1
|
Jiao J, Brumbach BH, Hantke N, Wilhelmi M, Bonilla C, Safarpour D. Changes in Anticholinergic Burden in Parkinson's Disease After Deep Brain Stimulation. Neuromodulation 2024; 27:538-543. [PMID: 38085189 DOI: 10.1016/j.neurom.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/30/2023] [Accepted: 11/02/2023] [Indexed: 04/05/2024]
Abstract
OBJECTIVE This study aimed to evaluate the effect of deep brain stimulation (DBS) on anticholinergic burden in Parkinson's disease (PD) and the association of anticholinergic burden with cognition. MATERIALS AND METHODS A retrospective chart review in patients with PD who underwent bilateral subthalamic nucleus (STN) or globus pallidus internus (GPi) DBS from 2010 to 2020 reviewed medications with anticholinergic burden at baseline, six months, and one year (N = 216) after surgery. The cumulative anticholinergic burden at each visit was calculated using the Anticholinergic Risk Scale (ARS). RESULTS ARS scores were significantly lower for patients six months and one year after surgery than at baseline (z = 6.58, p < 0.0001; z = 6.99, p < 0.0001). Change in ARS scores at both six months and one year were driven by down-titration of PD medications (z = 9.35, p < 0.0001; z = 8.61, p < 0.0001), rather than changes in pain, psychiatric, or urinary medications with anticholinergic effects. There was no significant difference in change in ARS scores at one year between targets (t = 0.41, p = 0.68). In addition, there was no significant association between anticholinergic burden and cognitive performance. CONCLUSION GPi and STN DBS are associated with decreased anticholinergic burden due to PD medications in the first year after surgery.
Collapse
Affiliation(s)
- Jocelyn Jiao
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA.
| | - Barbara H Brumbach
- Oregon Health and Science University-Portland State University School of Public Health, Biostatistics and Design Program, Oregon Health and Science University, Portland, OR, USA
| | - Nathan Hantke
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA; Mental Health and Clinical Neuroscience Division, Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Morgan Wilhelmi
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Christian Bonilla
- School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Delaram Safarpour
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
2
|
Wu Y, Wang T, Ding Q, Li H, Wu Y, Li D, Sun B, Pan Y. Cortical and Subcortical Structural Abnormalities in Patients With Idiopathic Cervical and Generalized Dystonia. FRONTIERS IN NEUROIMAGING 2022; 1:807850. [PMID: 37555168 PMCID: PMC10406292 DOI: 10.3389/fnimg.2022.807850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/03/2022] [Indexed: 08/10/2023]
Abstract
OBJECTIVES In this study, we sought to investigate structural imaging alterations of patients with idiopathic dystonia at the cortical and subcortical levels. The common and specific changes in two subtypes of dystonia, cervical dystonia (CD) and generalized dystonia (GD), were intended to be explored. Additionally, we sought to identify the morphometric measurements which might be related to patients' clinical characteristics, thus providing more clues of specific brain regions involved in the mechanism of idiopathic dystonia. METHODS 3D T1-weighted MRI scans were acquired from 56 patients with idiopathic dystonia and 30 healthy controls (HC). Patients were classified as CD or GD, according to the distinct symptom distributions. Cortical thickness (CT) of 30 CD and 26 GD were estimated and compared to HCs using Computational Anatomy Toolbox (CAT12), while volumes of subcortical structures and their shape alterations (29 CD, 25 GD, and 27 HCs) were analyzed via FSL software. Further, we applied correlation analyses between the above imaging measurements with significant differences and patients' clinical characteristics. RESULTS The results of comparisons between the two patient groups and HCs were highly consistent, demonstrating increased CT of bilateral postcentral, superiorparietal, superiorfrontal/rostralmiddlefrontal, occipital gyrus, etc., and decreased CT of bilateral cingulate, insula, entorhinal, and fusiform gyrus (PFWE < 0.005 at the cluster level). In CD, trends of negative correlations were found between disease severity and CT alterations mostly located in pre/postcentral, rostralmiddlefrontal, superiorparietal, and supramarginal regions. Besides, volumes of bilateral putamen, caudate, and thalamus were significantly reduced in both patient groups, while pallidum volume reduction was also presented in GD compared to HCs. Caudate volume reduction had a trend of correlation to increasing disease severity in GD. Last, shape analysis directly demonstrated regional surface alterations in bilateral thalamus and caudate, where the atrophy located in the head of caudate had a trend of correlation to earlier ages of onset in GD. CONCLUSIONS Our study demonstrates wide-spread morphometric changes of CT, subcortical volumes, and shapes in idiopathic dystonia. CD and GD presented similar patterns of morphometric abnormalities, indicating shared underlying mechanisms in two different disease forms. Especially, the clinical associations of CT of multiple brain regions with disease severity, and altered volume/shape of caudate with disease severity/age of onset separately in CD and GD might serve as potential biomarkers for further disease exploration.
