1
|
Zhang H, He X, Wang Y, Li C, Jiang H, Hou S, Huang D, Zhang W, Tan J, Du X, Cao Y, Chen D, Yan H, Peng L, Lei D. Simultaneous CNV-seq and WES: An effective strategy for molecular diagnosis of unexplained fetal structural anomalies. Heliyon 2024; 10:e39392. [PMID: 39502218 PMCID: PMC11535759 DOI: 10.1016/j.heliyon.2024.e39392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Background Fetal structural anomalies are detected by ultrasound in approximately 3 % of pregnancies. Numerous genetic diagnostic strategies have been widely applied to identify the genetic causes of prenatal abnormalities. We aimed to assess the value of simultaneous copy number variation sequencing (CNV-seq) and whole exome sequencing (WES) in diagnosing fetuses with structural anomalies. Methods Fetuses with structural anomalies detected by ultrasound were included for eligibility. After genetic counseling, WES and CNV-seq were performed on DNA samples of fetuses and their parents. All detected variants were evaluated for pathogenicity according to ACMG criteria, with the final diagnosis was determined based on ultrasound results and relevant family history. Results The diagnostic rate of 174 fetuses with prenatal ultrasound abnormalities was 26.44 %, higher than that achieved through either CNV or WES analysis alone. Furthermore, the highest diagnostic rate was observed in fetuses with multiple system anomalies, accounting for 50 % of the total diagnostic yield, followed by skeletal system anomalies at 45.45 %. Three cases with multiple system abnormalities were found to have a dual diagnosis of pathogenic CNVs and SNV variants, representing 1.72 % of the total cohort. 38 pregnant women in their third trimester of pregnancy (27 weeks+) participated in this study, and 23.68 % received a confirmed genetic diagnosis. Finally, 31 women (67.39 %) voluntarily terminated their pregnancy following the testing and extensive genetic counseling. Conclusions Our study demonstrated that the simultaneous CNV-seq and WES analyses are beneficial for the molecular diagnosis of underlying unexplained structural anomalies in fetuses. This strategy is more efficient in elucidating prenatal abnormalities with compound problems, such as dual diagnoses. Furthermore, the simultaneous strategy has a shorter turnaround time and is particularly suitable for families with structural anomalies found in the third trimester of pregnancy.
Collapse
Affiliation(s)
- Haoqing Zhang
- Center of Prenatal Diagnosis, The Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, 423000, China
| | - Xinglan He
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuankun Wang
- BGI Genomics, Shenzhen, 518083, China
- Clin Lab, BGI Genomics, Wuhan, 730074, China
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 410007, China
| | - Caiyun Li
- Center of Prenatal Diagnosis, The Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, 423000, China
| | - Hongguo Jiang
- BGI Genomics, Shenzhen, 518083, China
- Clin Lab, BGI Genomics, Wuhan, 730074, China
| | - Shuai Hou
- Center of Prenatal Diagnosis, The Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, 423000, China
| | - Dongqun Huang
- Center of Prenatal Diagnosis, The Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, 423000, China
| | - Wenqian Zhang
- BGI Genomics, Shenzhen, 518083, China
- Clin Lab, BGI Genomics, Wuhan, 730074, China
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 410007, China
| | - Jufang Tan
- Center of Prenatal Diagnosis, The Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, 423000, China
| | - Xiaoyun Du
- Clin Lab, BGI Genomics, Wuhan, 730074, China
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, 410007, China
| | - Yinli Cao
- Center of Prenatal Diagnosis, The Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, 423000, China
| | - Danjing Chen
- Center of Prenatal Diagnosis, The Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, 423000, China
| | - Haiying Yan
- Center of Prenatal Diagnosis, The Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, 423000, China
| | - Lingling Peng
- The Chenzhou Affiliated Hospital, Department of Gynecology and Obstetrics, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Dongzhu Lei
- Center of Prenatal Diagnosis, The Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, 423000, China
| |
Collapse
|
2
|
Jühlen R, Grauer L, Martinelli V, Rencurel C, Fahrenkrog B. Alteration of actin cytoskeletal organisation in fetal akinesia deformation sequence. Sci Rep 2024; 14:1742. [PMID: 38242956 PMCID: PMC10799014 DOI: 10.1038/s41598-023-50615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/22/2023] [Indexed: 01/21/2024] Open
Abstract
Fetal akinesia deformation sequence (FADS) represents the severest form of congenital myasthenic syndrome (CMS), a diverse group of inherited disorders characterised by impaired neuromuscular transmission. Most CMS originate from defects in the muscle nicotinic acetylcholine receptor, but the underlying molecular pathogenesis is only poorly understood. Here we show that RNAi-mediated silencing of FADS-related proteins rapsyn and NUP88 in foetal fibroblasts alters organisation of the actin cytoskeleton. We show that fibroblasts from two independent FADS individuals have enhanced and shorter actin stress fibre bundles, alongside with an increased number and size of focal adhesions, with an otherwise normal overall connectivity and integrity of the actin-myosin cytoskeleton network. By proximity ligation assays and bimolecular fluorescence complementation, we show that rapsyn and NUP88 localise nearby adhesion plaques and that they interact with the focal adhesion protein paxillin. Based on these findings we propose that a respective deficiency in rapsyn and NUP88 in FADS alters the regulation of actin dynamics at focal adhesions, and thereby may also plausibly dictate myofibril contraction in skeletal muscle of FADS individuals.
