1
|
Lee PK, Co VA, Yang Y, Wan MLY, El-Nezami H, Zhao D. Bioavailability and interactions of schisandrin B with 5-fluorouracil in a xenograft mouse model of colorectal cancer. Food Chem 2025; 463:141371. [PMID: 39332376 DOI: 10.1016/j.foodchem.2024.141371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Schisandrin B (Sch B) is a predominant bioactive lignan from the fruit of a Chinese medicine food homology plant, Schisandra chinensis. Previously, we observed potent anti-tumor effect of Sch-B in colorectal cancer (CRC) and enhanced chemotherapy efficacy with fluorouracil (5-FU). However, their bioavailability and reciprocal interactions under CRC conditions are unclear. In this study, we first compared the bioavailability, metabolism and tissue distribution of Sch-B between non-tumor-bearing and xenograft CRC tumor-bearing mice. Next, we examined SchB-5-FU interactions via investigating alterations in drug metabolism and multidrug resistance. Using a validated targeted metabolomics approach, five active metabolites, including Sch-B and fluorodeoxyuridine triphosphate, were found tumor-accumulative. Co-treatment resulted in higher levels of Sch-B and 5-FU metabolites, showing improved phytochemical and drug bioavailability. Multidrug resistance gene (MDR1) was significantly downregulated upon co-treatment. Overall, we demonstrated the potential of Sch-B to serve as a promising chemotherapy adjuvant via improving drug bioavailability and metabolism, and attenuating MDR.
Collapse
Affiliation(s)
- Pui-Kei Lee
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, SAR, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, China; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, SAR, China.
| | - Vanessa Anna Co
- School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China; Department of Microbiology, The University of Hong Kong, and Centre for Virology, Vaccinology and Therapeutics, Hong Kong, SAR, China.
| | - Yang Yang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, SAR, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, China.
| | - Murphy Lam Yim Wan
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom; Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund 221 84, Sweden.
| | - Hani El-Nezami
- School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio FI-70211, Finland.
| | - Danyue Zhao
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, SAR, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, China; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, SAR, China.
| |
Collapse
|
2
|
Wang Z, Xie S, Li L, Liu Z, Zhou W. Schisandrin C inhibits AKT1-regulated cell proliferation in A549 cells. Int Immunopharmacol 2024; 142:113110. [PMID: 39260306 DOI: 10.1016/j.intimp.2024.113110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related mortality. Cancer poses a significant challenge to human health and remains a persistent and pressing issue. Schisandrin C is one of the active ingredients of Schisandra chinensis and has various biological and pharmacological activities. This study aimed to investigate the effects of Schisandrin C on lung cancer and the underlying mechanism involved. METHODS A network pharmacology strategy was used to screen the target genes and pathways involved in the relationship between Schisandrin and lung cancer. Next, a single-cell RNA sequencing (scRNA-seq) assay revealed the expression of genes specifically expressed in lung cancer epithelial cells. A549 cells were subsequently treated with Schisandrin C for 24 h or 48 h, cell viability was assessed via MTT and EdU staining experiments, and target gene expression was measured via RT-qPCR and immunofluorescence assays. Moreover, lung cancer patient tissues were observed via multiplex immunofluroscence staining. RESULTS AKT1, CA9, BRAF, EGFR, ERBB2 and PIK3CA were overlapping target genes for network pharmacology and the scRNA-seq strategy. In vitro, the RT-qPCR results indicated that Schisandrin C inhibited the mRNA expression of the AKT1, CA9, FASN, MMP1, EGFR and BRAF genes. In clinical samples from patients with lung cancer, the expression levels of CA9 and AKT1 were found to be significantly higher in lung tumor tissues than in the adjacent normal (TAN) tissues. Moreover, the administration of an AKT kinase inhibitor reversed the inhibitory effect of Schisandrin C on A549 cells proliferation, whereas the administration of a CA9 inhibitor failed to have a similar effect. CONCLUSIONS Schisandrin C effectively suppressed the proliferation and viability of A549 cells. Its mechanism was related to the inhibition of the AKT1 signaling pathway.