Collapse
Affiliation(s)
- Yunhao Wu
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong Ding
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Hongxia Li
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Wu
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Pan
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Furlanetti L, Ellenbogen J, Gimeno H, Ainaga L, Narbad V, Hasegawa H, Lin JP, Ashkan K, Selway R. Targeting accuracy of robot-assisted deep brain stimulation surgery in childhood-onset dystonia: a single-center prospective cohort analysis of 45 consecutive cases. J Neurosurg Pediatr 2021; 27:677-687. [PMID: 33862592 DOI: 10.3171/2020.10.peds20633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/06/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is an established treatment for pediatric dystonia. The accuracy of electrode implantation is multifactorial and remains a challenge in this age group, mainly due to smaller anatomical targets in very young patients compared to adults, and also due to anatomical abnormalities frequently associated with some etiologies of dystonia. Data on the accuracy of robot-assisted DBS surgery in children are limited. The aim of the current paper was to assess the accuracy of robot-assisted implantation of DBS leads in a series of patients with childhood-onset dystonia. METHODS Forty-five children with dystonia undergoing implantation of DBS leads under general anesthesia between 2017 and 2019 were included. Robot-assisted stereotactic implantation of the DBS leads was performed. The final position of the electrodes was verified with an intraoperative 3D scanner (O-arm). Coordinates of the planned electrode target and actual electrode position were obtained and compared, looking at the radial error, depth error, absolute error, and directional error, as well as the euclidean distance. Functional assessment data prospectively collected by a multidisciplinary pediatric complex motor disorders team were analyzed with regard to motor skills, individualized goal achievement, and patients' and caregivers' expectations. RESULTS A total of 90 DBS electrodes were implanted and 48.5% of the patients were female. The mean age was 11.0 ± 0.6 years (range 3-18 years). All patients received bilateral DBS electrodes into the globus pallidus internus. The median absolute errors in x-, y-, and z-axes were 0.85 mm (range 0.00-3.25 mm), 0.75 mm (range 0.05-2.45 mm), and 0.75 mm (range 0.00-3.50 mm), respectively. The median euclidean distance from the target to the actual electrode position was 1.69 ± 0.92 mm, and the median radial error was 1.21 ± 0.79. The robot-assisted technique was easily integrated into the authors' surgical practice, improving accuracy and efficiency, and reducing surgical time significantly along the learning curve. No major perioperative complications occurred. CONCLUSIONS Robot-assisted stereotactic implantation of DBS electrodes in the pediatric age group is a safe and accurate surgical method. Greater accuracy was present in this cohort in comparison to previous studies in which conventional stereotactic frame-based techniques were used. Robotic DBS surgery and neuroradiological advances may result in further improvement in surgical targeting and, consequently, in better clinical outcome in the pediatric population.
Collapse
Affiliation(s)
- Luciano Furlanetti
- 1Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London
- 4King's Health Partners Academic Health Sciences Centre, London, United Kingdom
| | | | - Hortensia Gimeno
- 2Complex Motor Disorders Service, Evelina London Children's Hospital, Guy's and St. Thomas' NHS Foundation Trust, London
- 4King's Health Partners Academic Health Sciences Centre, London, United Kingdom
| | - Laura Ainaga
- 2Complex Motor Disorders Service, Evelina London Children's Hospital, Guy's and St. Thomas' NHS Foundation Trust, London
- 4King's Health Partners Academic Health Sciences Centre, London, United Kingdom
| | - Vijay Narbad
- 1Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London
| | - Harutomo Hasegawa
- 1Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London
- 4King's Health Partners Academic Health Sciences Centre, London, United Kingdom
| | - Jean-Pierre Lin
- 2Complex Motor Disorders Service, Evelina London Children's Hospital, Guy's and St. Thomas' NHS Foundation Trust, London
- 4King's Health Partners Academic Health Sciences Centre, London, United Kingdom
| | - Keyoumars Ashkan
- 1Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London
- 4King's Health Partners Academic Health Sciences Centre, London, United Kingdom
| | - Richard Selway
- 1Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London
- 4King's Health Partners Academic Health Sciences Centre, London, United Kingdom
| |
Collapse
|
4
|
Gimeno H, Polatajko HJ, Lin JP, Cornelius V, Brown RG. Cognitive Strategy Training in Childhood-Onset Movement Disorders: Replication Across Therapists. Front Pediatr 2021; 8:600337. [PMID: 33553070 PMCID: PMC7861040 DOI: 10.3389/fped.2020.600337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/24/2020] [Indexed: 11/18/2022] Open
Abstract
Objective: To explore preliminary effectiveness of the Cognitive Orientation to daily Occupational Performance (CO-OP) Approach in improving outcomes in childhood-onset hyperkinetic movement disorders (HMDs) including dyskinetic cerebral palsy following deep brain stimulation (DBS) across UK clinical occupational therapists. Methods: Randomized, multiple-baseline, Single Case Experimental Design N-of-1 trial with replications across participants. Five self-selected goals were identified: three goals were worked on during CO-OP and two goals were left untreated and used to assess skills transfer. Participants were between 6 and 21 years and had received DBS surgery with baseline Manual Ability Classification System (MACS) levels I-IV. Participants were randomized to typical or extended baseline (2 vs. 6 weeks), followed by 10 weekly individual CO-OP sessions. The primary outcome was functional performance measured by the Performance Quality Rating Scale-Individualized (PQRS-I), assessed before, during, and following treatment. Outcome assessors were blinded to baseline allocation, session number, and assessment time. A non-overlapping index, Tau-U, was used to measure effect size. Results: Of the 12 participants recruited, 10 commenced and completed treatment. In total, 63% of trained goals improved with effect sizes 0.66-1.00 ("moderate" to "large" effect), seen for all children in at least one goal. Skills transfer was found in 37% of the untrained goals in six participants. Conclusions: Cognitive strategy use improved participant-selected functional goals in childhood-onset HMD, more than just practice during baseline. Preliminary effectiveness is shown when the intervention is delivered in clinical practice by different therapists in routine clinical settings.
