1
|
Yoganathan S, Kumar M, Aaron R, Rangan SR, Umakant BS, Thomas M, Oommen SP, Danda S. Phenotype and Genotype of Children with ALS2 gene-Related Disorder. Neuropediatrics 2024. [PMID: 39424348 DOI: 10.1055/s-0044-1791256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
INTRODUCTION The Alsin Rho Guanine Nucleotide Exchange Factor (ALS2) gene encodes a protein alsin that functions as a guanine nucleotide exchange factor. The variations in ALS2 gene leads to degeneration of upper motor neurons of the corticospinal tract. The phenotypes resulting from variants in ALS2 gene are infantile-onset ascending hereditary spastic paralysis (IAHSP, OMIM # 607225), juvenile primary lateral sclerosis (JPLS, OMIM # 606353), and juvenile amyotrophic lateral sclerosis (JALS, OMIM # 205100). Our study objectives were to describe the clinical phenotype and genotype of children with an established diagnosis of ALS2 gene-related disorder. METHODS The clinical details, laboratory data, and genotype findings of children with an established diagnosis of ALS2 gene-related disorder were collected from the hospital electronic database after obtaining institutional review board approval. RESULTS One family with three affected siblings, a second family with a proband and an affected fetus, and a third family with two affected siblings with ALS2 gene variants were identified. IAHSP was diagnosed in all of our patients with variants in ALS2 gene. The clinical findings observed in our patients were insidious onset progressive spastic paraparesis, contractures, and dysarthria. Nonsense variants were observed in four patients while frameshift variant was observed in one family. Novel variants in ALS2 gene were identified in two unrelated families. CONCLUSION ALS2 mutation results in rare neurodegenerative disorders with the clinical spectrum encompassing IAHSP, JPLS, and JALS disorders. In view of allelic heterogeneity described in the literature, more research studies are needed for establishing genotype-phenotype correlation in patients with ALS2 gene-related disorder.
Collapse
Affiliation(s)
- Sangeetha Yoganathan
- Pediatric Neurology Unit, Department of Neurological Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Madhan Kumar
- Department of Pediatrics, Christian Medical College, Vellore, Tamil Nadu, India
| | - Rekha Aaron
- Department of Medical Genetics, Christian Medical College, Vellore, Tamil Nadu, India
| | - Srinivasa Raghavan Rangan
- Developmental Pediatrics Unit, Department of Pediatrics, Christian Medical College, Vellore, Tamil Nadu, India
| | - Bidkar Sayli Umakant
- Pediatric Neurology Unit, Department of Neurological Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Maya Thomas
- Pediatric Neurology Unit, Department of Neurological Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Samuel Philip Oommen
- Developmental Pediatrics Unit, Department of Pediatrics, Christian Medical College, Vellore, Tamil Nadu, India
| | - Sumita Danda
- Department of Medical Genetics, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Sebastiano MR, Hadano S, Cesca F, Ermondi G. Preclinical alternative drug discovery programs for monogenic rare diseases. Should small molecules or gene therapy be used? The case of hereditary spastic paraplegias. Drug Discov Today 2024; 29:104138. [PMID: 39154774 DOI: 10.1016/j.drudis.2024.104138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/28/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Patients diagnosed with rare diseases and their and families search desperately to organize drug discovery campaigns. Alternative models that differ from default paradigms offer real opportunities. There are, however, no clear guidelines for the development of such models, which reduces success rates and raises costs. We address the main challenges in making the discovery of new preclinical treatments more accessible, using rare hereditary paraplegia as a paradigmatic case. First, we discuss the necessary expertise, and the patients' clinical and genetic data. Then, we revisit gene therapy, de novo drug development, and drug repurposing, discussing their applicability. Moreover, we explore a pool of recommended in silico tools for pathogenic variant and protein structure prediction, virtual screening, and experimental validation methods, discussing their strengths and weaknesses. Finally, we focus on successful case applications.
Collapse
Affiliation(s)
- Matteo Rossi Sebastiano
- University of Torino, Molecular Biotechnology and Health Sciences Department, CASSMedChem, Piazza Nizza, 10138 Torino, Italy
| | - Shinji Hadano
- Molecular Neuropathobiology Laboratory, Department of Physiology, Tokai University School of Medicine, Isehara, Japan
| | - Fabrizia Cesca
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuseppe Ermondi
- University of Torino, Molecular Biotechnology and Health Sciences Department, CASSMedChem, Piazza Nizza, 10138 Torino, Italy.
