1
|
Han Y, Ai L, Sha S, Zhou J, Fu H, Sun C, Liu R, Li A, Cao JL, Hu A, Zhang H. The functional role of the visual and olfactory modalities in the development of socially transferred mechanical hypersensitivity in male C57BL/6J mice. Physiol Behav 2024; 277:114499. [PMID: 38378074 DOI: 10.1016/j.physbeh.2024.114499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/27/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024]
Abstract
An increasing body of evidence suggests that the state of hyperalgesia could be socially transferred from one individual to another through a brief empathetic social contact. However, how the social transfer of pain develops during social contact is not well-known. Utilizing a well-established mouse model, the present study aims to study the functional role of visual and olfactory cues in the development of socially-transferred mechanical hypersensitivity. Behavioral tests demonstrated that one hour of brief social contact with a conspecific mouse injected with complete Freund's adjuvant (CFA) was both sufficient and necessary for developing socially-transferred mechanical hypersensitivity. One hour of social contact with visual deprivation could not prevent the development of socially-transferred mechanical hypersensitivity, and screen observation of a CFA cagemate was not sufficient to develop socially-transferred mechanical hypersensitivity in bystanders. Methimazole-induced olfactory deprivation, a compound with reversible toxicity on the nasal olfactory epithelium, was sufficient to prevent the development of socially-transferred mechanical hypersensitivity. Intriguingly, repeated but not acute olfactory exposure to the CFA mouse bedding induced a robust decrease in 50 % paw withdrawal thresholds (50 %PWTs) to mechanical stimuli, an effect returned to the baseline level after two days of washout with clean bedding. The findings strongly indicate that the normal olfactory function is crucial for the induction of mechanical hypersensitivity through brief empathetic contact, offering valuable insights for animal housing in future pain research.
Collapse
Affiliation(s)
- Yi Han
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, PR China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, PR China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Lin Ai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, PR China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, PR China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Sha Sha
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, PR China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, PR China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Jingwei Zhou
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, PR China; Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Hanyu Fu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, PR China; Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Changcheng Sun
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, PR China; Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Ruiqi Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, PR China; Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, PR China; Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, PR China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, PR China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, PR China; Department of Anesthesiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Ankang Hu
- Laboratory Animal Center of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, PR China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, PR China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, PR China.
| |
Collapse
|
2
|
Baggio DF, da Luz FMR, Zortea JM, Lejeune VBP, Chichorro JG. Sex differences in carbamazepine effects in a rat model of trigeminal neuropathic pain. Eur J Pharmacol 2024; 967:176386. [PMID: 38311280 DOI: 10.1016/j.ejphar.2024.176386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Carbamazepine (CBZ) represents the first-line treatment for trigeminal neuralgia, a condition of facial pain that affects mainly women. The chronic constriction of the infraorbital nerve (CCI-ION) is a widely used model to study this condition, but most studies do not include females. Thus, this study aimed to characterize sensory and affective changes in female rats after CCI-ION and compare the effect of CBZ in both sexes. Mechanical allodynia was assessed 15 days after CCI-ION surgery in rats treated with CBZ (10 and 30 mg/kg, i.p.) or vehicle, together with the open-field test. Independent groups were tested on the Conditioned Place Preference (CPP) paradigm and ultrasonic vocalization (USV) analysis. Blood samples were collected for dosage of the main CBZ metabolite. CBZ at 30 mg/kg impaired locomotion of CCI-ION male and sham and CCI-ION female rats and resulted in significantly higher plasma concentrations of 10-11-EPX-CBZ in the latter. Only male CCI-ION rats showed increased facial grooming which was significantly reduced by CBZ at 10 mg/kg. CBZ at 10 mg/kg significantly reduced mechanical allodynia and induced CPP only in female CCI-ION rats. Also, female CCI-ION showed reduced emission of appetitive USV but did not show anxiety-like behavior. In conclusion, male and female CCI-ION rats presented differences in the expression of the affective-motivational pain component and CBZ was more effective in females than males. Further studies using both sexes in trigeminal neuropathic pain models are warranted for a better understanding of potential differences in the pathophysiological mechanisms and efficacy of pharmacological treatments.
Collapse
Affiliation(s)
- Darciane Favero Baggio
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Julia Maria Zortea
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil.
| |
Collapse
|
3
|
Ma X, Zhu T, Ke J. Progress in animal models of trigeminal neuralgia. Arch Oral Biol 2023; 154:105765. [PMID: 37480619 DOI: 10.1016/j.archoralbio.2023.105765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
OBJECTIVE This review aims to systematically summarize the methods of establishing various models of trigeminal neuralgia (TN), the scope of application, and current animals used in TN research and the corresponding pain measurements, hoping to provide valuable reference for researchers to select appropriate TN animal models and make contributions to the research of pathophysiology and management of the disease. DESIGN The related literatures of TN were searched through PubMed database using different combinations of the following terms and keywords including but not limited: animal models, trigeminal neuralgia, orofacial neuropathic pain. To find the maximum number of eligible articles, no filters were used in the search. The references of eligible studies were analyzed and reviewed comprehensively. RESULTS This study summarized the current animal models of TN, categorized them into the following groups: chemical induction, photochemical induction, surgery and genetic engineering, and introduced various measurement methods to evaluate animal pain behaviors. CONCLUSIONS Although a variety of methods are used to establish disease models, there is no ideal TN model that can reflect all the characteristics of the disease. Therefore, there is still a need to develop more novel animal models in order to further study the etiology, pathological mechanism and potential treatment of TN.
Collapse
Affiliation(s)
- Xiaohan Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, China
| | - Taomin Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, China
| | - Jin Ke
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, China.
| |
Collapse
|