Collapse
Affiliation(s)
- Ramona Jühlen
- Laboratory Biology of the Cell Nucleus, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium.
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany.
| | - Lukas Grauer
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Valérie Martinelli
- Laboratory Biology of the Cell Nucleus, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium
- Laboratory of Neurovascular Signaling, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium
| | | | - Birthe Fahrenkrog
- Laboratory Biology of the Cell Nucleus, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium.
- Biozentrum, University of Basel, 4056, Basel, Switzerland.
| |
Collapse
|
3
|
De Rose DU, Ronci S, Caoci S, Maddaloni C, Diodato D, Catteruccia M, Fattori F, Bosco L, Pro S, Savarese I, Bersani I, Randi F, Trozzi M, Meucci D, Calzolari F, Salvatori G, Solinas A, Dotta A, Campi F. Vocal Cord Paralysis and Feeding Difficulties as Early Diagnostic Clues of Congenital Myasthenic Syndrome with Neonatal Onset: A Case Report and Review of Literature. J Pers Med 2023; 13:jpm13050798. [PMID: 37240968 DOI: 10.3390/jpm13050798] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Herein, we present a newborn female with congenital vocal cord paralysis who required a tracheostomy in the neonatal period. She also presented with feeding difficulties. She was later diagnosed with a clinical picture of congenital myasthenia, associated with three variants of the MUSK gene: the 27-month follow-up was described. In particular, the c.565C>T variant is novel and has never been described in the literature; it causes the insertion of a premature stop codon (p.Arg189Ter) likely leading to a consequent formation of a truncated nonfunctioning protein. We also systematically collected and summarized information on patients' characteristics of previous cases of congenital myasthenia with neonatal onset reported in the literature to date, and we compared them to our case. The literature reported 155 neonatal cases before our case, from 1980 to March 2022. Of 156 neonates with CMS, nine (5.8%) had vocal cord paralysis, whereas 111 (71.2%) had feeding difficulties. Ocular features were evident in 99 infants (63.5%), whereas facial-bulbar symptoms were found in 115 infants (73.7%). In one hundred sixteen infants (74.4%), limbs were involved. Respiratory problems were displayed by 97 infants (62.2%). The combination of congenital stridor, particularly in the presence of an apparently idiopathic bilateral vocal cord paralysis, and poor coordination between sucking and swallowing may indicate an underlying congenital myasthenic syndrome (CMS). Therefore, we suggest testing infants with vocal cord paralysis and feeding difficulties for MUSK and related genes to avoid a late diagnosis of CMS and improve outcomes.