| |
Collapse
|
3
|
Zhang Q, Yang Q, Luo J, Zhou X, Yi S, Tan S, Qin Z. Clinical features and molecular genetic investigation of infantile-onset ascending hereditary spastic paralysis (IAHSP) in two Chinese siblings caused by a novel splice site ALS2 variation. BMC Med Genomics 2024; 17:44. [PMID: 38297306 PMCID: PMC10829245 DOI: 10.1186/s12920-024-01805-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
OBJECTIVE ALS2-related disorder involves retrograde degeneration of the upper motor neurons of the pyramidal tracts, among which autosomal recessive Infantile-onset ascending hereditary spastic paralysis (IAHSP) is a rare phenotype. In this study, we gathered clinical data from two Chinese siblings who were affected by IAHSP. Our aim was to assess the potential pathogenicity of the identified variants and analyze their clinical and genetic characteristics. METHOD Here, Whole-exome sequencing (WES) was performed on proband to identify the candidate variants. Subsequently, Sanger sequencing was used to verify identified candidate variants and to assess co-segregation among available family members. Utilizing both silico prediction and 3D protein modeling, an analysis was conducted to evaluate the potential functional implications of the variants on the encoded protein, and minigene assays were performed to unravel the effect of the variants on the cleavage of pre-mRNA. RESULTS Both patients were characterized by slurred speech, astasia, inability to walk, scoliosis, lower limb hypertonia, ankle clonus, contracture of joint, foot pronation and no psychomotor retardation was found. Genetic analysis revealed a novel homozygous variant of ALS2, c.1815G > T(p.Lys605Asn) in two Chinese siblings. To our knowledge, it is the first confirmed case of a likely pathogenic variant leading to IAHSP in a Chinese patient. CONCLUSION This study broadens the range of ALS2 variants and has practical implications for prenatal and postnatal screening of IAHSR. Symptom-based diagnosis of IAHSP is frequently difficult for medical practitioners. WES can be a beneficial resource to identify a particular disorder when the diagnosis cannot be determined from the symptoms alone.
Collapse
Affiliation(s)
- Qiang Zhang
- Maternal and Child Health Hospital of Guangxi, Nanning, China
- Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of reproductive health and birth defect prevention, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qi Yang
- Maternal and Child Health Hospital of Guangxi, Nanning, China
- Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of reproductive health and birth defect prevention, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingsi Luo
- Maternal and Child Health Hospital of Guangxi, Nanning, China
- Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of reproductive health and birth defect prevention, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xunzhao Zhou
- Maternal and Child Health Hospital of Guangxi, Nanning, China
- Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of reproductive health and birth defect prevention, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shang Yi
- Maternal and Child Health Hospital of Guangxi, Nanning, China
- Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of reproductive health and birth defect prevention, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shuyin Tan
- Maternal and Child Health Hospital of Guangxi, Nanning, China
- Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of reproductive health and birth defect prevention, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zailong Qin
- Maternal and Child Health Hospital of Guangxi, Nanning, China.
- Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
- Guangxi Key Laboratory of reproductive health and birth defect prevention, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
- Guangxi Clinical Research Center for Pediatric Diseases, The Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
| |
Collapse
|
4
|
Ikeda A, Kumaki T, Tsuyusaki Y, Tsuji M, Enomoto Y, Fujita A, Saitsu H, Matsumoto N, Kurosawa K, Goto T. Genetic and clinical features of pediatric-onset hereditary spastic paraplegia: a single-center study in Japan. Front Neurol 2023; 14:1085228. [PMID: 37251230 PMCID: PMC10213624 DOI: 10.3389/fneur.2023.1085228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Background and purpose Hereditary spastic paraplegias (HSPs) are a set of heterogeneous neurodegenerative disorders characterized by bilateral lower limb spasticity. They may present from infancy onwards at any time. Although next-generation sequencing has allowed the identification of many causative genes, little is known about which genes are specifically associated with pediatric-onset variants. Methods This study retrospectively evaluated the genetic analyses, family history clinical courses, magnetic resonance imaging (MRI) findings, and electrophysiologic findings of patients diagnosed with HSP in childhood at a tertiary pediatric hospital in Japan. Genetic analyses were performed using direct sequencing, disease-associated panels, and whole-exome sequencing. Results Of the 37 patients included, 14 had a family history of HSP and 23 had a sporadic form of the disease. In 20 patients, HSP was the pure type, whereas the remaining 17 patients had complex types of HSP. Genetic data were available for 11 of the pure-type patients and 16 of those with complex types. Of these, genetic diagnoses were possible in 5 (45%) of the pure-type and 13 (81%) of the complex-type patients. SPAST variants were found in five children, KIF1A variants in four, ALS2 variants in three, SACS and L1CAM variants in two each, and an ATL1 variant in one. One child had a 10p15.3p13 duplication. Four patients with pure-type HSPs had SPAST variants and one had an ALT1 variant. The KIF1A, ALS2, SACS, and L1CAM variants and the 10p15.3p13 duplication were seen in children with complex-type HSPs, with just one complex-type patient having a SPAST variant. The identification of brain abnormalities on MRI was significantly more common among children with complex-type (11 [69%] of 16) than pure-type HSPs (one [5%] of 19) (p < 0.001). Scores on the modified Rankin Scale for Neurologic Disability were also significantly higher among children with complex-type compared with pure-type HSPs (3.5 ± 1.0 vs. 2.1 ± 0.9, p < 0.001). Conclusion Pediatric-onset HSP was found to be sporadic and genetic in a substantial proportion of patients. The causative gene patterns differed between children with pure-type and complex-type HSPs. The causative roles of SPAST and KIF1A variants in pure-type and complex-type HSPs, respectively, should be explored further.