Collapse
Affiliation(s)
- Hortensia Gimeno
- Complex Motor Disorders Service, Paediatric Neurosciences, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
- Department of Psychology, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| | - Helene J. Polatajko
- Department of Occupational Science and Occupational Therapy, University of Toronto, Toronto, ON, Canada
| | - Jean-Pierre Lin
- Complex Motor Disorders Service, Paediatric Neurosciences, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Victoria Cornelius
- Imperial Clinical Trials Unit, Imperial College London, School of Public Health, London, United Kingdom
| | - Richard G. Brown
- Department of Psychology, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
- South London and Maudsley NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
5
|
Shah SA, Brown P, Gimeno H, Lin JP, McClelland VM. Application of Machine Learning Using Decision Trees for Prognosis of Deep Brain Stimulation of Globus Pallidus Internus for Children With Dystonia. Front Neurol 2020; 11:825. [PMID: 32849251 PMCID: PMC7115974 DOI: 10.3389/fneur.2020.00825] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/30/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND While Deep Brain Stimulation (DBS) of the Globus pallidus internus is a well-established therapy for idiopathic/genetic dystonia, benefits for acquired dystonia are varied, ranging from modest improvement to deterioration. Predictive biomarkers to aid DBS prognosis for children are lacking, especially in acquired dystonias, such as dystonic Cerebral Palsy. We explored the potential role of machine learning techniques to identify parameters that could help predict DBS outcome. METHODS We conducted a retrospective study of 244 children attending King's College Hospital between September 2007 and June 2018 for neurophysiological tests as part of their assessment for possible DBS at Evelina London Children's Hospital. For the 133 individuals who underwent DBS and had 1-year outcome data available, we assessed the potential predictive value of six patient parameters: sex, etiology (including cerebral palsy), baseline severity (Burke-Fahn-Marsden Dystonia Rating Scale-motor score), cranial MRI and two neurophysiological tests, Central Motor Conduction Time (CMCT) and Somatosensory Evoked Potential (SEP). We applied machine learning analysis to determine the best combination of these features to aid DBS prognosis. We developed a classification algorithm based on Decision Trees (DTs) with k-fold cross validation for independent testing. We analyzed all possible combinations of the six features and focused on acquired dystonias. RESULTS Several trees resulted in better accuracy than the majority class classifier. However, the two features that consistently appeared in top 10 DTs were CMCT and baseline dystonia severity. A decision tree based on CMCT and baseline severity provided a range of sensitivity and specificity, depending on the threshold chosen for baseline dystonia severity. In situations where CMCT was not available, a DT using SEP alone provided better than the majority class classifier accuracy. CONCLUSION The results suggest that neurophysiological parameters can help predict DBS outcomes, and DTs provide a data-driven, highly interpretable decision support tool that lends itself to being used in clinical practice to help predict potential benefit of DBS in dystonic children. Our results encourage the introduction of neurophysiological parameters in assessment pathways, and data collection to facilitate multi-center evaluation and validation of these potential predictive markers and of the illustrative decision support tools presented here.
Collapse
Affiliation(s)
- Syed Ahmar Shah
- Usher Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Peter Brown
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Hortensia Gimeno
- Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- Women and Children's Health Institute, King's College London, London, United Kingdom
| | - Jean-Pierre Lin
- Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- Women and Children's Health Institute, King's College London, London, United Kingdom
| | - Verity M. McClelland
- Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
6
|
Shapiro SM, Riordan SM. Review of bilirubin neurotoxicity II: preventing and treating acute bilirubin encephalopathy and kernicterus spectrum disorders. Pediatr Res 2020; 87:332-337. [PMID: 31581172 DOI: 10.1038/s41390-019-0603-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 09/09/2019] [Indexed: 11/09/2022]
Abstract
Previously in Part I of this two-part review, we discussed the current and recent advances in the understanding of the molecular biology and neuropathology of bilirubin neurotoxicity (BNTx). Here in Part II, we summarize current treatment options available to treat the severely jaundiced infants to prevent significant brain damage and improve clinical outcomes. In addition, we review potential novel therapies that are in various stages of research and development. We will emphasize treatments for both prevention and treatment of both acute bilirubin encephalopathy (ABE) and kernicterus spectrum disorders (KSDs), highlighting the treatment of the most disabling neurological sequelae of children with mild-to-severe KSDs whose "rare disease" status often means they are overlooked by the clinical research community at large. As with other secondary dystonias, treatment of the dystonic motor symptoms in kernicterus is the greatest clinical challenge.