Collapse
Affiliation(s)
| | - Shengyang Xie
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Li Li
- Zhejiang Hospital, Hangzhou 310013, China
| | - Zhengcheng Liu
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Wencheng Zhou
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China.
| |
Collapse
|
3
|
Ribeiro E, Costa B, Marques L, Vasques-Nóvoa F, Vale N. Enhancing Urological Cancer Treatment: Leveraging Vasodilator Synergistic Potential with 5-FU for Improved Therapeutic Outcomes. J Clin Med 2024; 13:4113. [PMID: 39064153 PMCID: PMC11277888 DOI: 10.3390/jcm13144113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Backgroud: This study investigates the potential of vasodilator drugs as additive therapy in the treatment of urological cancers, particularly in combination with the antineoplastic agent 5-fluorouracil (5-FU). Methods: The study evaluated the cytotoxic effects of sildenafil, tezosentan and levosimendan alone and in combination with 5-FU on urological cancer cell lines. The assessment included MTT assays, colony formation assays and wound healing assays to determine cell viability, proliferative capacity, and migratory behavior, respectively. Results: Sildenafil and tezosentan showed limited cytotoxic effects, while levosimendan demonstrated moderate anticancer activity. The combination of levosimendan and 5-FU exhibited an additive interaction, enhancing cytotoxicity against cancer cells while sparing normal cells. Levosimendan also inhibited cell migration and proliferation, potentially through mechanisms involving the modulation of cAMP levels and nitric oxide production. Conclusions: The findings suggest that levosimendan can be used in conjunction with 5-FU to reduce the required dose of 5-FU, thereby minimizing side effects without compromising therapeutic efficacy. This study offers a new perspective for enhancing therapeutic outcomes in patients with urological cancers.
Collapse
Affiliation(s)
- Eduarda Ribeiro
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (E.R.); (B.C.); (L.M.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- ICBAS—School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Barbara Costa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (E.R.); (B.C.); (L.M.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Lara Marques
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (E.R.); (B.C.); (L.M.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Francisco Vasques-Nóvoa
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (E.R.); (B.C.); (L.M.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
4
|
Chen H, Wang Z, Gong L, Chen J, Huang Y, Guo W, Zhang Q, Li Y, Bao G, Li D, Chen Y. Attenuation effect of a polysaccharide from large leaf yellow tea by activating autophagy. Int J Biol Macromol 2024; 265:130697. [PMID: 38490395 DOI: 10.1016/j.ijbiomac.2024.130697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
Chemotherapy, the most common class of anticancer drugs, is considerably limited owing to its adverse side effects. In this study, we aimed to evaluate the protective effect and mechanism of action of large-leaf yellow tea polysaccharides (ULYTP-1, 1.29 × 104 Da) against chemotherapeutic 5-fluorouracil (5-Fu). Structural characterisation revealed that ULYTP-1 was a β-galactopyranouronic acid. Furthermore, ULYTP-1 promoted autolysosome formation, activating autophagy and reducing the oxidative stress and inflammation caused by 5-Fu. Our in vivo study of 4 T1 tumour-bearing mice revealed that ULYTP-1 also attenuated 5-Fu toxicity through modulation of the gut microbiota. Moreover, ULYTP-1 effectively protected immune organs and the liver from 5-Fu toxicity, while promoting its tumour-inhibitory properties. The current findings provide a new strategy for optimising chemotherapy regimens in the clinic.