Collapse
Affiliation(s)
- Azusa Ikeda
- Department of Neurology, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Tatsuro Kumaki
- Division of Medical Genetics, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Yu Tsuyusaki
- Department of Neurology, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Megumi Tsuji
- Department of Neurology, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Yumi Enomoto
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Tomohide Goto
- Department of Neurology, Kanagawa Children’s Medical Center, Yokohama, Japan
| |
Collapse
|
5
|
Madhaw G, Kumar N, M Radhakrishnan D, Shree R. Infantile Ascending Hereditary Spastic Paralysis with Extrapyramidal and Extraocular Manifestations Associated with a Novel ALS2 Mutation. Mov Disord Clin Pract 2022; 9:118-121. [PMID: 35005076 DOI: 10.1002/mdc3.13372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/24/2021] [Accepted: 10/30/2021] [Indexed: 11/05/2022] Open
Affiliation(s)
- Govind Madhaw
- Department of Neurology All India Institute of Medical Sciences Rishikesh India
| | - Niraj Kumar
- Department of Neurology All India Institute of Medical Sciences Rishikesh India
| | - Divya M Radhakrishnan
- Department of Neurology All India Institute of Medical Sciences Rishikesh India.,Department of Neurology All India Institute of Medical Sciences New Delhi India
| | - Ritu Shree
- Department of Neurology All India Institute of Medical Sciences Rishikesh India.,Department of Neurology Post Graduate Institute of Medical Education and Research Chandigarh India
| |
Collapse
|
6
|
Rossi Sebastiano M, Ermondi G, Hadano S, Caron G. AI-based protein structure databases have the potential to accelerate rare diseases research: AlphaFoldDB and the case of IAHSP/Alsin. Drug Discov Today 2021; 27:1652-1660. [PMID: 34958957 DOI: 10.1016/j.drudis.2021.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/09/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022]
Abstract
Artificial intelligence (AI)-based protein structure databases are expected to have an impact on drug discovery. Here, we show how AlphaFold could support rare diseases research programs. We focus on Alsin, a protein responsible for rare motor neuron diseases, such as infantile-onset ascending hereditary spastic paralysis (IAHSP) and juvenile primary lateral sclerosis (JPLS), and involved in some cases of amyotrophic lateral sclerosis (ALS). First, we compared the AlphaFoldDB human Alsin model with homology models of alsin domains. We then evaluated the flexibility profile of Alsin and of experimentally characterized mutants present in patients with IAHSP. Next, we compared preliminary models of dimeric/tetrameric Alsin responsible for its physiological action with hypothetical models reported in the literature. Finally, we suggest the best animal model for drug candidates testing. Overall, we computationally show that drug discovery efforts toward Alsin-involving diseases should be pursued.
Collapse
Affiliation(s)
- Matteo Rossi Sebastiano
- Molecular Biotechnology and Health Sciences Department, University of Torino, Quarello 15, 10135 Torino, Italy
| | - Giuseppe Ermondi
- Molecular Biotechnology and Health Sciences Department, University of Torino, Quarello 15, 10135 Torino, Italy
| | - Shinji Hadano
- Molecular Neuropathobiology Laboratory, Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Giulia Caron
- Molecular Biotechnology and Health Sciences Department, University of Torino, Quarello 15, 10135 Torino, Italy.
| |
Collapse
|
7
|
Elsayed LEO, Eltazi IZ, Ahmed AE, Stevanin G. Insights into Clinical, Genetic, and Pathological Aspects of Hereditary Spastic Paraplegias: A Comprehensive Overview. Front Mol Biosci 2021; 8:690899. [PMID: 34901147 PMCID: PMC8662366 DOI: 10.3389/fmolb.2021.690899] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 10/19/2021] [Indexed: 12/31/2022] Open
Abstract
Hereditary spastic paraplegias (HSP) are a heterogeneous group of motor neurodegenerative disorders that have the core clinical presentation of pyramidal syndrome which starts typically in the lower limbs. They can present as pure or complex forms with all classical modes of monogenic inheritance reported. To date, there are more than 100 loci/88 spastic paraplegia genes (SPG) involved in the pathogenesis of HSP. New patterns of inheritance are being increasingly identified in this era of huge advances in genetic and functional studies. A wide range of clinical symptoms and signs are now reported to complicate HSP with increasing overall complexity of the clinical presentations considered as HSP. This is especially true with the emergence of multiple HSP phenotypes that are situated in the borderline zone with other neurogenetic disorders. The genetic diagnostic approaches and the utilized techniques leave a diagnostic gap of 25% in the best studies. In this review, we summarize the known types of HSP with special focus on those in which spasticity is the principal clinical phenotype ("SPGn" designation). We discuss their modes of inheritance, clinical phenotypes, underlying genetics, and molecular pathways, providing some observations about therapeutic opportunities gained from animal models and functional studies. This review may pave the way for more analytic approaches that take into consideration the overall picture of HSP. It will shed light on subtle associations that can explain the occurrence of the disease and allow a better understanding of its observed variations. This should help in the identification of future biomarkers, predictors of disease onset and progression, and treatments for both better functional outcomes and quality of life.
