1
|
Soto-Sánchez J, Garza-Treviño G. Combination Therapy and Phytochemical-Loaded Nanosytems for the Treatment of Neglected Tropical Diseases. Pharmaceutics 2024; 16:1239. [PMID: 39458571 PMCID: PMC11510106 DOI: 10.3390/pharmaceutics16101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Neglected tropical diseases (NTDs), including leishmaniasis, trypanosomiasis, and schistosomiasis, impose a significant public health burden, especially in developing countries. Despite control efforts, treatment remains challenging due to drug resistance and lack of effective therapies. Objective: This study aimed to synthesize the current research on the combination therapy and phytochemical-loaded nanosystems, which have emerged as promising strategies to enhance treatment efficacy and safety. Methods/Results: In the present review, we conducted a systematic search of the literature and identified several phytochemicals that have been employed in this way, with the notable efficacy of reducing the parasite load in the liver and spleen in cases of visceral leishmaniasis, as well as lesion size in cutaneous leishmaniasis. Furthermore, they have a synergistic effect against Trypanosoma brucei rhodesiense rhodesain; reduce inflammation, parasitic load in the myocardium, cardiac hypertrophy, and IL-15 production in Chagas disease; and affect both mature and immature stages of Schistosoma mansoni, resulting in improved outcomes compared to the administration of phytochemicals alone or with conventional drugs. Moreover, the majority of the combinations studied demonstrated enhanced solubility, efficacy, and selectivity, as well as increased immune response and reduced cytotoxicity. Conclusions: These formulations appear to offer significant therapeutic benefits, although further research is required to validate their clinical efficacy in humans and their potential to improve treatment outcomes in affected populations.
Collapse
Affiliation(s)
- Jacqueline Soto-Sánchez
- Section for Postgraduate Studies and Research, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, Ciudad de México 07320, Mexico
| | - Gilberto Garza-Treviño
- Section for Postgraduate Studies and Research, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, Ciudad de México 07320, Mexico
| |
Collapse
|
2
|
Berhe H, Kumar Cinthakunta Sridhar M, Zerihun M, Qvit N. The Potential Use of Peptides in the Fight against Chagas Disease and Leishmaniasis. Pharmaceutics 2024; 16:227. [PMID: 38399281 PMCID: PMC10892537 DOI: 10.3390/pharmaceutics16020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/28/2023] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Chagas disease and leishmaniasis are both neglected tropical diseases that affect millions of people around the world. Leishmaniasis is currently the second most widespread vector-borne parasitic disease after malaria. The World Health Organization records approximately 0.7-1 million newly diagnosed leishmaniasis cases each year, resulting in approximately 20,000-30,000 deaths. Also, 25 million people worldwide are at risk of Chagas disease and an estimated 6 million people are infected with Trypanosoma cruzi. Pentavalent antimonials, amphotericin B, miltefosine, paromomycin, and pentamidine are currently used to treat leishmaniasis. Also, nifurtimox and benznidazole are two drugs currently used to treat Chagas disease. These drugs are associated with toxicity problems such as nephrotoxicity and cardiotoxicity, in addition to resistance problems. As a result, the discovery of novel therapeutic agents has emerged as a top priority and a promising alternative. Overall, there is a need for new and effective treatments for Chagas disease and leishmaniasis, as the current drugs have significant limitations. Peptide-based drugs are attractive due to their high selectiveness, effectiveness, low toxicity, and ease of production. This paper reviews the potential use of peptides in the treatment of Chagas disease and leishmaniasis. Several studies have demonstrated that peptides are effective against Chagas disease and leishmaniasis, suggesting their use in drug therapy for these diseases. Overall, peptides have the potential to be effective therapeutic agents against Chagas disease and leishmaniasis, but more research is needed to fully investigate their potential.
