiliation(s)
- Bosu Meng
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan, China
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Shouhong Gao
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan, China
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Jihui Chen
- Department of Pharmacy, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Bin Wang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
- School of Chemistry and Biology, Yichun College, Yichun 336000, Jiangxi, China
| | - Yuhui Mu
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan, China
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Yan Liu
- Department of Pharmacy, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhipeng Wang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Wansheng Chen
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| |
Collapse
|
16
|
Zhang Y, Wang P, Jin MX, Zhou YQ, Ye L, Zhu XJ, Li HF, Zhou M, Li Y, Li S, Liang KY, Wang Y, Gao Y, Pan MX, Zhou SQ, Peng Q. Schisandrin B Improves the Hypothermic Preservation of Celsior Solution in Human Umbilical Cord Mesenchymal Stem Cells. Tissue Eng Regen Med 2023; 20:447-459. [PMID: 36947320 PMCID: PMC10219924 DOI: 10.1007/s13770-023-00531-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Human umbilical cord mesenchymal stem cells (hUCMSCs) have emerged as promising therapy for immune and inflammatory diseases. However, how to maintain the activity and unique properties during cold storage and transportation is one of the key factors affecting the therapeutic efficiency of hUCMSCs. Schisandrin B (SchB) has many functions in cell protection as a natural medicine. In this study, we investigated the protective effects of SchB on the hypothermic preservation of hUCMSCs. METHODS hUCMSCs were isolated from Wharton's jelly. Subsequently, hUCMSCs were exposed to cold storage (4 °C) and 24-h re-warming. After that, cells viability, surface markers, immunomodulatory effects, reactive oxygen species (ROS), mitochondrial integrity, apoptosis-related and antioxidant proteins expression level were evaluated. RESULTS SchB significantly alleviated the cells injury and maintained unique properties such as differentiation potential, level of surface markers and immunomodulatory effects of hUCMSCs. The protective effects of SchB on hUCMSCs after hypothermic storage seemed associated with its inhibition of apoptosis and the anti-oxidative stress effect mediated by nuclear factor erythroid 2-related factor 2 signaling. CONCLUSION These results demonstrate SchB could be used as an agent for hypothermic preservation of hUCMSCs.
Collapse
Affiliation(s)
- Ying Zhang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Peng Wang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Mei-Xian Jin
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Ying-Qi Zhou
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Liang Ye
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Xiao-Juan Zhu
- Department of Anesthesiology, First People's Hospital of Kashi, Kashi, 844000, China
| | - Hui-Fang Li
- Department of Anesthesiology, First People's Hospital of Kashi, Kashi, 844000, China
| | - Ming Zhou
- Department of Anesthesiology, First People's Hospital of Kashi, Kashi, 844000, China
| | - Yang Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Shao Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Kang-Yan Liang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Yi Wang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Yi Gao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Ming-Xin Pan
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Shu-Qin Zhou
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China.
| | - Qing Peng
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|
17
|
Sana-Eldine AO, Abdelgawad HM, Kotb NS, Shehata NI. The potential effect of Schisandrin-B combination with panitumumab in wild-type and mutant colorectal cancer cell lines: Role of apoptosis and autophagy. J Biochem Mol Toxicol 2023; 37:e23324. [PMID: 36808796 DOI: 10.1002/jbt.23324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/16/2022] [Accepted: 02/08/2023] [Indexed: 02/22/2023]
Abstract
Panitumumab is an approved monoclonal antibody for the treatment of colorectal cancer (CRC); however, mutations in EGFR signaling pathway resulted in poor response. Schisandrin-B (Sch-B) is a phytochemical that was suggested to protect against inflammation, oxidative stress, and cell proliferation. The present study aimed to investigate the potential effect of Sch-B on panitumumab-induced cytotoxicity in wild-type Caco-2, and mutant HCT-116 and HT-29 CRC cell lines, and the possible underlying mechanisms. CRC cell lines were treated with panitumumab, Sch-B, and their combination. The cytotoxic effect of drugs was determined by MTT assay. The apoptotic potential was assessed in-vitro by DNA fragmentation and caspase-3 activity. Additionally, autophagy was investigated via microscopic detection of autophagosomes and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) measurement of Beclin-1, Rubicon, LC3-II, and Bcl-2 expression. The drug pair enhanced panitumumab cytotoxicity in all CRC cell lines where IC50 of panitumumab was decreased in Caco-2 cell line. Apoptosis was induced through caspase-3 activation, DNA fragmentation, and Bcl-2 downregulation. Caco-2 cell line treated with panitumumab showed stained acidic vesicular organelles, contrariwise, all cell lines treated with Sch-B or the drug pair displayed green fluorescence indicating the lack of autophagosomes. qRT-PCR revealed the downregulation of LC3-II in all CRC cell lines, Rubicon in mutant cell lines, and Beclin-1 in HT-29 cell line only. Sch-B at 6.5 µM promoted panitumumab-induced apoptotic cell death, in-vitro, via caspase-3 activation and Bcl-2 downregulation, rather than autophagic cell death. This novel combination therapy against CRC, allows the reduction of panitumumab dose to guard against its adverse effects.
Collapse
Affiliation(s)
| | - Hanan M Abdelgawad
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nahla S Kotb
- Biochemistry Department, Faculty of postgraduate studies for advanced Biotechnology and life sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Nagwa I Shehata
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
18
|
Kong M, Yu X, Zheng Q, Zhang S, Guo W. Oncogenic roles of LINC01234 in various forms of human cancer. Biomed Pharmacother 2022; 154:113570. [PMID: 36030582 DOI: 10.1016/j.biopha.2022.113570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022] Open
Abstract
Abnormal expression of long non-coding RNAs (lncRNAs) plays an essential role in various malignant neoplasia. As a newly identified lncRNA, LINC01234 is abnormally expressed in several types of cancers and promotes the development of cancers. Accumulating evidence indicates that overexpression of LINC01234 is associated with poor clinical outcomes. Moreover, LINC01234 modulates many cellular events as a putative proto-oncogene, including proliferation, migration, invasion, apoptosis, cell cycle progression, and EMT. In terms of molecular mechanism, LINC01234 regulates gene expression by acting as ceRNA, participating in signaling pathways, interacting with proteins and other molecules, and encoding polypeptide. It reveals that LINC01234 may serve as a potential biomarker for cancer diagnosis, treatment, and prognosis. This review summarizes the expression pattern, biological function, and molecular mechanism of LINC01234 in human cancer and discusses its potential clinical utility.
Collapse
Affiliation(s)
- Minyu Kong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Liver Transplantation Centre, China; Henan Organ Transplantation Quality Control Centre, China; Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Liver Transplantation Centre, China; Henan Organ Transplantation Quality Control Centre, China; Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China
| | - Qingyuan Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Liver Transplantation Centre, China; Henan Organ Transplantation Quality Control Centre, China; Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Liver Transplantation Centre, China; Henan Organ Transplantation Quality Control Centre, China; Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Liver Transplantation Centre, China; Henan Organ Transplantation Quality Control Centre, China; Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China.
| |
Collapse
|