Collapse
Affiliation(s)
- Steven M Shapiro
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA. .,Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA. .,Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS, USA. .,Department of Pediatrics, University of Missouri-Kansas City, Kansas City, MO, USA.
| | - Sean M Riordan
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA.,Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Pediatrics, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
7
|
Cernera S, Okun MS, Gunduz A. A Review of Cognitive Outcomes Across Movement Disorder Patients Undergoing Deep Brain Stimulation. Front Neurol 2019; 10:419. [PMID: 31133956 PMCID: PMC6514131 DOI: 10.3389/fneur.2019.00419] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/05/2019] [Indexed: 12/19/2022] Open
Abstract
Introduction: Although the benefit in motor symptoms for well-selected patients with deep brain stimulation (DBS) has been established, cognitive declines associated with DBS can produce suboptimal clinical responses. Small decrements in cognition can lead to profound effects on quality of life. The growth of indications, the expansion of surgical targets, the increasing complexity of devices, and recent changes in stimulation paradigms have all collectively drawn attention to the need for re-evaluation of DBS related cognitive outcomes. Methods: To address the impact of cognitive changes following DBS, we performed a literature review using PubMed. We searched for articles focused on DBS and cognition. We extracted information about the disease, target, number of patients, assessment of time points, cognitive battery, and clinical outcomes. Diseases included were dystonia, Tourette syndrome (TS), essential tremor (ET), and Parkinson's disease (PD). Results: DBS was associated with mild cognitive issues even when rigorous patient selection was employed. Dystonia studies reported stable or improved cognitive scores, however one study using reliable change indices indicated decrements in sustained attention. Additionally, DBS outcomes were convoluted with changes in medication dose, alleviation of motor symptoms, and learning effects. In the largest, prospective TS study, an improvement in attentional skills was noted, whereas smaller studies reported variable declines across several cognitive domains. Although, most studies reported stable cognitive outcomes. ET studies largely demonstrated deficits in verbal fluency, which had variable responses depending on stimulation setting. Recently, studies have focused beyond the ventral intermediate nucleus, including the post-subthalamic area and zona incerta. For PD, the cognitive results were heterogeneous, although deficits in verbal fluency were consistent and related to the micro-lesion effect. Conclusion: Post-DBS cognitive issues can impact both motor and quality of life outcomes. The underlying pathophysiology of cognitive changes post-DBS and the identification of pathways underpinning declines will require further investigation. Future studies should employ careful methodological designs. Patient specific analyses will be helpful to differentiate the effects of medications, DBS and the underlying disease state, including disease progression. Disease progression is often an underappreciated factor that is important to post-DBS cognitive issues.
Collapse
Affiliation(s)
- Stephanie Cernera
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Michael S Okun
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL, United States
| | - Aysegul Gunduz
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States.,Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL, United States
| |
Collapse
|
8
|
Eggink H, Szlufik S, Coenen MA, van Egmond ME, Moro E, Tijssen MA. Non-motor effects of deep brain stimulation in dystonia: A systematic review. Parkinsonism Relat Disord 2018; 55:26-44. [PMID: 29945825 DOI: 10.1016/j.parkreldis.2018.06.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/17/2018] [Accepted: 06/16/2018] [Indexed: 12/15/2022]
|
9
|
Candela S, Vanegas MI, Darling A, Ortigoza-Escobar JD, Alamar M, Muchart J, Climent A, Ferrer E, Rumià J, Pérez-Dueñas B. Frameless robot-assisted pallidal deep brain stimulation surgery in pediatric patients with movement disorders: precision and short-term clinical results. J Neurosurg Pediatr 2018; 22:416-425. [PMID: 30028274 DOI: 10.3171/2018.5.peds1814] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The purpose of this study was to verify the safety and accuracy of the Neuromate stereotactic robot for use in deep brain stimulation (DBS) electrode implantation for the treatment of hyperkinetic movement disorders in childhood and describe the authors' initial clinical results. METHODS A prospective evaluation of pediatric patients with dystonia and other hyperkinetic movement disorders was carried out during the 1st year after the start-up of a pediatric DBS unit in Barcelona. Electrodes were implanted bilaterally in the globus pallidus internus (GPi) using the Neuromate robot without the stereotactic frame. The authors calculated the distances between the electrodes and their respective planned trajectories, merging the postoperative CT with the preoperative plan using VoXim software. Clinical outcome was monitored using validated scales for dystonia and myoclonus preoperatively and at 1 month and 6 months postoperatively and by means of a quality-of-life questionnaire for children, administered before surgery and at 6 months' follow-up. We also recorded complications derived from the implantation technique, "hardware," and stimulation. RESULTS Six patients aged 7 to 16 years and diagnosed with isolated dystonia ( DYT1 negative) (3 patients), choreo-dystonia related to PDE2A mutation (1 patient), or myoclonus-dystonia syndrome SGCE mutations (2 patients) were evaluated during a period of 6 to 19 months. The average accuracy in the placement of the electrodes was 1.24 mm at the target point. At the 6-month follow-up, patients showed an improvement in the motor (65%) and functional (48%) components of the Burke-Fahn-Marsden Dystonia Rating Scale. Patients with myoclonus and SGCE mutations also showed an improvement in action myoclonus (95%-100%) and in functional tests (50%-75%) according to the Unified Motor-Rating Scale. The Neuro-QOL score revealed inconsistent results, with improvement in motor function and social relationships but worsening in anxiety, cognitive function, and pain. The only surgical complication was medial displacement of the first electrode, which limited intensity of stimulation in the lower contacts, in one case. CONCLUSIONS The Neuromate stereotactic robot is an accurate and safe tool for the placement of GPi electrodes in children with hyperkinetic movement disorders.