Collapse
Affiliation(s)
| | - Sara Ronci
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Stefano Caoci
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Chiara Maddaloni
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Daria Diodato
- Neuromuscular and Neurodegenerative Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Michela Catteruccia
- Neuromuscular and Neurodegenerative Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Fabiana Fattori
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy
| | - Luca Bosco
- Neuromuscular and Neurodegenerative Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
- Department of Science, University Roma Tre, 00146 Rome, Italy
| | - Stefano Pro
- Developmental Neurology Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Immacolata Savarese
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Iliana Bersani
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Franco Randi
- Neurosurgery Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Marilena Trozzi
- Airway Surgery Unit, Pediatric Surgery Department, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Duino Meucci
- Airway Surgery Unit, Pediatric Surgery Department, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Flaminia Calzolari
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Guglielmo Salvatori
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Agostina Solinas
- Neonatal Intensive Care Unit, Sant'Anna Hospital of Ferrara, 44124 Ferrara, Italy
| | - Andrea Dotta
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Francesca Campi
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| |
Collapse
|
4
|
Ohno K, Ohkawara B, Shen XM, Selcen D, Engel AG. Clinical and Pathologic Features of Congenital Myasthenic Syndromes Caused by 35 Genes-A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24043730. [PMID: 36835142 PMCID: PMC9961056 DOI: 10.3390/ijms24043730] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders characterized by impaired neuromuscular signal transmission due to germline pathogenic variants in genes expressed at the neuromuscular junction (NMJ). A total of 35 genes have been reported in CMS (AGRN, ALG14, ALG2, CHAT, CHD8, CHRNA1, CHRNB1, CHRND, CHRNE, CHRNG, COL13A1, COLQ, DOK7, DPAGT1, GFPT1, GMPPB, LAMA5, LAMB2, LRP4, MUSK, MYO9A, PLEC, PREPL, PURA, RAPSN, RPH3A, SCN4A, SLC18A3, SLC25A1, SLC5A7, SNAP25, SYT2, TOR1AIP1, UNC13A, VAMP1). The 35 genes can be classified into 14 groups according to the pathomechanical, clinical, and therapeutic features of CMS patients. Measurement of compound muscle action potentials elicited by repetitive nerve stimulation is required to diagnose CMS. Clinical and electrophysiological features are not sufficient to identify a defective molecule, and genetic studies are always required for accurate diagnosis. From a pharmacological point of view, cholinesterase inhibitors are effective in most groups of CMS, but are contraindicated in some groups of CMS. Similarly, ephedrine, salbutamol (albuterol), amifampridine are effective in most but not all groups of CMS. This review extensively covers pathomechanical and clinical features of CMS by citing 442 relevant articles.
Collapse
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Correspondence: (K.O.); (A.G.E.)
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Xin-Ming Shen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Duygu Selcen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew G. Engel
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: (K.O.); (A.G.E.)
| |
Collapse
|
5
|
Jühlen R, Martinelli V, Vinci C, Breckpot J, Fahrenkrog B. Centrosome and ciliary abnormalities in fetal akinesia deformation sequence human fibroblasts. Sci Rep 2020; 10:19301. [PMID: 33168876 PMCID: PMC7652866 DOI: 10.1038/s41598-020-76192-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
Ciliopathies are clinical disorders of the primary cilium with widely recognised phenotypic and genetic heterogeneity. Here, we found impaired ciliogenesis in fibroblasts derived from individuals with fetal akinesia deformation sequence (FADS), a broad spectrum of neuromuscular disorders arising from compromised foetal movement. We show that cells derived from FADS individuals have shorter and less primary cilia (PC), in association with alterations in post-translational modifications in α-tubulin. Similarly, siRNA-mediated depletion of two known FADS proteins, the scaffold protein rapsyn and the nucleoporin NUP88, resulted in defective PC formation. Consistent with a role in ciliogenesis, rapsyn and NUP88 localised to centrosomes and PC. Furthermore, proximity-ligation assays confirm the respective vicinity of rapsyn and NUP88 to γ-tubulin. Proximity-ligation assays moreover show that rapsyn and NUP88 are adjacent to each other and that the rapsyn-NUP88 interface is perturbed in the examined FADS cells. We suggest that the perturbed rapsyn-NUP88 interface leads to defects in PC formation and that defective ciliogenesis contributes to the pleiotropic defects seen in FADS.