Collapse
Affiliation(s)
- Liena E. O. Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University [PNU], Riyadh, Saudi Arabia
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Ammar E. Ahmed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Giovanni Stevanin
- Institut du Cerveau – Paris Brain Institute - ICM, Sorbonne Université, INSERM, CNRS, APHP, Paris, France
- CNRS, INCIA, Université de Bordeaux, Bordeaux, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| |
Collapse
|
8
|
Alves De Siqueira Carvalho A, Antônio Troccoli Chieia M, Braga Farias I, Bulle Oliveira AS, Pinto WBVDR, Souza PVSD. The expanding clinical and genetic spectrum of alsin-related disorders: the first cohort of Brazilian patients. Amyotroph Lateral Scler Frontotemporal Degener 2021; 23:16-24. [PMID: 34738851 DOI: 10.1080/21678421.2021.1910306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
There are three types of autosomal recessive disorders involving pathogenic variants in the ALS2 gene (OMIM*606352), infantile ascending hereditary spastic paraplegia (IAHSP), juvenile primary lateral sclerosis (JPLS) and juvenile amyotrophic lateral sclerosis (JALS), which are rare and related to retrograde degeneration of motor neurons. ALS2 pathogenic variants are distributed widely across the entire coding sequence and mostly result in a loss of protein function. Rarely, patients with JALS have been reported with lower motor neuron involvement. Here, we report the first Brazilian cohort (six patients) of JPLS with novel ALS2 pathogenic variants, and we propose an expanding clinical and genetic spectrum of alsin-related disorders. A review of the literature in PubMed from 2001 to September 2020 allowed us to identify 26 publications about the three different phenotypes caused by ALS2 variants (only case reports or families), encompassing 35 nonrelated families. We compiled data (sex, age, age at onset, first symptoms, atypical clinical features, molecular data, and clinical evolution (improvement or death)) from these studies and analyzed them in a general context on the basis of demographic features.
Collapse
Affiliation(s)
- Alzira Alves De Siqueira Carvalho
- Departamento de Neurociências-Laboratório de doenças neuromusculares, Centro Universitário Saúde ABC, Santo Andre, São Paulo, Brazil and
| | | | - Igor Braga Farias
- Division of Neuromuscular Diseases, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | | | | |
Collapse
|
9
|
Sprute R, Jergas H, Ölmez A, Alawbathani S, Karasoy H, Dafsari HS, Becker K, Daimagüler HS, Nürnberg P, Muntoni F, Topaloglu H, Uyanik G, Cirak S. Genotype-phenotype correlation in seven motor neuron disease families with novel ALS2 mutations. Am J Med Genet A 2020; 185:344-354. [PMID: 33155358 DOI: 10.1002/ajmg.a.61951] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/25/2020] [Accepted: 10/19/2020] [Indexed: 11/05/2022]
Abstract
Autosomal-recessive mutations in the Alsin Rho guanine nucleotide exchange factor (ALS2) gene may cause specific subtypes of childhood-onset progressive neurodegenerative motor neuron diseases (MND). These diseases can manifest with a clinical continuum from infantile ascending hereditary spastic paraplegia (IAHSP) to juvenile-onset forms with or without lower motor neuron involvement, the juvenile primary lateral sclerosis (JPLS) and the juvenile amyotrophic lateral sclerosis (JALS). We report 11 patients from seven unrelated Turkish and Yemeni families with clinical signs of IAHSP or JPLS. We performed haplotype analysis or next-generation panel sequencing followed by Sanger Sequencing to unravel the genetic disease cause. We described their clinical phenotype and analyzed the pathogenicity of the detected variants with bioinformatics tools. We further reviewed all previously reported cases with ALS2-related MND. We identified five novel homozygous pathogenic variants in ALS2 at various positions: c.275_276delAT (p.Tyr92CysfsTer11), c.1044C>G (p.Tyr348Ter), c.1718C>A (p.Ala573Glu), c.3161T>C (p.Leu1054Pro), and c.1471+1G>A (NM_020919.3, NP_065970.2). In our cohort, disease onset was in infancy or early childhood with rapid onset of motor neuron signs. Muscle weakness, spasticity, severe dysarthria, dysphagia, and facial weakness were common features in the first decade of life. Frameshift and nonsense mutations clustered in the N-terminal Alsin domains are most prevalent. We enriched the mutational spectrum of ALS2-related disorders with five novel pathogenic variants. Our study indicates a high detection rate of ALS2 mutations in patients with a clinically well-characterized early onset MND. Intrafamilial and even interfamilial diversity in patients with identical pathogenic variants suggest yet unknown modifiers for phenotypic expression.