Collapse
Affiliation(s)
- Santiago Candela
- Departments of1Neurosurgery.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona
| | - María Isabel Vanegas
- 2Neuropediatrics, and.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona.,7Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Alejandra Darling
- 2Neuropediatrics, and.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona
| | - Juan Darío Ortigoza-Escobar
- 2Neuropediatrics, and.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona
| | - Mariana Alamar
- Departments of1Neurosurgery.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona
| | - Jordi Muchart
- 3Diagnostic Imaging.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona
| | - Alejandra Climent
- Departments of1Neurosurgery.,2Neuropediatrics, and.,4Intraoperative Neurophysiology Unit, and.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona
| | - Enrique Ferrer
- Departments of1Neurosurgery.,5Department of Neurosurgery, Hospital Clinic de Barcelona, Universitat de Barcelona; and.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona
| | - Jordi Rumià
- Departments of1Neurosurgery.,5Department of Neurosurgery, Hospital Clinic de Barcelona, Universitat de Barcelona; and.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona
| | - Belén Pérez-Dueñas
- 2Neuropediatrics, and.,6Pediatric Movement Disorders Unit, Sant Joan de Déu Barcelona Children's Hospital, Universitat de Barcelona.,7Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
10
|
Coenen MA, Eggink H, Tijssen MA, Spikman JM. Cognition in childhood dystonia: a systematic review. Dev Med Child Neurol 2018; 60:244-255. [PMID: 29238959 DOI: 10.1111/dmcn.13632] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2017] [Indexed: 11/29/2022]
Abstract
AIM Cognitive impairments have been established as part of the non-motor phenomenology of adult dystonia. In childhood dystonia, the extent of cognitive impairments is less clear. This systematic review aims to present an overview of the existing literature to elucidate the cognitive profile of primary and secondary childhood dystonia. METHOD Studies focusing on cognition in childhood dystonia were searched in MEDLINE and PsychInfo up to October 2017. We included studies on idiopathic and genetic forms of dystonia as well as dystonia secondary to cerebral palsy and inborn errors of metabolism. RESULTS Thirty-four studies of the initial 527 were included. Studies for primary dystonia showed intact cognition and IQ, but mild working memory and processing speed deficits. Studies on secondary dystonia showed more pronounced cognitive deficits and lower IQ scores with frequent intellectual disability. Data are missing for attention, language, and executive functioning. INTERPRETATION This systematic review shows possible cognitive impairments in childhood dystonia. The severity of cognitive impairment seems to intensify with increasing neurological abnormalities. However, the available data on cognition in childhood dystonia are very limited and not all domains have been investigated yet. This underlines the need for future research using standardized neuropsychological procedures in this group. WHAT THIS PAPER ADDS There is limited data on cognition in childhood dystonia. Primary dystonia showed intact cognition and IQ, but mild working memory and processing speed deficits. Secondary dystonia showed more pronounced deficits and lower IQ, with frequent intellectual disability. There is a strong need for case-control studies assessing cognition using standardized neuropsychological tests.
Collapse
Affiliation(s)
- Maraike A Coenen
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hendriekje Eggink
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marina A Tijssen
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jacoba M Spikman
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
11
|
Jahanshahi M. Neuropsychological and Neuropsychiatric Features of Idiopathic and DYT1 Dystonia and the Impact of Medical and Surgical treatment. Arch Clin Neuropsychol 2017; 32:888-905. [DOI: 10.1093/arclin/acx095] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Indexed: 11/14/2022] Open
|
12
|
Jahanshahi M, Torkamani M. The cognitive features of idiopathic and DYT1 dystonia. Mov Disord 2017. [DOI: 10.1002/mds.27048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Marjan Jahanshahi
- Cognitive Motor Neuroscience Group; Sobell Department of Motor Neuroscience & Movement Disorders, University College London (UCL) Institute of Neurology, The National Hospital for Neurology & Neurosurgery; London UK
| | - Mariam Torkamani
- Cognitive Motor Neuroscience Group; Sobell Department of Motor Neuroscience & Movement Disorders, University College London (UCL) Institute of Neurology, The National Hospital for Neurology & Neurosurgery; London UK
| |
Collapse
|
13
|
Shen CY, Wang YJ, Liu XM, Zhang XQ, Ren XJ, Ma XY, Sun JJ, Feng K, Sun GX, Xu B, Liu PZ. Improvement of Orbitofrontal Cortex Function Associated with Blephrospasm Symptom Remission. Eur Neurol 2017; 77:288-294. [PMID: 28391280 DOI: 10.1159/000471850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 03/21/2017] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To determine whether orbitofrontal cortex (OFC) function improves with blepharospasm (BSP) symptom remission using a verbal fluency task and near-infrared spectroscopy (NIRS). METHODS Nineteen BSP patients and 9 healthy controls (HCs) matched by gender and education were examined using NIRS. The BSP patients were divided into 2 groups based on the onset or remission of BSP symptoms. A covariance analysis was conducted to analyze the differences among the 3 groups to avoid the influence of different ages. The least significant difference was used to process the post hoc test. RESULTS The hemoglobin concentration and cerebral blood flow of the bilateral orbitofrontal area (channels 27, 31, 34, 37, and 39) were not significantly different between the BSP remission and HC groups (p > 0.05); however, both groups were significantly increased compared with the BSP onset group (BSP remission group vs. BSP onset group: p = 0.003, p = 0.018, p = 0.013, p = 0.001, and p = 0.011, respectively; BSP remission group vs. BSP onset group: p = 0.037, p = 0.044, p = 0.023, p = 0.016, and p = 0.025, respectively). CONCLUSION This is the first investigation to control for symptom stages in BSP patients examined via NIRS. Cognitive ability and OFC function improve with BSP symptom remission. Thus, the OFC may be inter-connected with motor and cognitive symptoms in BSP.