Collapse
Affiliation(s)
- Ramona Jühlen
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium.,Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Valérie Martinelli
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium
| | - Chiara Vinci
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - Birthe Fahrenkrog
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium. .,Biozentrum, University of Basel, 4056, Basel, Switzerland.
| |
Collapse
|
6
|
Rinaldi B, Race V, Corveleyn A, Van Hoof E, Bauters M, Van Den Bogaert K, Denayer E, de Ravel T, Legius E, Baldewijns M, Aertsen M, Lewi L, De Catte L, Breckpot J, Devriendt K. Next-generation sequencing in prenatal setting: Some examples of unexpected variant association. Eur J Med Genet 2020; 63:103875. [PMID: 32058062 DOI: 10.1016/j.ejmg.2020.103875] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/28/2019] [Accepted: 02/01/2020] [Indexed: 01/08/2023]
Abstract
The application of next-generation sequencing to fetal pathology has proved to increase the diagnostic yield in fetuses with abnormal ultrasounds. We retrospectively reviewed genetic data of 30 selected cases studied through targeted resequencing of OMIM genes. In our experience, clinical data proved to be essential to support diagnostic reasoning and enhance variants' assessment. The molecular diagnosis was reached in 19/30 (63%) cases. Only in 7/19 cases the molecular diagnosis confirmed the initial diagnostic hypothesis, showing the relevance of the genotype-first approach. According to the genotype-phenotype correlation, we were able to divide the solved cases into three groups: i) the correlation is well established but it was missed due to lack of specificity, unusual presentation or recent description; ii) the clinical presentation is much more severe than currently known for the underlying condition; iii) the correlation does not recapitulate the entire phenotype, possibly due to the fetal presentation or multiple coexisting conditions. Moreover, we found a higher proportion of recessive diagnosis in abnormal fetuses compared to cohorts of individuals with developmental delay. Our findings suggest that fetal pathology may be enriched in rare alleles and/or in unusual combinations, counter-selected in postnatal genomes and thus contributing to both phenotypic extremeness and atypical presentation.
Collapse
Affiliation(s)
| | - Valerie Race
- Center for Human Genetics, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - Anniek Corveleyn
- Center for Human Genetics, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - Evelien Van Hoof
- Center for Human Genetics, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - Marijke Bauters
- Center for Human Genetics, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - Kris Van Den Bogaert
- Center for Human Genetics, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - Ellen Denayer
- Center for Human Genetics, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - Thomy de Ravel
- Centre for Medical Genetics, Reproduction and Genetics, University Hospital Brussels, Brussels, Belgium
| | - Eric Legius
- Center for Human Genetics, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - Marcella Baldewijns
- Department of Pathological Anatomy, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - Michael Aertsen
- Department of Radiology, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - Liesbeth Lewi
- Department of Obstetrics & Gynaecology, Fetal Medicine, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - Luc De Catte
- Department of Obstetrics & Gynaecology, Fetal Medicine, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium
| | - Koenraad Devriendt
- Center for Human Genetics, University Hospitals Leuven, Catholic University Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
BCAP31-related syndrome: The first de novo report. Eur J Med Genet 2020; 63:103732. [DOI: 10.1016/j.ejmg.2019.103732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 06/02/2019] [Accepted: 07/17/2019] [Indexed: 11/23/2022]
|
8
|
Exome-First Approach in Fetal Akinesia Reveals Chromosome 1p36 Deletion Syndrome. Case Rep Obstet Gynecol 2019; 2019:6753184. [PMID: 31662930 PMCID: PMC6791227 DOI: 10.1155/2019/6753184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/06/2019] [Accepted: 07/31/2019] [Indexed: 11/21/2022] Open
Abstract
Background Fetal akinesia refers to a broad spectrum of disorders with reduced or absent fetal movements. There is no established approach for prenatal diagnosis of the cause of fetal akinesia. Chromosome 1p36 deletion syndrome is the most common subtelomeric terminal deletion syndrome, recognized postnatally from typical craniofacial features. However, the influence of chromosome 1p36 deletion on fetal movements remains unknown. Case Report A 32-week-old fetus with akinesia showed multiple abnormalities, including fetal growth restriction, congenital cardiac defects, and ventriculomegaly. G-banding analysis using cultured amniocytes revealed 46,XY,22pstk+. Postnatal whole exome sequencing and subsequent chromosomal microarray identified a 3 Mb deletion of chromosomal region 1p36.33–p36.32. These results of molecular cytogenetic analyses were consistent with the fetal sonographic findings. Conclusion Using the exome-first approach, we identified a case with fetal akinesia associated with chromosome 1p36 deletion. Chromosome 1p36 deletion syndrome may be considered for differential diagnosis in cases of fetal akinesia with multiple abnormalities.