Collapse
Affiliation(s)
| | | | | | - Nir Qvit
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel; (H.B.); (M.K.C.S.); (M.Z.)
| |
Collapse
|
3
|
Román-Álamo L, Allaw M, Avalos-Padilla Y, Manca ML, Manconi M, Fulgheri F, Fernández-Lajo J, Rivas L, Vázquez JA, Peris JE, Roca-Geronès X, Poonlaphdecha S, Alcover MM, Fisa R, Riera C, Fernàndez-Busquets X. In Vitro Evaluation of Aerosol Therapy with Pentamidine-Loaded Liposomes Coated with Chondroitin Sulfate or Heparin for the Treatment of Leishmaniasis. Pharmaceutics 2023; 15:pharmaceutics15041163. [PMID: 37111648 PMCID: PMC10147000 DOI: 10.3390/pharmaceutics15041163] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023] Open
Abstract
The second-line antileishmanial compound pentamidine is administered intramuscularly or, preferably, by intravenous infusion, with its use limited by severe adverse effects, including diabetes, severe hypoglycemia, myocarditis and renal toxicity. We sought to test the potential of phospholipid vesicles to improve the patient compliance and efficacy of this drug for the treatment of leishmaniasis by means of aerosol therapy. The targeting to macrophages of pentamidine-loaded liposomes coated with chondroitin sulfate or heparin increased about twofold (up to ca. 90%) relative to noncoated liposomes. The encapsulation of pentamidine in liposomes ameliorated its activity on the amastigote and promastigote forms of Leishmania infantum and Leishmania pifanoi, and it significantly reduced cytotoxicity on human umbilical endothelial cells, for which the concentration inhibiting 50% of cell viability was 144.2 ± 12.7 µM for pentamidine-containing heparin-coated liposomes vs. 59.3 ± 4.9 µM for free pentamidine. The deposition of liposome dispersions after nebulization was evaluated with the Next Generation Impactor, which mimics human airways. Approximately 53% of total initial pentamidine in solution reached the deeper stages of the impactor, with a median aerodynamic diameter of ~2.8 µm, supporting a partial deposition on the lung alveoli. Upon loading pentamidine in phospholipid vesicles, its deposition in the deeper stages significantly increased up to ~68%, and the median aerodynamic diameter decreased to a range between 1.4 and 1.8 µm, suggesting a better aptitude to reach the deeper lung airways in higher amounts. In all, nebulization of liposome-encapsulated pentamidine improved the bioavailability of this neglected drug by a patient-friendly delivery route amenable to self-administration, paving the way for the treatment of leishmaniasis and other infections where pentamidine is active.
Collapse
Affiliation(s)
- Lucía Román-Álamo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 149-153, 08036 Barcelona, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Mohamad Allaw
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, Italy
| | - Yunuen Avalos-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 149-153, 08036 Barcelona, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Maria Letizia Manca
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, Italy
| | - Maria Manconi
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, Italy
| | - Federica Fulgheri
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, Italy
| | - Jorge Fernández-Lajo
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Luis Rivas
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - José Antonio Vázquez
- Group of Recycling and Valorization of Waste Materials (REVAL), Marine Research Institute (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - José Esteban Peris
- Department of Pharmacy and Pharmaceutical Technology, University of Valencia, 46100 Burjassot, Spain
| | - Xavier Roca-Geronès
- Section of Parasitology, Department of Biology, Health and Environment, Faculty of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Srisupaph Poonlaphdecha
- Section of Parasitology, Department of Biology, Health and Environment, Faculty of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Maria Magdalena Alcover
- Section of Parasitology, Department of Biology, Health and Environment, Faculty of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Roser Fisa
- Section of Parasitology, Department of Biology, Health and Environment, Faculty of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Cristina Riera
- Section of Parasitology, Department of Biology, Health and Environment, Faculty of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Rosselló 149-153, 08036 Barcelona, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
4
|
Ndlovu K, Kannigadu C, Aucamp J, van Rensburg HDJ, N'Da DD. Exploration of ethylene glycol linked nitrofurantoin derivatives against Leishmania: Synthesis and in vitro activity. Arch Pharm (Weinheim) 2023; 356:e2200529. [PMID: 36759973 DOI: 10.1002/ardp.202200529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/27/2022] [Accepted: 12/30/2022] [Indexed: 02/11/2023]
Abstract
Leishmaniasis is a neglected tropical disease that is caused by the Leishmania parasite. It is estimated that there are more than 350 million people at risk of infection annually. Current treatments that are in clinical use are expensive, have toxic side effects, and are facing parasitic resistance. Therefore, new drugs are urgently required. In the quest for new, safe, and cost-effective drugs, a series of novel ethylene glycol derivatives of nitrofurantoin was synthesised and the in vitro antileishmanial efficacy of the compounds tested against Leishmania donovani and Leishmania major strains. Arylated ethylene glycol derivatives were found to be the most potent, with submicromolar activity up to 294-fold greater than the parent compound nitrofurantoin. Analogues 2j and 2k had the best antipromastigote activities with submicromolar IC50 values against L. major IR-173 and antimonial-resistant L. donovani 9515 strains.