Collapse
Affiliation(s)
- Chen-Yu Shen
- Yuquan Hospital, Clinical Neuroscience Institute, Medical Center, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Koy A, Timmermann L. Deep brain stimulation in cerebral palsy: Challenges and opportunities. Eur J Paediatr Neurol 2017; 21:118-121. [PMID: 27289260 DOI: 10.1016/j.ejpn.2016.05.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 05/18/2016] [Accepted: 05/22/2016] [Indexed: 12/31/2022]
Abstract
Cerebral palsy (CP) is the most common cause for acquired dystonia in childhood. Pharmacological treatment is often unsatisfactory and side effects are frequently dose-limiting. Data on outcome of DBS in paediatric patients with dyskinetic CP is very limited and heterogeneous. Reasons for the variability in responses are not entirely known yet. Interestingly, some CP-patients seem to improve subjectively on pallidal stimulation but without measurable changes in impairment scales. Besides dystonia scales, the use of sensitive age-dependent assessments tools is therefore reasonable to capture the full effect. As the course of disease duration as well as the age at operation seem to correlate with DBS outcome in patients with dystonia, DBS at an early stage of development might be beneficial for some of these patients. For the future, well-conducted trials as well as data collection in the international registry is of major importance to increase knowledge about DBS in CP patients, especially those implanted at a young age. Furthermore, selection criteria and guidelines or treatment standards are needed to improve the service for children with dyskinetic CP - especially in light of unsatisfactory medical treatment options.
Collapse
Affiliation(s)
- Anne Koy
- Department of Neurology, University Hospital of Cologne, Germany; Department of Paediatrics, University Hospital of Cologne, Germany.
| | - Lars Timmermann
- Department of Neurology, University Hospital of Cologne, Germany
| |
Collapse
|
15
|
Bilateral globus pallidus internus deep brain stimulation for dyskinetic cerebral palsy supports success of cochlear implantation in a 5-year old ex-24 week preterm twin with absent cerebellar hemispheres. Eur J Paediatr Neurol 2017; 21:202-213. [PMID: 28017556 DOI: 10.1016/j.ejpn.2016.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 01/20/2023]
Abstract
BACKGROUND Early onset dystonia (dyskinesia) and deafness in childhood pose significant challenges for children and carers and are the cause of multiple disability. It is particularly tragic when the child cannot make use of early cochlear implantation (CI) technology to relieve deafness and improve language and communication, because severe cervical and truncal dystonia brushes off the magnetic amplifier behind the ears. Bilateral globus pallidus internus (GPi) deep brain stimulation (DBS) neuromodulation can reduce dyskinesia, thus supporting CI neuromodulation success. METHODS We describe the importance of the order of dual neuromodulation surgery for dystonia and deafness. First with bilateral GPi DBS using a rechargeable ACTIVA-RC neurostimulator followed 5 months later by unilateral CI with a Harmony (BTE) Advanced Bionics Hi Res 90 K cochlear device. This double neuromodulation was performed in series in a 12.5 kg 5 year-old ex-24 week gestation-born twin without a cerebellum. RESULTS Relief of dyskinesia enabled continuous use of the CI amplifier. Language understanding and communication improved. Dystonic storms abated. Tolerance of sitting increased with emergence of manual function. Status dystonicus ensued 10 days after ACTIVA-RC removal for infection-erosion at 3 years and 10 months. He required intensive care and DBS re-implantation 3 weeks later together with 8 months of hospital care. Today he is virtually back to the level of functioning before the DBS removal in 2012 and background medication continues to be slowly weaned. CONCLUSION This case illustrates that early neuromodulation with DBS for dystonic cerebral palsy followed by CI for deafness is beneficial. Both should be considered early i.e. under the age of five years. The DBS should precede the CI to maximise dystonia reduction and thus benefits from CI. This requires close working between the paediatric DBS and CI services.
Collapse
|
16
|
Hudson VE, Elniel A, Ughratdar I, Zebian B, Selway R, Lin JP. A comparative historical and demographic study of the neuromodulation management techniques of deep brain stimulation for dystonia and cochlear implantation for sensorineural deafness in children. Eur J Paediatr Neurol 2017; 21:122-135. [PMID: 27562095 DOI: 10.1016/j.ejpn.2016.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/15/2016] [Accepted: 07/20/2016] [Indexed: 12/19/2022]
Abstract
UNLABELLED Cochlear implants for sensorineural deafness in children is one of the most successful neuromodulation techniques known to relieve early chronic neurodisability, improving activity and participation. In 2012 there were 324,000 recipients of cochlear implants globally. AIM To compare cochlear implant (CI) neuromodulation with deep brain stimulation (DBS) for dystonia in childhood and explore relations between age and duration of symptoms at implantation and outcome. METHODS Comparison of published annual UK CI figures for 1985-2009 with a retrospective cohort of the first 9 years of DBS for dystonia in children at a single-site Functional Neurosurgery unit from 2006 to 14. RESULTS From 2006 to 14, DBS neuromodulation of childhood dystonia increased by a factor of 3.8 to a total of 126 cases over the first 9 years, similar to the growth in cochlear implants which increased by a factor of 4.1 over a similar period in the 1980s rising to 527 children in 2009. The CI saw a dramatic shift in practice from implantation at >5 years of age at the start of the programme towards earlier implantation by the mid-1990s. Best language results were seen for implantation <5 years of age and duration of cochlear neuromodulation >4 years, hence implantation <1 year of age, indicating that severely deaf, pre-lingual children could benefit from cochlear neuromodulation if implanted early. Similar to initial CI use, the majority of children receiving DBS for dystonia in the first 9 years were 5-15 years of age, when the proportion of life lived with dystonia exceeds 90% thus limiting benefits. CONCLUSION Early DBS neuromodulation for acquired motor disorders should be explored to maximise the benefits of dystonia reduction in a period of maximal developmental plasticity before the onset of disability. Learning from cochlear implantation, DBS can become an accepted management option in children under the age of 5 years who have a reduced proportion of life lived with dystonia, and not viewed as a last resort reserved for only the most severe cases where benefits may be at their most limited.
