1
|
Khongwichit S, Swangphon P, Nualla-ong A, Prompat N, Amatatongchai M, Lieberzeit PA, Chunta S. Reduced Uptake of Oxidized Low-Density Lipoprotein by Macrophages Using Multiple Aptamer Combinations. ACS APPLIED BIO MATERIALS 2025; 8:457-474. [PMID: 39762152 PMCID: PMC11752521 DOI: 10.1021/acsabm.4c01432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/21/2025]
Abstract
The accumulation of oxidized low-density lipoprotein (oxLDL) in macrophages leads to the formation of foam cells and atherosclerosis development. Reducing the uptake of oxLDL in macrophages decreases the incidence and progression of atherosclerosis. Four distinct single-strand DNA sequences, namely, AP07, AP11, AP25, and AP29, were selected that demonstrated specific binding to distinct regions of oxidized apolipoprotein B100 (apoB100; the protein component of oxLDL) with low HDOCK scores. These four DNA sequences were combined to generate aptamers that selectively bound to labeled Dil-oxLDL, and were subsequently added to murine RAW 264.7 macrophages to test their inhibitory effects using fluorescence spectrometry. The four combined aptamers at 10 μM reduced oxLDL uptake by 79 ± 4% compared to that of the untreated aptamer group. Flow cytometry data demonstrated that macrophages treated with aptamers reached only 32.6% of the Dil-oxLDL signal, a 50% reduction in fluorescence emission relative to that of the untreated group (64.4% Dil-oxLDL signal). Binding the four combined aptamers to the oxLDL surface disrupted the interaction between oxLDL and CD36 via cyclic voltammetry, effectively decreasing the level of uptake of oxLDL by macrophages. Results suggested that these aptamers could be used as alternative compounds to prevent the formation of foam cells, hence providing antiatherosclerosis activity.
Collapse
Affiliation(s)
- Soemwit Khongwichit
- Faculty
of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand
- Division
of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Piyawut Swangphon
- Faculty
of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand
| | - Aekkaraj Nualla-ong
- Division
of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
- Center
for Genomics and Bioinformatic Research, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
- Medical
of Technology Service Center, Faculty of
Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand
| | - Napat Prompat
- Faculty
of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand
- Medical
of Technology Service Center, Faculty of
Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand
| | - Maliwan Amatatongchai
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Peter A. Lieberzeit
- Department
of Physical Chemistry, Faculty for Chemistry, University of Vienna, Vienna 1090, Austria
| | - Suticha Chunta
- Faculty
of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
2
|
Wang XR, Luan JX, Guo ZA. Mechanism of Astragaloside IV in Treatment of Renal Tubulointerstitial Fibrosis. Chin J Integr Med 2024:10.1007/s11655-024-3805-6. [PMID: 38850482 DOI: 10.1007/s11655-024-3805-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 06/10/2024]
Abstract
Tubulointerstitial fibrosis (TIF) is one of the key indicators in evaluating the renal function of patients. Mild TIF can cause a vicious cycle of renal tubular glomerular injury and aggravate renal disease. Therefore, studying the mechanisms underlying TIF is essential to identify therapeutic targets, thereby protecting the renal function of patients with timely intervention. Astragaloside IV (AS-IV) is a Chinese medicine component that has been shown to inhibit the occurrence and progression of TIF via multiple pathways. Previous studies have reported that AS-IV protected against TIF by inhibiting inflammation, autophagy, endoplasmic reticulum stress, macrophages, and transforming growth factor-β1, which laid the foundation for the development of a new preventive and therapeutic option for TIF.