Collapse
Affiliation(s)
- Keitumetsi Ndlovu
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Christina Kannigadu
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Janine Aucamp
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | | | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
5
|
Scariot DB, Staneviciute A, Zhu J, Li X, Scott EA, Engman DM. Leishmaniasis and Chagas disease: Is there hope in nanotechnology to fight neglected tropical diseases? Front Cell Infect Microbiol 2022; 12:1000972. [PMID: 36189341 PMCID: PMC9523166 DOI: 10.3389/fcimb.2022.1000972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
Nanotechnology is revolutionizing many sectors of science, from food preservation to healthcare to energy applications. Since 1995, when the first nanomedicines started being commercialized, drug developers have relied on nanotechnology to improve the pharmacokinetic properties of bioactive molecules. The development of advanced nanomaterials has greatly enhanced drug discovery through improved pharmacotherapeutic effects and reduction of toxicity and side effects. Therefore, highly toxic treatments such as cancer chemotherapy, have benefited from nanotechnology. Considering the toxicity of the few therapeutic options to treat neglected tropical diseases, such as leishmaniasis and Chagas disease, nanotechnology has also been explored as a potential innovation to treat these diseases. However, despite the significant research progress over the years, the benefits of nanotechnology for both diseases are still limited to preliminary animal studies, raising the question about the clinical utility of nanomedicines in this field. From this perspective, this review aims to discuss recent nanotechnological developments, the advantages of nanoformulations over current leishmanicidal and trypanocidal drugs, limitations of nano-based drugs, and research gaps that still must be filled to make these novel drug delivery systems a reality for leishmaniasis and Chagas disease treatment.
Collapse
Affiliation(s)
- Debora B. Scariot
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, and Simpson Querrey Institute, Northwestern University, Evanston and Chicago, IL, United States
| | - Austeja Staneviciute
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, and Simpson Querrey Institute, Northwestern University, Evanston and Chicago, IL, United States
| | - Jennifer Zhu
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, and Simpson Querrey Institute, Northwestern University, Evanston and Chicago, IL, United States
| | - Xiaomo Li
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Pathology, Northwestern University, Chicago, IL, United States
| | - Evan A. Scott
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, and Simpson Querrey Institute, Northwestern University, Evanston and Chicago, IL, United States
| | - David M. Engman
- Department of Pathology, Northwestern University, Chicago, IL, United States
| |
Collapse
|
6
|
Nitro compounds against trypanosomatidae parasites: Heroes or villains? Bioorg Med Chem Lett 2022; 75:128930. [PMID: 36030001 DOI: 10.1016/j.bmcl.2022.128930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022]
Abstract
Chagas disease and Human African trypanosomiasis (HAT) are caused by Trypanosoma cruzi, T. brucei rhodesiense or T. b. gambiense parasites, respectively; while Leishmania is caused by parasites from the Leishmania genus. In recent years, many efforts have been addressed to develop inhibitors against these parasites, especially nitro-containing derivatives, which can interfere with essential enzymes from the protozoa. In this review, all anti-trypanosomatidae nitrocompounds reported so far are shown herein, highlighting their activities and SAR analyses, providing all the benefits and problems associated with this ambiguous chemical group. Finally, this review paper will be useful for many research teams around the world, which are searching for novel trypanocidal and leishmanicidal agents.