Collapse
Affiliation(s)
- Rosanne Sprute
- Faculty of Medicine and the Faculty of Mathematics and Natural Sciences, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Department of Pediatrics, University of Cologne, Cologne, Germany
| | - Hannah Jergas
- Faculty of Medicine and the Faculty of Mathematics and Natural Sciences, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Department of Pediatrics, University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Akgün Ölmez
- Department of Pediatric Neurology, Hacettepe University, Ankara, Turkey
| | - Salem Alawbathani
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Hatice Karasoy
- Department of Neurology, Ege University School of Medicine, Izmir, Turkey
| | - Hormos Salimi Dafsari
- Faculty of Medicine and the Faculty of Mathematics and Natural Sciences, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Department of Pediatrics, University of Cologne, Cologne, Germany
| | - Kerstin Becker
- Faculty of Medicine and the Faculty of Mathematics and Natural Sciences, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Department of Pediatrics, University of Cologne, Cologne, Germany
| | - Hülya-Sevcan Daimagüler
- Faculty of Medicine and the Faculty of Mathematics and Natural Sciences, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Department of Pediatrics, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Faculty of Medicine and the Faculty of Mathematics and Natural Sciences, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Haluk Topaloglu
- Department of Pediatric Neurology, Hacettepe University, Ankara, Turkey
| | - Gökhan Uyanik
- Medical School, Sigmund Freud Private University, Vienna, Austria.,Center for Medical Genetics, Hanusch Hospital, Vienna, Austria
| | - Sebahattin Cirak
- Faculty of Medicine and the Faculty of Mathematics and Natural Sciences, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Department of Pediatrics, University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
Lohkamp LN, Coulter I, Ibrahim GM. Selective dorsal rhizotomy for spasticity of genetic etiology. Childs Nerv Syst 2020; 36:1357-1365. [PMID: 32300873 DOI: 10.1007/s00381-020-04601-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/30/2020] [Indexed: 11/26/2022]
Abstract
Objective Selective dorsal rhizotomy (SDR) is most commonly applied in the context of the treatment of the spastic diplegic variant of cerebral palsy (CP). Its role in the treatment of spasticity associated with other conditions is not well-established. We sought to review outcomes following SDR for the treatment of functionally limiting spasticity in the setting of a genetic etiology. Methods A systematic literature review was performed using the databases Ovid Medline, Embase, Cochrane Library, and PubMed based on the PRISMA guidelines. Articles were included if they described the application of SDR for spasticity of genetic etiology. Reported outcomes pertaining to spasticity and gross motor function following SDR were summarized. Results Five articles reporting on 16 patients (10 males, 6 females) met the inclusion criteria, of which four reported on SDR for hereditary spastic paraplegia (HSP) and four on syndromic patients or other inherited diseases, with an overall follow-up ranging from 11 to 252 months. These individuals were found to have several genetic mutations including ALS2, SPG4, and SPG3A. The mean age at the time of surgery was 14.9 years (median 10 years, range 3-37 years). Conclusions Although all patients experienced a reduction in spasticity, the long-term gross motor functional outcomes objectively assessed at last follow-up were heterogeneous. There may be a role for SDR in the context of static genetic disorders causing spasticity. Further evidence is required prior to the widespread adoption of SDR for such disorders as, based on the collective observations of this review, spasticity is consistently reduced but the long-term effect on gross motor function remains unclear.
Collapse
Affiliation(s)
- Laura-Nanna Lohkamp
- Division of Neurosurgery, The Hospital for Sick Children, 555 University Ave, Suite 1503, Toronto, Ontario, M5G 1X8, Canada.
| | - Ian Coulter
- Division of Neurosurgery, The Hospital for Sick Children, 555 University Ave, Suite 1503, Toronto, Ontario, M5G 1X8, Canada
| | - George M Ibrahim
- Division of Neurosurgery, The Hospital for Sick Children, 555 University Ave, Suite 1503, Toronto, Ontario, M5G 1X8, Canada
| |
Collapse
|
11
|
Appleton RE, Gupta R. Cerebral palsy: not always what it seems. Arch Dis Child 2019; 104:809-814. [PMID: 30413492 DOI: 10.1136/archdischild-2018-315633] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022]
Abstract
Cerebral palsy (CP) is not a disease, but a neurological syndrome, a combination of signs and symptoms, some of which may occur in neurodegenerative or metabolic disorders, particularly those with an onset in the first 2 years of life. There are many different causes of the syndrome. All children with CP should undergo brain MRI, even with an identified antenatal or perinatal insult. Children with CP should be referred to a paediatric neurologist or a clinical geneticist, or both, if appropriate and particularly in the absence of a known perinatal cerebral insult, with brain MRI that is reported to be normal, a progression in, or new, signs or where there is a reported 'family history of CP'. Finally, a few of the CP syndromes may be readily treatable and potentially prevent irreversible neurological and cognitive impairment.
Collapse
Affiliation(s)
- Richard E Appleton
- The Roald Dahl EEG Unit, Neurophysiology Department, Alder Hey Children's Health Park, Liverpool, UK
| | - Rajat Gupta
- Department of Neurology, Birmingham Children's Hospital, Birmingham, UK
| |
Collapse
|
12
|
Sato K, Otomo A, Ueda MT, Hiratsuka Y, Suzuki-Utsunomiya K, Sugiyama J, Murakoshi S, Mitsui S, Ono S, Nakagawa S, Shang HF, Hadano S. Altered oligomeric states in pathogenic ALS2 variants associated with juvenile motor neuron diseases cause loss of ALS2-mediated endosomal function. J Biol Chem 2018; 293:17135-17153. [PMID: 30224357 DOI: 10.1074/jbc.ra118.003849] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/13/2018] [Indexed: 02/05/2023] Open
Abstract
Familial amyotrophic lateral sclerosis type 2 (ALS2) is a juvenile autosomal recessive motor neuron disease caused by the mutations in the ALS2 gene. The ALS2 gene product, ALS2/alsin, forms a homophilic oligomer and acts as a guanine nucleotide-exchange factor (GEF) for the small GTPase Rab5. This oligomerization is crucial for both Rab5 activation and ALS2-mediated endosome fusion and maturation in cells. Recently, we have shown that pathogenic missense ALS2 mutants retaining the Rab5 GEF activity fail to properly localize to endosomes via Rac1-stimulated macropinocytosis. However, the molecular mechanisms underlying dysregulated distribution of ALS2 variants remain poorly understood. Therefore, we sought to clarify the relationship between intracellular localization and oligomeric states of pathogenic ALS2 variants. Upon Rac family small GTPase 1 (Rac1) activation, all mutants tested moved from the cytosol to membrane ruffles but not to macropinosomes and/or endosomes. Furthermore, most WT ALS2 complexes were tetramers. Importantly, the sizes of an ALS2 complex carrying missense mutations in the N terminus of the regulator of chromosome condensation 1-like domain (RLD) or in-frame deletion in the pleckstrin homology domain were shifted toward higher molecular weight, whereas the C-terminal vacuolar protein sorting 9 (VPS9) domain missense mutant existed as a smaller dimeric or trimeric smaller form. Furthermore, in silico mutagenesis analyses using the RLD protein structure in conjunction with a cycloheximide chase assay in vitro disclosed that these missense mutations led to a decrease in protein stability. Collectively, disorganized higher structures of ALS2 variants might explain their impaired endosomal localization and the stability, leading to loss of the ALS2 function.