Collapse
|
9
|
Niles KM, Blaser S, Shannon P, Chitayat D. Fetal arthrogryposis multiplex congenita/fetal akinesia deformation sequence (FADS)-Aetiology, diagnosis, and management. Prenat Diagn 2019; 39:720-731. [PMID: 31218730 DOI: 10.1002/pd.5505] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/21/2019] [Accepted: 06/04/2019] [Indexed: 01/01/2023]
Abstract
Arthrogryposis multiplex congenita (AMC) refers to an aetiologically heterogenous condition, which consists of joint contractures affecting two or more joints starting prenatally. The incidence is approximately one in 3000 live births; however, the prenatal incidence is higher, indicating a high intrauterine mortality. Over 320 genes have been implicated showing the genetic heterogeneity of the condition. AMC can be of extrinsic aetiology resulting from intrauterine crowding secondary to congenital structural uterine abnormalities (eg, bicornuate or septate uterus), uterine tumors (eg, fibroid), or multifetal pregnancy or intrinsic/primary/fetal aetiology, due to functional abnormalities in the brain, spinal cord, peripheral nerves, neuromuscular junction, muscles, bones, restrictive dermopathies, tendons and joints. Unlike many of the intrinsic/primary/fetal causes which are difficult to treat, secondary AMC can be treated by physiotherapy with good response. Primary cases may present prenatally with fetal akinesia associated with joint contractures and occasionally brain abnormalities, decreased muscle bulk, polyhydramnios, and nonvertex presentation while the secondary cases usually present with isolated contractures. Complete prenatal and postnatal investigations are needed to identify an underlying aetiology and provide information regarding its prognosis and inheritance, which is critical for the obstetrical care providers and families to optimize the pregnancy management and address future reproductive plans.
Collapse
Affiliation(s)
- Kirsten M Niles
- Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Susan Blaser
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
| | - Patrick Shannon
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - David Chitayat
- Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada.,The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada.,Division of Clinical and Metabolic Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Biallelic mutations in nucleoporin NUP88 cause lethal fetal akinesia deformation sequence. PLoS Genet 2018; 14:e1007845. [PMID: 30543681 PMCID: PMC6307818 DOI: 10.1371/journal.pgen.1007845] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/27/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022] Open
Abstract
Nucleoporins build the nuclear pore complex (NPC), which, as sole gate for nuclear-cytoplasmic exchange, is of outmost importance for normal cell function. Defects in the process of nucleocytoplasmic transport or in its machinery have been frequently described in human diseases, such as cancer and neurodegenerative disorders, but only in a few cases of developmental disorders. Here we report biallelic mutations in the nucleoporin NUP88 as a novel cause of lethal fetal akinesia deformation sequence (FADS) in two families. FADS comprises a spectrum of clinically and genetically heterogeneous disorders with congenital malformations related to impaired fetal movement. We show that genetic disruption of nup88 in zebrafish results in pleiotropic developmental defects reminiscent of those seen in affected human fetuses, including locomotor defects as well as defects at neuromuscular junctions. Phenotypic alterations become visible at distinct developmental stages, both in affected human fetuses and in zebrafish, whereas early stages of development are apparently normal. The zebrafish phenotypes caused by nup88 deficiency are rescued by expressing wild-type Nup88 but not the disease-linked mutant forms of Nup88. Furthermore, using human and mouse cell lines as well as immunohistochemistry on fetal muscle tissue, we demonstrate that NUP88 depletion affects rapsyn, a key regulator of the muscle nicotinic acetylcholine receptor at the neuromuscular junction. Together, our studies provide the first characterization of NUP88 in vertebrate development, expand our understanding of the molecular events causing FADS, and suggest that variants in NUP88 should be investigated in cases of FADS. Fetal movement is a prerequisite for normal fetal development and growth. Fetal akinesia deformation sequence (FADS) is the result of decreased fetal movement coinciding with congenital malformations related to impaired fetal movement. FADS may be caused by heterogenous defects at any point along the motor system pathway and genes encoding components critical to the neuromuscular junction and acetylcholine receptor clustering represent a major class of FADS disease genes. We report here biallelic, loss-of-function mutations in the nucleoporin NUP88 that result in lethal FADS and with this the first lethal human developmental disorder due to mutations in a nucleoporin gene. We show that loss of Nup88 in zebrafish results in defects reminiscent of those seen in affected human fetuses and loss of NUP88 affects distinct developmental stages, both during human and zebrafish development. Consistent with the notion that a primary cause for FADS is impaired formation of the neuromuscular junction, loss of Nup88 in zebrafish coincides with abnormalities in acetylcholine receptor clustering, suggesting that defective NUP88 function in FADS impairs neuromuscular junction formation.