Collapse
Affiliation(s)
- Hao Chen
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Zhuang Wang
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Lei Gong
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Jielin Chen
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yuzhe Huang
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Wenqiang Guo
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Qiang Zhang
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yong Li
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Guanhu Bao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| | - Yan Chen
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China.
| |
Collapse
|
5
|
Co V, El-Nezami H, Liu Y, Twum B, Dey P, Cox PA, Joseph S, Agbodjan-Dossou R, Sabzichi M, Draheim R, Wan MLY. Schisandrin B Suppresses Colon Cancer Growth by Inducing Cell Cycle Arrest and Apoptosis: Molecular Mechanism and Therapeutic Potential. ACS Pharmacol Transl Sci 2024; 7:863-877. [PMID: 38481680 PMCID: PMC10928902 DOI: 10.1021/acsptsci.4c00009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 11/15/2024]
Abstract
Colon cancer is among the most lethal and prevalent malignant tumors in the world, and the lack of effective therapies highlights the need for novel therapeutic approaches. Schisandrin B (Sch B), a lignan extracted from the fruit ofSchisandra chinensis, has been reported for its anticancer properties. However, to date, no studies have been done to characterize the exact molecular mechanisms underlying the antitumorigenic effects of Sch B in colon cancer. This study aimed to explore the antitumorigenic effects of Sch B in colon cancer and to understand the underlying therapeutic mechanism. A comprehensive analysis of the molecular mechanism underlying the antitumorigenic effects of Sch B on human colon cancer cells was performed using a combination of Raman spectroscopy, RNA-seq, computational docking, and molecular biological experiments. The in vivo efficacy was evaluated by a mouse xenograft model. Sch B reduced cell proliferation and triggered apoptosis in human colon cancer cell lines. Raman spectroscopy, computational, RNA-seq, and molecular and cellular studies revealed that Sch B activated unfolded protein responses by interacting with CHOP and upregulating CHOP, which thereby induced apoptosis. CHOP knockdown alleviated the Sch B-induced reduction in cell viability and apoptosis. Sch B reduced colon tumor growth in vivo. Our findings demonstrated that Sch B induced apoptosis and inhibited cell proliferation and tumor growth in vitro and in vivo. These results provided an essential background for clinical trials examining the effects of Sch B in patients with colon cancer.
Collapse
Affiliation(s)
- Vanessa
Anna Co
- School
of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences
Building, The University of Hong Kong, Pokfulam Hong
Kong
| | - Hani El-Nezami
- School
of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences
Building, The University of Hong Kong, Pokfulam Hong
Kong
- Institute
of Public Health and Clinical Nutrition, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Yawen Liu
- School
of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Bonsra Twum
- School
of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Priyanka Dey
- School
of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Paul A. Cox
- School
of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Shalu Joseph
- School
of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Roland Agbodjan-Dossou
- School
of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Mehdi Sabzichi
- School
of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Roger Draheim
- School
of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | - Murphy Lam Yim Wan
- School
of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
- Division
of Microbiology, Immunology and Glycobiology, Department of Laboratory
Medicine, Faculty of Medicine, Lund University, 222 42 Lund, Sweden
| |
Collapse
|
6
|
Jafernik K, Motyka S, Calina D, Sharifi-Rad J, Szopa A. Comprehensive review of dibenzocyclooctadiene lignans from the Schisandra genus: anticancer potential, mechanistic insights and future prospects in oncology. Chin Med 2024; 19:17. [PMID: 38267965 PMCID: PMC10809469 DOI: 10.1186/s13020-024-00879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024] Open
Abstract
Cancer remains one of the leading causes of mortality worldwide. The search for novel and effective anticancer agents has been a significant area of research. Dibenzocyclooctadiene lignans (DBCLS), derived from the Schisandra genus plants like: S. chinensis, S. sphenanthera, S. henryi, S. rubriflora, S. grandiflora, S. propinqua, and S. glabra, have been traditionally used in various medicinal systems and are known for their myriad health benefits, including anticancer properties. This comprehensive review aimed to collate and critically analyse the recent literature on the anticancer properties of DBCLS, focusing on their mechanistic approaches against different cancer types. An exhaustive literature search was performed using databases like PubMed/MedLine, Scopus, Web of Science, Embase, TRIP database and Google Scholar from 1980 to 2023. Peer-reviewed articles that elucidated the mechanistic approach of these lignans on cancer cell lines, in vivo models and preliminary clinical studies were included. Studies were assessed for their experimental designs, cancer types studied, and the mechanistic insights provided. The studies demonstrate that the anticancer effects of DBCLS compounds are primarily driven by their ability to trigger apoptosis, arrest the cell cycle, induce oxidative stress, modulate autophagy, and disrupt essential signaling pathways, notably MAPK, PI3K/Akt, and NF-κB. Additionally, these lignans have been shown to amplify the impact of traditional chemotherapy treatments, suggesting their potential role as supportive adjuncts in cancer therapy. Notably, several studies also emphasise their capacity to target cancer stem cells and mitigate multi-drug resistance specifically. DBCLS from the Schisandra genus have showcased significant potential as anticancer agents. Their multi-targeted mechanistic approach makes them promising candidates for further research, potentially leading to developing of new therapeutic strategies in cancer management.