Collapse
Affiliation(s)
- Kai Sato
- From the Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Asako Otomo
- From the Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.,The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa 259-1193, Japan.,Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | | | - Yui Hiratsuka
- From the Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Kyoko Suzuki-Utsunomiya
- From the Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Junya Sugiyama
- From the Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Shuji Murakoshi
- From the Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Shun Mitsui
- From the Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Suzuka Ono
- From the Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - So Nakagawa
- From the Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.,The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa 259-1193, Japan.,Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | - Hui-Fang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China, and
| | - Shinji Hadano
- From the Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan, .,The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa 259-1193, Japan.,Research Center for Brain and Nervous Diseases, Tokai University Graduate School of Medicine, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
13
|
Helal M, Mazaheri N, Shalbafan B, Malamiri RA, Dilaver N, Buchert R, Mohammadiasl J, Golchin N, Sedaghat A, Mehrjardi MYV, Haack TB, Riess O, Chung WK, Galehdari H, Shariati G, Maroofian R. Clinical presentation and natural history of infantile-onset ascending spastic paralysis from three families with an ALS2 founder variant. Neurol Sci 2018; 39:1917-1925. [PMID: 30128655 DOI: 10.1007/s10072-018-3526-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/05/2018] [Indexed: 12/11/2022]
Abstract
Biallelic mutations of the alsin Rho guanine nucleotide exchange factor (ALS2) gene cause a group of overlapping autosomal recessive neurodegenerative disorders including infantile-onset ascending hereditary spastic paralysis (IAHSP), juvenile primary lateral sclerosis (JPLS), and juvenile amyotrophic lateral sclerosis (JALS/ALS2), caused by retrograde degeneration of the upper motor neurons of the pyramidal tracts. Here, we describe 11 individuals with IAHSP, aged 2-48 years, with IAHSP from three unrelated consanguineous Iranian families carrying the homozygous c.1640+1G>A founder mutation in ALS2. Three affected siblings from one family exhibit generalized dystonia which has not been previously described in families with IAHSP and has only been reported in three unrelated consanguineous families with JALS/ALS2. We report the oldest individuals with IAHSP to date and provide evidence that these patients survive well into their late 40s with preserved cognition and normal eye movements. Our study delineates the phenotypic spectrum of IAHSP and ALS2-related disorders and provides valuable insights into the natural disease course.
Collapse
Affiliation(s)
- Mayada Helal
- Department of Pediatrics, Division of Molecular Genetics, Columbia University Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA
| | - Neda Mazaheri
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Narges Medical Genetics and Prenatal Diagnosis Laboratory, East Mihan Ave., Kianpars, Ahvaz, Iran
| | - Bita Shalbafan
- Iranian Social Security Organization, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Azizi Malamiri
- Department of Paediatric Neurology, Golestan Medical, Educational, and Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nafi Dilaver
- Swansea University Medical School, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, 72074, Tuebingen, Germany
| | - Javad Mohammadiasl
- Department of Genetics, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Ahvaz Noor Genetics Laboratory, Ahvaz, Iran
| | | | - Alireza Sedaghat
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, East Mihan Ave., Kianpars, Ahvaz, Iran.,Diabetes Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Yahya Vahidi Mehrjardi
- Medical Genetics Research Centre, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, 72074, Tuebingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, 72074, Tuebingen, Germany
| | - Wendy K Chung
- Department of Pediatrics, Division of Molecular Genetics, Columbia University Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA.,Departments of Medicine, Columbia University Medical Center, 1150 St. Nicholas Avenue, Room 620, New York, NY, 10032, USA
| | - Hamid Galehdari
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Gholamreza Shariati
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, East Mihan Ave., Kianpars, Ahvaz, Iran.,Department of Genetics, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Maroofian
- Molecular and Clinical Sciences Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK.
| |
Collapse
|
14
|
Kawarai T, Montecchiani C, Miyamoto R, Gaudiello F, Caltagirone C, Izumi Y, Kaji R, Orlacchio A. Spastic paraplegia type 4: A novel SPAST splice site donor mutation and expansion of the phenotype variability. J Neurol Sci 2017; 380:92-97. [PMID: 28870597 DOI: 10.1016/j.jns.2017.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/29/2017] [Accepted: 07/06/2017] [Indexed: 01/30/2023]
Abstract
Mutations in SPG4/SPAST are the most frequent molecular aetiology in the autosomal dominant form of hereditary spastic paraplegia (HSP). Loss-of-function and haploinsufficiency in SPAST have been demonstrated and the pure form of spastic paraplegia is a main clinical manifestation. This study is to explore the novel SPAST splice site donor variant, c.1004+3A>C, in seven patients from two families, one from Italy and the other from Japan. Exon 6 is skipped out by the variant, leading to a premature termination of translation, p.Gly290Trpfs*5. Measurement of SPAST transcripts in lymphocytes demonstrated a reduction through nonsense-mediated mRNA decay (NMD). Intra- and inter-familial phenotypic variations were observed, including age-at-onset, severity of spasticity, and scoliosis. Our study demonstrated further evidence of allelic heterogeneity in SPG4, dosage effects through NMD, and broad clinical features of the SPAST mutation.