Collapse
|
11
|
Adam S, Coetzee M, Honey EM. Pena-Shokeir syndrome: current management strategies and palliative care. APPLICATION OF CLINICAL GENETICS 2018; 11:111-120. [PMID: 30498368 PMCID: PMC6207248 DOI: 10.2147/tacg.s154643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pena-Shokeir syndrome (PSS) type 1, also known as fetal akinesia deformation sequence, is a rare genetic syndrome that almost always results in intrauterine or early neonatal death. It is characterized by markedly decreased fetal movements, intrauterine growth restriction, joint contractures, short umbilical cord, and features of pulmonary hypoplasia. Antenatal diagnosis can be difficult. Ultrasound features are varied and may overlap with those of Trisomy 18. The poor prognosis of PSS is due to pulmonary hypoplasia, which is an important feature that distinguishes PSS from arthrogryposis multiplex congenital without pulmonary hypoplasia, which has a better prognosis. If diagnosed in the antenatal period, a late termination of pregnancy can be considered following ethical discussion (if the law allows). In most cases, a diagnosis is only made in the neonatal period. Parents of a baby affected with PSS require detailed counseling that includes information on the imprecise recurrence risks and a plan for subsequent pregnancies.
Collapse
Affiliation(s)
- Sumaiya Adam
- Department of Obstetrics and Gynaecology, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa,
| | - Melantha Coetzee
- Division of Neonatology, Department of Pediatrics and Child Health, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Engela Magdalena Honey
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
12
|
Beecroft SJ, Lombard M, Mowat D, McLean C, Cairns A, Davis M, Laing NG, Ravenscroft G. Genetics of neuromuscular fetal akinesia in the genomics era. J Med Genet 2018; 55:505-514. [PMID: 29959180 DOI: 10.1136/jmedgenet-2018-105266] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/22/2018] [Accepted: 04/19/2018] [Indexed: 12/27/2022]
Abstract
Fetal hypokinesia or akinesia encompasses a broad spectrum of disorders, united by impaired movement in utero. Often, the underlying aetiology is genetic in origin, affecting part of the neuromuscular system. The affordable and high-throughput nature of next-generation DNA sequencing has led to an explosion in disease gene discovery across rare diseases, including fetal akinesias. A genetic diagnosis has clinical utility as it may affect management and prognosis and informs recurrence risk, facilitating family planning decisions. More broadly, knowledge of disease genes increasingly allows population-based preconception carrier screening, which has reduced the incidence of recessive diseases in several populations. Despite gains in knowledge of the genetics of fetal akinesia, many families lack a genetic diagnosis. In this review, we describe the developments in Mendelian genetics of neuromuscular fetal akinesia in the genomics era. We examine genetic diagnoses with neuromuscular causes, specifically including the lower motor neuron, peripheral nerve, neuromuscular junction and muscle.
Collapse
Affiliation(s)
- Sarah Jane Beecroft
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Harry Perkins Institute of Medical Research, QQ Block, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Marcus Lombard
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Harry Perkins Institute of Medical Research, QQ Block, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - David Mowat
- Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Catriona McLean
- Victorian Neuromuscular Laboratory, Alfred Health, Melbourne, Victoria, Australia
| | - Anita Cairns
- Department of Neurology, Lady Cilento Children's Hospital, Brisbane, Queensland, Australia
| | - Mark Davis
- Neurogenetics Laboratory, Department of Diagnostic Genomics, PP Block, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Nigel G Laing
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Harry Perkins Institute of Medical Research, QQ Block, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Gianina Ravenscroft
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Harry Perkins Institute of Medical Research, QQ Block, QEII Medical Centre, Nedlands, Western Australia, Australia
| |
Collapse
|