Collapse
Affiliation(s)
- Xin-Ru Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jing-Xiang Luan
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Zhao-An Guo
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
3
|
Lv N, Wang L, Zeng M, Wang Y, Yu B, Zeng W, Jiang X, Suo Y. Saponins as therapeutic candidates for atherosclerosis. Phytother Res 2024; 38:1651-1680. [PMID: 38299680 DOI: 10.1002/ptr.8128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/25/2023] [Accepted: 01/06/2024] [Indexed: 02/02/2024]
Abstract
Drug development for atherosclerosis, the underlying pathological state of ischemic cardiovascular diseases, has posed a longstanding challenge. Saponins, classified as steroid or triterpenoid glycosides, have shown promising therapeutic potential in the treatment of atherosclerosis. Through an exhaustive examination of scientific literature spanning from May 2013 to May 2023, we identified 82 references evaluating 37 types of saponins in terms of their prospective impacts on atherosclerosis. These studies suggest that saponins have the potential to ameliorate atherosclerosis by regulating lipid metabolism, inhibiting inflammation, suppressing apoptosis, reducing oxidative stress, and modulating smooth muscle cell proliferation and migration, as well as regulating gut microbiota, autophagy, endothelial senescence, and angiogenesis. Notably, ginsenosides exhibit significant potential and manifest essential pharmacological attributes, including lipid-lowering, anti-inflammatory, anti-apoptotic, and anti-oxidative stress effects. This review provides a comprehensive examination of the pharmacological attributes of saponins in atherosclerosis, with particular emphasis on their role in the regulation of lipid metabolism regulation and anti-inflammatory effects. Thus, saponins may warrant further investigation as a potential therapy for atherosclerosis. However, due to various reasons such as low oral bioavailability, the clinical application of saponins in the treatment of atherosclerosis still needs further exploration.
Collapse
Affiliation(s)
- Nuan Lv
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Luming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yijing Wang
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenyun Zeng
- Oncology Department, Ganzhou people's hospital, Ganzhou, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanrong Suo
- Traditional Chinese Medicine Department, Ganzhou people's hospital, Ganzhou, China
| |
Collapse
|
4
|
Zhang J, Lu M, Li C, Yan B, Xu F, Wang H, Zhang Y, Yang Y. Astragaloside IV mitigates hypoxia-induced cardiac hypertrophy through calpain-1-mediated mTOR activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155250. [PMID: 38295664 DOI: 10.1016/j.phymed.2023.155250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND Astragaloside IV (AsIV), a key functioning element of Astragalus membranaceus, has been recognized for its potential cardiovascular protective properties. However, there is a need to elucidate the impacts of AsIV on myocardial hypertrophy under hypoxia conditions and its root mechanisms. PURPOSE This study scrutinized the influence of AsIV on cardiac injury under hypoxia, with particular emphasis on the role of calpain-1 (CAPN1) in mediating mTOR pathways. METHODS Hypoxia-triggered cardiac hypertrophy was examined in vivo with CAPN1 knockout and wild-type C57BL/6 mice and in vitro with H9C2 cells. The impacts of AsIV, 3-methyladenine, and CAPN1 inhibition on hypertrophy, autophagy, apoptosis, [Ca2+]i, and CAPN1 and mTOR levels in cardiac tissues and H9C2 cells were investigated. RESULTS Both AsIV treatment and CAPN1 knockout mitigated hypoxia-induced cardiac hypertrophy, autophagy, and apoptosis in mice and H9C2 cells. Moreover, AsIV, 3-methyladenine, and CAPN1 inhibition augmented p-mTOR level but reduced [Ca2+]i and CAPN1 level. Additionally, lentivirus-mediated CAPN1 overexpression in H9C2 cells exacerbated myocardial hypertrophy, apoptosis, and p-mTOR inhibition under hypoxia. Specifically, AsIV treatment reversed the impacts of increased CAPN1 expression on cardiac injury and the inhibition of p-mTOR. CONCLUSION These findings suggest that AsIV may alleviate cardiac hypertrophy under hypoxia by attenuating apoptosis and autophagy through CAPN1-mediated mTOR activation.
Collapse
Affiliation(s)
- Jingliang Zhang
- Internal Medicine-Cardiovascular Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Meili Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Cong Li
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Bingju Yan
- Internal Medicine-Cardiovascular Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Fang Xu
- Department of Pharmacy, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Hongxin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China.