Collapse
Affiliation(s)
- Toshitaka Kawarai
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-0042, Japan.
| | - Celeste Montecchiani
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy; Dipartimento di Scienze Chirurgiche e Biomediche, Università di Perugia, Perugia, Italy
| | - Ryosuke Miyamoto
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-0042, Japan
| | - Fabrizio Gaudiello
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy
| | - Carlo Caltagirone
- Laboratorio di Neurologia Clinica e Comportamentale, IRCCS Santa Lucia, Rome, Italy; Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy
| | - Yuishin Izumi
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-0042, Japan
| | - Ryuji Kaji
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-0042, Japan
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) - Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy; Dipartimento di Scienze Chirurgiche e Biomediche, Università di Perugia, Perugia, Italy.
| |
Collapse
|
15
|
Tariq H, Mukhtar S, Naz S. A novel mutation in ALS2 associated with severe and progressive infantile onset of spastic paralysis. J Neurogenet 2017; 31:26-29. [PMID: 28502191 DOI: 10.1080/01677063.2017.1324441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Infantile onset ascending spastic paralysis (IAHSP) is a type of recessively inherited spastic paraplegia. We investigated the clinical and genetic cause of a recessively inherited disorder in two siblings manifesting severe spasticity in the lower limbs which hindered their gait. A novel homozygous nonsense mutation c.1918 C > T (p.Arg640*) was identified after whole-exome sequencing within ALS2 in the DNA of both patients. The obligate carriers were heterozygous for the mutation and other unaffected members were homozygous for the wild type allele. The variant was absent from 100 control chromosomes and all public databases. This report extends the allelic heterogeneity of ALS2 mutations and emphasizes the importance of genetic testing for diagnosis of pediatric disorders.
Collapse
Affiliation(s)
- Huma Tariq
- a School of Biological Sciences , University of the Punjab , Lahore , Pakistan
| | - Shahid Mukhtar
- b Punjab Institute of Neurosciences , Lahore General Hospital , Lahore , Pakistan
| | - Sadaf Naz
- a School of Biological Sciences , University of the Punjab , Lahore , Pakistan
| |
Collapse
|
16
|
de Souza PVS, Bortholin T, Naylor FGM, de Rezende Pinto WBV, Oliveira ASB. Infantile-onset ascending spastic paraplegia phenotype associated with SPAST mutation. J Neurol Sci 2016; 371:34-35. [DOI: 10.1016/j.jns.2016.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 10/08/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
|
17
|
Sharma J, Bonfield C, Steinbok P. Selective dorsal rhizotomy for hereditary spastic paraparesis in children. Childs Nerv Syst 2016; 32:1489-94. [PMID: 27312078 DOI: 10.1007/s00381-016-3122-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/16/2016] [Indexed: 11/29/2022]
Abstract
PURPOSE The aim of this study was to determine the outcomes for children who underwent selective dorsal rhizotomy (SDR) for the treatment of spasticity related to spinal pathology. METHODS We performed a retrospective review of all cases of SDR at our institution over the last 30 years and identified patients in whom spasticity was attributed to spinal rather than cerebral pathology. We gathered demographic information and recorded functional status and spasticity scores pre-operatively and over long-term follow-up. RESULTS We identified four patients who underwent SDR for spinal-related spasticity. All four had hereditary spastic paraparesis (HSP). All patients had reduced spasticity in the lower limbs after SDR, which was maintained over long-term follow-up. Two patients had a more severe and progressive subtype of HSP, and both these patients exhibited functional decline despite improvement in tone. CONCLUSIONS Our findings suggest SDR is a reasonable option to consider for relief of spinal-related spasticity in uncomplicated hereditary spastic paraparesis. However, SDR for the treatment of complicated HSP seems to carry more risks and have a less predictable outcome. Overall, SDR is probably best reserved for pathologies that are relatively stable in their disease course.
Collapse
Affiliation(s)
- Julia Sharma
- Division of Neurosurgery, Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | | | - Paul Steinbok
- Division of Neurosurgery, Department of Surgery, University of British Columbia, Vancouver, BC, Canada. .,Division of Pediatric Neurosurgery, British Columbia Children's Hospital (BCC), 4480 Oak Street, Rm K3-216, Vancouver, BC, V6H 3V4, Canada.
