Novel potential agents for ulcerative colitis by molecular topology: suppression of IL-6 production in Caco-2 and RAW 264.7 cell lines.
Mol Divers 2013;
17:573-93. [PMID:
23793777 DOI:
10.1007/s11030-013-9458-6]
[Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/08/2013] [Indexed: 02/07/2023]
Abstract
Ulcerative colitis (UC) is an immune-mediated chronic and relapsing intestinal inflammatory disease. Interleukin (IL)-6, a pro-inflammatory cytokine, plays a key role in the uncontrolled intestinal inflammatory process, which is a main characteristic of UC. In this work, a quantitative structure-activity relationship model based on molecular topology (MT) has been built up to predict the IL-6 mediated anti-UC activity. After an external validation of the model, a virtual screening of the MicroSource Pure Natural Products Collection and Sigma-Aldrich databases was carried out looking for potential new active compounds. From the entire set of compounds labeled as active by the model, four of them, namely alizarin-3-methylimino-N,N-diacetic acid (AMA), Calcein, (+)-dibenzyl-L-tartrate (DLT), and Ro 41-0960, were tested in vitro by determination of IL-6 production in two cell lines (RAW 264.7 and Caco-2). The results demonstrate that three of them were able to significantly reduce IL-6 levels in both cell lines and particularly one, namely Ro 41-0960. These results confirm MT's efficacy as a tool for the selection of compounds potentially active in UC.
Collapse