Collapse
Affiliation(s)
- Karolina Jafernik
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Sara Motyka
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9 St., 30-688, Kraków, Poland
- Doctoral School of Medical and Health Sciences, Medical College, Jagiellonian University, Łazarza 16 St., 31-530, Kraków, Poland
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9 St., 30-688, Kraków, Poland.
| |
Collapse
|
7
|
Li M, Tang Q, Li S, Yang X, Zhang Y, Tang X, Huang P, Yin D. Inhibition of autophagy enhances the anticancer effect of Schisandrin B on head and neck squamous cell carcinoma. J Biochem Mol Toxicol 2024; 38:e23585. [PMID: 37986106 DOI: 10.1002/jbt.23585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/10/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is among the most common malignant tumors worldwide and has a poor prognosis. Autophagy regulation has been proposed as a possible treatment option for HNSCC. Schisandrin B (Sch B) exerts anticancer effects by regulating apoptosis and autophagy, but the anticancer effect of Sch B in HNSCC remains unclear. This study aimed to investigate the effects of Sch B on human Cal27 HNSCC cells and to further reveal its potential regulatory mechanisms. The anticancer effect of Sch B was evaluated in vitro by flow cytometry, clonogenic assays, and Western blot analysis. The regulatory mechanism of Sch B-induced apoptosis and autophagy was further explored by polymerase chain reaction, luciferase assay, and reactive oxygen species (ROS) detection. The results showed that Sch B significantly induced apoptosis and autophagy in Cal27 cells and that inhibition of autophagy enhanced the apoptotic effect of Sch B on Cal27 cells. Additionally, Sch B-activated autophagy in Cal27 cells was dependent on the nuclear factor-kappa B (NF-κB) pathway, and ROS acted as a regulator of the NF-B pathway. N-acetylcysteine, a scavenger of ROS, inhibited Sch B-dependent autophagy via the NF-κB pathway. Based on the results, Sch B is a potential therapeutic agent for HNSCC and activates the NF-κB pathway by increasing ROS production, which subsequently promotes autophagy in HNSCC cells. Therefore, the strategy of enhancing the anticancer effect of Sch B by inhibiting autophagy deserves further attention.
Collapse
Affiliation(s)
- Mengmeng Li
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Qinglai Tang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Shisheng Li
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xinming Yang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Ying Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiaojun Tang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Peiying Huang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Danhui Yin
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
8
|
Meng B, Gao S, Chen J, Wang B, Mu Y, Liu Y, Wang Z, Chen W. A LC-MS/MS Method for Quantifying the Schisandrin B and Exploring Its Intracellular Exposure Correlating Antitumor Effect. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2023; 2023:8898426. [PMID: 37325704 PMCID: PMC10264713 DOI: 10.1155/2023/8898426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023]
Abstract
Schisandrin B (Sch.B) shows antineoplastic activity in colorectal cancer, but the mechanism is still obscure. The intracellular spatial distribution may be helpful in elucidating the mechanism. To investigate the intracellular drug distribution of Sch.B in cancer cells, a simple, rapid, and sensitive ultra-highperformance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method was established for the determination of Sch.B in colorectal cancer cells. Warfarin was utilized as an internal standard. The sample pretreatment was carried out with protein precipitation using methanol. The analyte was separated on an Atlantis T3-C18 column (3 μm, 2.1∗100 mm) using gradient elution with a mobile phase comprised of methanol and 0.2% formic acid in water. The flow rate was 0.4 mL/min. The linear range of Sch.B was 20.0-1000.0 ng/mL with a correlation coefficient (R) more than 0.99. The matrix effect and recovery ranged from 88.01% to 94.59% and from 85.25% to 91.71%; the interday and intraday precision and accuracy, stability, specificity, carryover, matrix effect, and recovery all conformed to the requirements of pharmacopoeia. Cell viability and apoptosis assays demonstrated that Sch.B has an inhibitory effect in a dose-dependent way on HCT116 proliferation and achieved significant suppression at 75 μM (IC50). It was found that in HCT116 cell, nucleus, and mitochondria, exposure levels of Sch.B peaked at 36 h and then decreased, and mitochondria possessed more Sch.B than nucleus. These results may help to elucidate the antitumor effect of Sch.B.