Collapse
|
7
|
Zaccaron RP, Barbieri RT, Mendes C, Venturini LM, Alves N, Mariano SDS, de Andrade TAM, Hermes de Araújo PH, Feuser PE, Thirupathi A, Machado-de-Ávila RA, Lock Silveira PC. Photobiomodulation associated with lipid nanoparticles and hyaluronic acid accelerate the healing of excisional wounds. J Biomater Appl 2022; 37:668-682. [PMID: 35705485 DOI: 10.1177/08853282221109344] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives: This article aimed to investigate the effects of the association between photobiomodulation and hyaluronic acid incorporated in lipid nanoparticles in an epithelial lesion model in inflammatory parameters and oxidative stress. Methods: Eighty Wistar rats were randomly assigned to the following groups: epithelial lesion group (EL); EL+PBM; EL+HA; EL+SLNs; EL+SLNs-HA; EL+PBM+HA; EL+PBM+SLNs; EL+PBM+SLNs-HA. The animals were anesthetized with 4% isofluorane after shaving and induced to an epithelial lesion. Topical treatment with a gel containing HA (0.9%) and/or SLNs (10 mg/mL) and with laser irradiation occurred daily for 1 week. Results: The results showed an increase in wound contraction on the seventh day in the LE + LBM + AH-NPL group, a reduction in pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α), an increase in anti-inflammatory cytokines (IL- 4 and IL-10) and TGF-β. The levels of pro-inflammatory cytokine IL-4 and TGF-β also showed an increase in the LE + NPL-AH, LE + FBM + AH, LE + FBM + NPL and LE + FBM + NPL-AH groups. Regarding oxidative stress parameters, the levels of DCF and nitrite decreased in the combined therapy group when compared to the control group, as well as oxidative damage (carbonyl and sulfhydryl). In the antioxidant defense, there was an increase in GSH and SOD in the combination therapy group. Histological analysis showed a reduction in inflammatory infiltrate in the combination therapy group. The number of fibroblasts and the compaction of collagen fibers did not obtain significant responses. Conclusions: Results analyzed together showed that the combined therapy favored the repair process, and that studies can be carried out to enhance the histological analysis therapy favored the tissue repair process and that studies can be carried out to enhance the histological analysis.
Collapse
Affiliation(s)
- Rubya Pereira Zaccaron
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, 97853Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Rusilania Tozi Barbieri
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, 97853Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Carolini Mendes
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, 97853Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Ligia Milanez Venturini
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, 97853Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Naiara Alves
- Graduate Program of Biomedical Science, Herminio Ometto Foundation, Araras-SP, Brazil
| | | | | | | | - Paulo Emílio Feuser
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, 97853Universidade do Extremo Sul Catarinense, Criciúma, Brazil.,Department of Chemical Engineering and Food Engineering, 28117Federal University of Santa Catarina, Florianopolis, Brazil
| | - Anand Thirupathi
- Faculty of Sports Science, 47862Ningbo University, Ningbo, China
| | - Ricardo Andrez Machado-de-Ávila
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, 97853Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Phisiopatology, Program of postgraduate in Science of Health, 97853Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| |
Collapse
|
8
|
Dinc R. New developments in the treatment of cutaneous leishmaniasis. ASIAN PAC J TROP MED 2022. [DOI: 10.4103/1995-7645.345944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|