Collapse
Affiliation(s)
- V E Hudson
- Guys', King's and St Thomas' School of Medical Education, United Kingdom.
| | - A Elniel
- Guys', King's and St Thomas' School of Medical Education, United Kingdom
| | | | - B Zebian
- King's College Hospital, United Kingdom
| | - R Selway
- King's College Hospital, United Kingdom
| | - J P Lin
- Evelina London Children's Hospital, United Kingdom.
| |
Collapse
|
17
|
Koy A, Weinsheimer M, Pauls KAM, Kühn AA, Krause P, Huebl J, Schneider GH, Deuschl G, Erasmi R, Falk D, Krauss JK, Lütjens G, Schnitzler A, Wojtecki L, Vesper J, Korinthenberg R, Coenen VA, Visser-Vandewalle V, Hellmich M, Timmermann L. German registry of paediatric deep brain stimulation in patients with childhood-onset dystonia (GEPESTIM). Eur J Paediatr Neurol 2017; 21:136-146. [PMID: 27424797 DOI: 10.1016/j.ejpn.2016.05.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/22/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Data on paediatric deep brain stimulation (DBS) is limited, especially for long-term outcomes, because of small numbers in single center series and lack of systematic multi-center trials. OBJECTIVES We seek to systematically evaluate the clinical outcome of paediatric patients undergoing DBS. METHODS A German registry on paediatric DBS (GEPESTIM) was created to collect data of patients with dystonia undergoing DBS up to the age of 18 years. Patients were divided into three groups according to etiology (group 1 inherited, group 2 acquired, and group 3 idiopathic dystonia). RESULTS Data of 44 patients with a mean age of 12.8 years at time of operation provided by 6 German centers could be documented in the registry so far (group 1 n = 18, group 2 n = 16, group 3 n = 10). Average absolute improvement after implantation was 15.5 ± 18.0 for 27 patients with pre- and postoperative Burke-Fahn-Marsden Dystonia Rating scale movement scores available (p < 0.001) (group 1: 19.6 ± 19.7, n = 12; group 2: 7.0 ± 8.9, n = 8; group 3: 19.2 ± 20.7, n = 7). Infection was the main reason for hardware removal (n = 6). 20 IPG replacements due to battery expiry were necessary in 15 patients at 3.7 ± 1.8 years after last implantation. DISCUSSION Pre- and postoperative data on paediatric DBS are very heterogeneous and incomplete but corroborate the positive effects of DBS on inherited and acquired dystonia. Adverse events including relatively frequent IPG replacements due to battery expiry seem to be a prominent feature of children with dystonia undergoing DBS. The registry enables collaborative research on DBS treatment in the paediatric population and to create standardized management algorithms in the future.
Collapse
Affiliation(s)
- A Koy
- Department of Neurology, University Hospital of Cologne, Germany; Department of Paediatrics, University Hospital of Cologne, Germany.
| | - M Weinsheimer
- Department of Neurology, University Hospital of Cologne, Germany
| | - K A M Pauls
- Department of Neurology, University Hospital of Cologne, Germany
| | - A A Kühn
- Department of Neurology, Charité University Medicine Berlin, Germany
| | - P Krause
- Department of Neurology, Charité University Medicine Berlin, Germany
| | - J Huebl
- Department of Neurology, Charité University Medicine Berlin, Germany
| | - G-H Schneider
- Department of Neurosurgery, Charité University Medicine Berlin, Germany
| | - G Deuschl
- Department of Neurology, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
| | - R Erasmi
- Department of Neurology, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
| | - D Falk
- Department of Neurosurgery, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
| | - J K Krauss
- Department of Neurosurgery, Medical School, MHH, Hannover, Germany
| | - G Lütjens
- Department of Neurosurgery, Medical School, MHH, Hannover, Germany
| | - A Schnitzler
- Department of Neurology, University Hospital of Düsseldorf, Germany
| | - L Wojtecki
- Department of Neurology, University Hospital of Düsseldorf, Germany
| | - J Vesper
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Düsseldorf, Germany
| | - R Korinthenberg
- Department of Paediatrics, Freiburg University Medical Centre, Germany
| | - V A Coenen
- Department Stereotactic and Functional Neurosurgery, Freiburg University Medical Centre, Germany
| | - V Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Germany
| | - M Hellmich
- Institute of Medical Statistics, Informatics and Epidemiology, University of Cologne, Germany
| | - L Timmermann
- Department of Neurology, University Hospital of Cologne, Germany.