Collapse
Affiliation(s)
- Bosu Meng
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan, China
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Shouhong Gao
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan, China
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Jihui Chen
- Department of Pharmacy, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Bin Wang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
- School of Chemistry and Biology, Yichun College, Yichun 336000, Jiangxi, China
| | - Yuhui Mu
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan, China
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Yan Liu
- Department of Pharmacy, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhipeng Wang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Wansheng Chen
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| |
Collapse
|
9
|
Zhang Y, Wang P, Jin MX, Zhou YQ, Ye L, Zhu XJ, Li HF, Zhou M, Li Y, Li S, Liang KY, Wang Y, Gao Y, Pan MX, Zhou SQ, Peng Q. Schisandrin B Improves the Hypothermic Preservation of Celsior Solution in Human Umbilical Cord Mesenchymal Stem Cells. Tissue Eng Regen Med 2023; 20:447-459. [PMID: 36947320 PMCID: PMC10219924 DOI: 10.1007/s13770-023-00531-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Human umbilical cord mesenchymal stem cells (hUCMSCs) have emerged as promising therapy for immune and inflammatory diseases. However, how to maintain the activity and unique properties during cold storage and transportation is one of the key factors affecting the therapeutic efficiency of hUCMSCs. Schisandrin B (SchB) has many functions in cell protection as a natural medicine. In this study, we investigated the protective effects of SchB on the hypothermic preservation of hUCMSCs. METHODS hUCMSCs were isolated from Wharton's jelly. Subsequently, hUCMSCs were exposed to cold storage (4 °C) and 24-h re-warming. After that, cells viability, surface markers, immunomodulatory effects, reactive oxygen species (ROS), mitochondrial integrity, apoptosis-related and antioxidant proteins expression level were evaluated. RESULTS SchB significantly alleviated the cells injury and maintained unique properties such as differentiation potential, level of surface markers and immunomodulatory effects of hUCMSCs. The protective effects of SchB on hUCMSCs after hypothermic storage seemed associated with its inhibition of apoptosis and the anti-oxidative stress effect mediated by nuclear factor erythroid 2-related factor 2 signaling. CONCLUSION These results demonstrate SchB could be used as an agent for hypothermic preservation of hUCMSCs.
Collapse
Affiliation(s)
- Ying Zhang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Peng Wang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Mei-Xian Jin
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Ying-Qi Zhou
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Liang Ye
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Xiao-Juan Zhu
- Department of Anesthesiology, First People's Hospital of Kashi, Kashi, 844000, China
| | - Hui-Fang Li
- Department of Anesthesiology, First People's Hospital of Kashi, Kashi, 844000, China
| | - Ming Zhou
- Department of Anesthesiology, First People's Hospital of Kashi, Kashi, 844000, China
| | - Yang Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Shao Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Kang-Yan Liang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Yi Wang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Yi Gao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Ming-Xin Pan
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Shu-Qin Zhou
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China.