| | - Yingjie Zhang
- Internal Medicine-Cardiovascular Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
| | - Yuhong Yang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
5
|
Xu Z, Zhou H, Zhang Y, Cheng Z, Wan M, Qin W, Li P, Feng J, Shao S, Xue W, Guo H, Liu B. Recent pharmacological advances in the treatment of cardiovascular events with Astragaloside IV. Biomed Pharmacother 2023; 168:115752. [PMID: 37875045 DOI: 10.1016/j.biopha.2023.115752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death and disability globally. A wide range of CVDs have been reported, each of which diverges significantly, exhibiting sophisticated types of pathogenesis (e.g., inflammatory, oxidative stress, and disorders in cardiomyocyte metabolism). Compared with conventional treatments in modern medicine, traditional Chinese medicine (TCM) can exhibit comparative advantages in the treatment of CVDs. TCM can be utilized to develop effective strategies for addressing the challenges of CVD, with fewer side effects and higher therapeutic efficiency. Astragaloside IV (AS-IV) has been confirmed as one of the major active ingredients found in Astragalus membranaceus (a Chinese herbal medicine that has been extensively employed clinically for the treatments of CVDs). Since recent studies have shown that AS-IV in CVD treatments has achieved promising results, the substance has aroused great attention and further discussions in the field. The present review aims to summarize the recent pharmacological advances in employing AS-IV in the treatment of CVDs.
Collapse
Affiliation(s)
- Zehui Xu
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Houle Zhou
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yihan Zhang
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ziji Cheng
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Melisandre Wan
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wanting Qin
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Peiyu Li
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiaming Feng
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuijin Shao
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenlong Xue
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Haidong Guo
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Baonian Liu
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
6
|
Jing J, Zhu C, Gong R, Qi X, Zhang Y, Zhang Z. Research progress on the active ingredients of traditional Chinese medicine in the intervention of atherosclerosis: A promising natural immunotherapeutic adjuvant. Biomed Pharmacother 2023; 159:114201. [PMID: 36610225 DOI: 10.1016/j.biopha.2022.114201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease caused by disorders of lipid metabolism. Abnormal deposition of low-density lipoproteins in the arterial wall stimulates the activation of immune cells, including the adhesion and infiltration of monocytes, the proliferation and differentiation of macrophages and lymphocytes, and the activation of their functions. The complex interplay between immune cells coordinates the balance between pro- and anti-inflammation and plays a key role in the progression of AS. Therefore, targeting immune cell activity may lead to the development of more selective drugs with fewer side effects to treat AS without compromising host defense mechanisms. At present, an increasing number of studies have found that the active ingredients of traditional Chinese medicine (TCM) can regulate the function of immune cells in multiple ways to against AS, showing great potential for the treatment of AS and promising clinical applications. In this paper, we review the mechanisms of immune cell action in AS lesions and the potential targets and/or pathways for immune cell regulation by the active ingredients of TCM to promote the understanding of the immune system interactions of AS and provide a relevant basis for the use of active ingredients of TCM as natural adjuvants for AS immunotherapy.
Collapse
Affiliation(s)
- Jinpeng Jing
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Chaojun Zhu
- Surgical Department of Traditional Chinese Medicine, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Rui Gong
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Xue Qi
- Department of General Surgery, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China.
| | - Yue Zhang
- Peripheral Vascular Disease Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Zhaohui Zhang
- Surgical Department of Traditional Chinese Medicine, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
7
|
Advances in the Bioactivities of Phytochemical Saponins in the Prevention and Treatment of Atherosclerosis. Nutrients 2022; 14:nu14234998. [PMID: 36501028 PMCID: PMC9735883 DOI: 10.3390/nu14234998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease characterized by hardening and narrowing of arteries. AS leads to a number of arteriosclerotic vascular diseases including cardiovascular diseases, cerebrovascular disease and peripheral artery disease, which pose a big threat to human health. Phytochemicals are a variety of intermediate or terminal low molecular weight secondary metabolites produced during plant energy metabolism. Phytochemicals from plant foods (vegetables, fruits, whole grains) and traditional herb plants have been shown to exhibit multiple bioactivities which are beneficial for prevention and treatment against AS. Many types of phytochemicals including polyphenols, saponins, carotenoids, terpenoids, organic sulfur compounds, phytoestrogens, phytic acids and plant sterols have already been identified, among which saponins are a family of glycosidic compounds consisting of a hydrophobic aglycone (sapogenin) linked to hydrophilic sugar moieties. In recent years, studies have shown that saponins exhibit a number of biological activities such as anti-inflammation, anti-oxidation, cholesterol-lowering, immunomodulation, anti-platelet aggregation, etc., which are helpful in the prevention and treatment of AS. This review aims to summarize the recent advances in the anti-atherosclerotic bioactivities of saponins such as ginsenoside, soyasaponin, astra-galoside, glycyrrhizin, gypenoside, dioscin, saikosaponin, etc.
Collapse
|