| |
Collapse
|
18
|
Daud S, Kakar N, Goebel I, Hashmi AS, Yaqub T, Nürnberg G, Nürnberg P, Morris-Rosendahl DJ, Wasim M, Volk AE, Kubisch C, Ahmad J, Borck G. Identification of two novel ALS2 mutations in infantile-onset ascending hereditary spastic paraplegia. Amyotroph Lateral Scler Frontotemporal Degener 2016; 17:260-5. [PMID: 26751646 DOI: 10.3109/21678421.2015.1125501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Biallelic mutations of ALS2 cause a clinical spectrum of overlapping autosomal recessive neurodegenerative disorders: infantile-onset ascending hereditary spastic paralysis (IAHSP), juvenile primary lateral sclerosis (JPLS), and juvenile amyotrophic lateral sclerosis (ALS2). We report on eleven individuals affected with IAHSP from two consanguineous Pakistani families. A combination of linkage analysis with homozygosity mapping and targeted sequencing identified two novel ALS2 mutations, a c.194T > C (p.Phe65Ser) missense substitution located in the first RCC-like domain of ALS2/alsin and a c.2998delA (p.Ile1000*) nonsense mutation. This study of extended families including a total of eleven affected individuals suggests that a given ALS2 mutation may lead to a phenotype with remarkable intrafamilial clinical homogeneity.
Collapse
Affiliation(s)
- Shakeela Daud
- a Institute of Biochemistry and Biotechnology (IBBt), UVAS , Lahore , Pakistan
| | - Naseebullah Kakar
- b Institute of Human Genetics, University of Ulm , Ulm , Germany .,c International Graduate School in Molecular Medicine Ulm, University of Ulm , Ulm , Germany .,d Department of Biotechnology and Informatics , BUITEMS , Quetta , Pakistan
| | - Ingrid Goebel
- b Institute of Human Genetics, University of Ulm , Ulm , Germany .,e Institute of Human Genetics, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Abu Saeed Hashmi
- a Institute of Biochemistry and Biotechnology (IBBt), UVAS , Lahore , Pakistan
| | - Tahir Yaqub
- a Institute of Biochemistry and Biotechnology (IBBt), UVAS , Lahore , Pakistan .,f Department of Microbiology , UVAS , Lahore , Pakistan
| | - Gudrun Nürnberg
- g Cologne Center for Genomics (CCG), University of Cologne , Cologne , Germany
| | - Peter Nürnberg
- g Cologne Center for Genomics (CCG), University of Cologne , Cologne , Germany .,h Center for Molecular Medicine Cologne (CMMC), University of Cologne , Cologne , Germany .,i Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne , Cologne , Germany
| | - Deborah J Morris-Rosendahl
- j Clinical Genetics and Genomics, Royal Brompton Hospital , London , United Kingdom .,k National Heart and Lung Institute, Imperial College London , London , United Kingdom
| | - Muhammad Wasim
- a Institute of Biochemistry and Biotechnology (IBBt), UVAS , Lahore , Pakistan
| | - Alexander E Volk
- b Institute of Human Genetics, University of Ulm , Ulm , Germany .,e Institute of Human Genetics, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Christian Kubisch
- b Institute of Human Genetics, University of Ulm , Ulm , Germany .,e Institute of Human Genetics, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Jamil Ahmad
- d Department of Biotechnology and Informatics , BUITEMS , Quetta , Pakistan
| | - Guntram Borck
- b Institute of Human Genetics, University of Ulm , Ulm , Germany
| |
Collapse
|
19
|
Alsin related disorders: literature review and case study with novel mutations. Case Rep Genet 2014; 2014:691515. [PMID: 25302125 PMCID: PMC4180207 DOI: 10.1155/2014/691515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/20/2014] [Accepted: 09/01/2014] [Indexed: 12/11/2022] Open
Abstract
Mutations in the ALS2 gene cause three distinct disorders: infantile ascending hereditary spastic paraplegia, juvenile primary lateral sclerosis, and autosomal recessive juvenile amyotrophic lateral sclerosis. We present a review of the literature and the case of a 16-year-old boy who is, to the best of our knowledge, the first Portuguese case with infantile ascending hereditary spastic paraplegia. Clinical investigations included sequencing analysis of the ALS2 gene, which revealed a heterozygous mutation in exon 5 (c.1425_1428del p.G477Afs*19) and a heterozygous and previously unreported variant in exon 3 (c.145G>A p.G49R). We also examined 42 reported cases on the clinical characteristics and neurophysiological and imaging studies of patients with known ALS2 gene mutations sourced from PubMed. This showed that an overlap of phenotypic manifestations can exist in patients with infantile ascending hereditary spastic paraplegia, juvenile primary lateral sclerosis, and juvenile amyotrophic lateral sclerosis.
Collapse
|
20
|
Eker HK, Unlü SE, Al-Salmi F, Crosby AH. A novel homozygous mutation in ALS2 gene in four siblings with infantile-onset ascending hereditary spastic paralysis. Eur J Med Genet 2014; 57:275-8. [PMID: 24704789 DOI: 10.1016/j.ejmg.2014.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/25/2014] [Indexed: 12/11/2022]
Abstract
Autosomal recessive early onset forms of motor neuron disorders including infantile-onset ascending hereditary spastic paraplegia (OMIM #607225) are due to homozygous mutations in the ALS2 gene. Here, we report on a novel splice-site mutation of the ALS2 (c.2351+2C>A) in four children of a consanguineous union with infantile-onset ascending hereditary spastic paraplegia.
Collapse
Affiliation(s)
- Hatice Koçak Eker
- Department of Medical Genetics, Dr Faruk Sükan Maternity and Pediatric Hospital, Konya, Turkey.
| | | | - Fatema Al-Salmi
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Andrew H Crosby
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| |
Collapse
|