| | - Qing Peng
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|
10
|
Sana-Eldine AO, Abdelgawad HM, Kotb NS, Shehata NI. The potential effect of Schisandrin-B combination with panitumumab in wild-type and mutant colorectal cancer cell lines: Role of apoptosis and autophagy. J Biochem Mol Toxicol 2023; 37:e23324. [PMID: 36808796 DOI: 10.1002/jbt.23324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/16/2022] [Accepted: 02/08/2023] [Indexed: 02/22/2023]
Abstract
Panitumumab is an approved monoclonal antibody for the treatment of colorectal cancer (CRC); however, mutations in EGFR signaling pathway resulted in poor response. Schisandrin-B (Sch-B) is a phytochemical that was suggested to protect against inflammation, oxidative stress, and cell proliferation. The present study aimed to investigate the potential effect of Sch-B on panitumumab-induced cytotoxicity in wild-type Caco-2, and mutant HCT-116 and HT-29 CRC cell lines, and the possible underlying mechanisms. CRC cell lines were treated with panitumumab, Sch-B, and their combination. The cytotoxic effect of drugs was determined by MTT assay. The apoptotic potential was assessed in-vitro by DNA fragmentation and caspase-3 activity. Additionally, autophagy was investigated via microscopic detection of autophagosomes and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) measurement of Beclin-1, Rubicon, LC3-II, and Bcl-2 expression. The drug pair enhanced panitumumab cytotoxicity in all CRC cell lines where IC50 of panitumumab was decreased in Caco-2 cell line. Apoptosis was induced through caspase-3 activation, DNA fragmentation, and Bcl-2 downregulation. Caco-2 cell line treated with panitumumab showed stained acidic vesicular organelles, contrariwise, all cell lines treated with Sch-B or the drug pair displayed green fluorescence indicating the lack of autophagosomes. qRT-PCR revealed the downregulation of LC3-II in all CRC cell lines, Rubicon in mutant cell lines, and Beclin-1 in HT-29 cell line only. Sch-B at 6.5 µM promoted panitumumab-induced apoptotic cell death, in-vitro, via caspase-3 activation and Bcl-2 downregulation, rather than autophagic cell death. This novel combination therapy against CRC, allows the reduction of panitumumab dose to guard against its adverse effects.
Collapse
Affiliation(s)
| | - Hanan M Abdelgawad
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nahla S Kotb
- Biochemistry Department, Faculty of postgraduate studies for advanced Biotechnology and life sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Nagwa I Shehata
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
11
|
Kong M, Yu X, Zheng Q, Zhang S, Guo W. Oncogenic roles of LINC01234 in various forms of human cancer. Biomed Pharmacother 2022; 154:113570. [PMID: 36030582 DOI: 10.1016/j.biopha.2022.113570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022] Open
Abstract
Abnormal expression of long non-coding RNAs (lncRNAs) plays an essential role in various malignant neoplasia. As a newly identified lncRNA, LINC01234 is abnormally expressed in several types of cancers and promotes the development of cancers. Accumulating evidence indicates that overexpression of LINC01234 is associated with poor clinical outcomes. Moreover, LINC01234 modulates many cellular events as a putative proto-oncogene, including proliferation, migration, invasion, apoptosis, cell cycle progression, and EMT. In terms of molecular mechanism, LINC01234 regulates gene expression by acting as ceRNA, participating in signaling pathways, interacting with proteins and other molecules, and encoding polypeptide. It reveals that LINC01234 may serve as a potential biomarker for cancer diagnosis, treatment, and prognosis. This review summarizes the expression pattern, biological function, and molecular mechanism of LINC01234 in human cancer and discusses its potential clinical utility.
Collapse
Affiliation(s)
- Minyu Kong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Liver Transplantation Centre, China; Henan Organ Transplantation Quality Control Centre, China; Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Liver Transplantation Centre, China; Henan Organ Transplantation Quality Control Centre, China; Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China
| | - Qingyuan Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Liver Transplantation Centre, China; Henan Organ Transplantation Quality Control Centre, China; Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Liver Transplantation Centre, China; Henan Organ Transplantation Quality Control Centre, China; Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Liver Transplantation Centre, China; Henan Organ Transplantation Quality Control Centre, China; Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China.
| |
Collapse
|