1
|
Geng Y, Li W, Wong NK, Xue F, Li Q, Zhang Y, Xu J, Deng Z, Zhou Y. Discovery of Artemisinins as Microsomal Prostaglandins Synthase-2 Inhibitors for the Treatment of Colorectal Cancer via Chemoproteomics. J Med Chem 2024; 67:2083-2094. [PMID: 38287228 DOI: 10.1021/acs.jmedchem.3c01989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Colorectal cancer remains the second leading cause of cancer-related mortalities worldwide. While artemisinin (ART), a key active compound from the traditional Chinese medicinal herb Artemisia annua, has been recognized for its antiproliferative activity against colon cancer cells, its underlying molecular underpinnings remain elusive. Whereas promiscuity of heme-dependent alkylating of macromolecules, mainly proteins, has been seen pivotal as a universal and primary mode of action of ART in cancer cells, accumulating evidence suggests the existence of unique targets and mechanisms of actions contingent on cell or tissue specificities. Here, we employed photoaffinity probes to identify the specific targets responsible for ART's anti-colon cancer actions. Upon validation, microsomal prostaglandins synthase-2 emerged as a specific and reversible target of ART in HCT116 colorectal cancer cells, whose inhibition resulted in reduced cellular prostaglandin E2 biosynthesis and cell growth. Our discovery opens new opportunities for pharmacological treatment of colon cancer.
Collapse
Affiliation(s)
- Yiyun Geng
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Weichao Li
- CAS Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Nai-Kei Wong
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Fuchong Xue
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Qing Li
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jingyuan Xu
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Zhangshuang Deng
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yiqing Zhou
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
2
|
Golenser J, Hunt NH, Birman I, Jaffe CL, Zech J, Mäder K, Gold D. Applicability of Redirecting Artemisinins for New Targets. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300030. [PMID: 38094863 PMCID: PMC10714028 DOI: 10.1002/gch2.202300030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/03/2023] [Indexed: 10/16/2024]
Abstract
Employing new therapeutic indications for drugs that are already approved for human use has obvious advantages, including reduced costs and timelines, because some routine steps of drug development and regulation are not required. This work concentrates on the redirection of artemisinins (ARTS) that already are approved for clinical use, or investigated, for malaria treatment. Several mechanisms of action are suggested for ARTS, among which only a few have been successfully examined in vivo, mainly the induction of oxidant stress and anti-inflammatory effects. Despite these seemingly contradictory effects, ARTS are proposed for repurposing in treatment of inflammatory disorders and diverse types of diseases caused by viral, bacterial, fungal, and parasitic infections. When pathogens are treated the expected outcome is diminution of the causative agents and/or their inflammatory damage. In general, repurposing ARTS is successful in only a very few cases, specifically when a valid mechanism can be targeted using an additional therapeutic agent and appropriate drug delivery. Investigation of repurposing should include optimization of drug combinations followed by examination in relevant cell lines, organoids, and animal models, before moving to clinical trials.
Collapse
Affiliation(s)
- Jacob Golenser
- Department of Microbiology and Molecular GeneticsKuvin Center for the Study of Infectious and Tropical DiseasesThe Hebrew University – Hadassah Medical CenterJerusalemIsrael
| | - Nicholas H. Hunt
- School of Medical SciencesUniversity of SydneySydney2050Australia
| | - Ida Birman
- Department of Microbiology and Molecular GeneticsKuvin Center for the Study of Infectious and Tropical DiseasesThe Hebrew University – Hadassah Medical CenterJerusalemIsrael
| | - Charles L. Jaffe
- Department of Microbiology and Molecular GeneticsKuvin Center for the Study of Infectious and Tropical DiseasesThe Hebrew University – Hadassah Medical CenterJerusalemIsrael
| | - Johanna Zech
- Institute of PharmacyMartin Luther University Halle‐Wittenberg06108HalleGermany
| | - Karsten Mäder
- Institute of PharmacyMartin Luther University Halle‐Wittenberg06108HalleGermany
| | - Daniel Gold
- Department of Clinical Microbiology and ImmunologyFaculty of MedicineTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
3
|
Hashimoto T, Yoshioka S, Iwanaga S, Kanazawa K. Anti-Malarial Activity of Allyl Isothiocyanate and N-acetyl-S-(N-allylthiocarbamoyl)-l-Cysteine. Mol Nutr Food Res 2023; 67:e2300185. [PMID: 37706619 DOI: 10.1002/mnfr.202300185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
SCOPE Malaria remains one of the most important infectious diseases in the world. Allyl isothiocyanate (AITC) is a main ingredient of traditional spice Wasabia japonica, which is reported to have anti-bacterial and antiparasitic activities. However, there is no information on effects of AITC against malaria. The present study investigates the anti-malarial activity of dietary AITC in vivo and that of AITC metabolites in vitro. METHODS AND RESULTS The ad libitum administration of 35, 175, or 350 µM AITC-containing drinking water to ICR mice significantly inhibit the parasitemia induced after infection with Plasmodium berghei. On the other hand, after single oral administration of AITC (20 mg kg-1 body weight), N-acetyl-S-(N-allylthiocarbamoyl)-l-cysteine (NAC-AITC) as one of the AITC metabolites displays a serum Cmax of 11.4 µM at a Tmax of 0.5 h, but AITC is not detected at any time point. Moreover, NAC-AITC shows anti-malarial activity against Plasmodium falciparum in vitro, and its 50% inhibitory concentration (IC50 ) against parasitemia is 12.6 µM. CONCLUSIONS These results indicate that orally administered AITC is metabolized to NAC-AITC and exerts anti-malarial activity against malaria parasites in blood, suggesting that the consumption of AITC-containing food stuffs such as cruciferous plants may prevent malaria.
Collapse
Affiliation(s)
- Takashi Hashimoto
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Shoji Yoshioka
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Shiroh Iwanaga
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuki Kanazawa
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|