| | | |
Collapse
|
18
|
Owen T, Adegboye D, Gimeno H, Selway R, Lin JP. Stable cognitive functioning with improved perceptual reasoning in children with dyskinetic cerebral palsy and other secondary dystonias after deep brain stimulation. Eur J Paediatr Neurol 2017; 21:193-201. [PMID: 27836441 DOI: 10.1016/j.ejpn.2016.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/28/2016] [Accepted: 10/11/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Dystonia is characterised by involuntary movements (twisting, writhing and jerking) and postures. Secondary dystonias are described as a heterogeneous group of disorders with both exogenous and endogenous causes. There is a growing body of literature on the effects of deep brain stimulation (DBS) surgery on the motor function in childhood secondary dystonias, however research on cognitive function after DBS is scarce. METHODS Cognitive function was measured in a cohort of 40 children with secondary dystonia following DBS surgery using a retrospective repeated measures design. Baseline pre-DBS neuropsychological measures were compared to scores obtained at least one year following DBS. Cognitive function was assessed using standardised measures of intellectual ability and memory. RESULTS There was no significant change in the assessed domains of cognitive function following DBS surgery. A significant improvement across the group was found on the Picture Completion subtest, measuring perceptual reasoning ability, following DBS. CONCLUSION Cognition remained stable in children with secondary dystonia following DBS surgery, with some improvements noted in a domain of perceptual reasoning. Further research with a larger sample is necessary to further explore this, in particular to further subdivide this group to account for its heterogeneity. This preliminary data has potentially positive implications for the impact of DBS on cognitive functioning within the childhood secondary dystonia population.
Collapse
Affiliation(s)
- Tamsin Owen
- Complex Motor Disorders Service, Paediatric Neurosciences, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK; Department of Clinical Psychology, Royal Holloway, University of London, UK.
| | - Dolapo Adegboye
- Complex Motor Disorders Service, Paediatric Neurosciences, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Hortensia Gimeno
- Complex Motor Disorders Service, Paediatric Neurosciences, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK; Department of Psychology, Institute of Psychiatry, King's College London, UK
| | - Richard Selway
- Functional Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Jean-Pierre Lin
- Complex Motor Disorders Service, Paediatric Neurosciences, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
19
|
The International Classification of Functioning (ICF) to evaluate deep brain stimulation neuromodulation in childhood dystonia-hyperkinesia informs future clinical & research priorities in a multidisciplinary model of care. Eur J Paediatr Neurol 2017; 21:147-167. [PMID: 27707656 DOI: 10.1016/j.ejpn.2016.08.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/11/2016] [Accepted: 08/29/2016] [Indexed: 12/12/2022]
Abstract
The multidisciplinary team (MDT) approach illustrates how motor classification systems, assessments and outcome measures currently available have been applied to a national cohort of children and young people with dystonia and other hyperkinetic movement disorders (HMD) particularly with a focus on dyskinetic cerebral palsy (CP). The paper is divided in 3 sections. Firstly, we describe the service model adopted by the Complex Motor Disorders Service (CMDS) at Evelina London Children's Hospital and King's College Hospital (ELCH-KCH) for deep brain stimulation. We describe lessons learnt from available dystonia studies and discuss/propose ways to measure DBS and other dystonia-related intervention outcomes. We aim to report on current available functional outcome measures as well as some impairment-based assessments that can encourage and generate discussion among movement disorders specialists of different backgrounds regarding choice of the most important areas to be measured after DBS and other interventions for dystonia management. Finally, some recommendations for multi-centre collaboration in regards to functional clinical outcomes and research methodologies for dystonia-related interventions are proposed.
Collapse
|
20
|
Koy A, Lin JP, Sanger TD, Marks WA, Mink JW, Timmermann L. Management of movement disorders in children – Authors’ reply. Lancet Neurol 2016; 15:1302-1303. [DOI: 10.1016/s1474-4422(16)30284-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/18/2016] [Indexed: 11/30/2022]
|
21
|
Abstract
PURPOSE OF REVIEW This article highlights the clinical and diagnostic tools used to assess and classify dystonia and provides an overview of the treatment approach. RECENT FINDINGS In the past 4 years, the definition and classification of dystonia have been revised, and new genes have been identified in patients with isolated hereditary dystonia (DYT23, DYT24, and DYT25). Expanded phenotypes were reported in patients with combined dystonia, such as those with mutations in ATP1A3. Treatment offerings have expanded as there are more neurotoxins, and deep brain stimulation has been employed successfully in diverse populations of patients with dystonia. SUMMARY Diagnosis of dystonia rests upon a clinical assessment that requires the examiner to understand the characteristic disease features that are elicited through a careful history and physical examination. The revised classification system uses two distinct nonoverlapping axes: clinical features and etiology. A growing understanding exists of both isolated and combined dystonia as new genes are identified and our knowledge of the phenotypic presentation of previously reported genes has expanded. Genetic testing is commercially available for some of these conditions. Treatment options for dystonia include pharmacologic therapy, chemodenervation, and surgical intervention. Deep brain stimulation benefits many patients with various types of dystonia.
Collapse
|