1
|
Wang B, Xiang J, He B, Tan S, Zhou W. Enhancing bioavailability of natural extracts for nutritional applications through dry powder inhalers (DPI) spray drying: technological advancements and future directions. Front Nutr 2023; 10:1190912. [PMID: 37476406 PMCID: PMC10354342 DOI: 10.3389/fnut.2023.1190912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Natural ingredients have many applications in modern medicine and pharmaceutical projects. However, they often have low solubility, poor chemical stability, and low bioavailability in vivo. Spray drying technology can overcome these challenges by enhancing the properties of natural ingredients. Moreover, drug delivery systems can be flexibly designed to optimize the performance of natural ingredients. Among the various drug delivery systems, dry powder inhalation (DPI) has attracted much attention in pharmaceutical research. Therefore, this review will focus on the spray drying of natural ingredients for DPI and discuss their synthesis and application.
Collapse
Affiliation(s)
- Bo Wang
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Jia Xiang
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Binsheng He
- Academician Workstation, Changsha Medical University, Changsha, China
| | - Songwen Tan
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Wenhu Zhou
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Mahar R, Chakraborty A, Nainwal N. The influence of carrier type, physical characteristics, and blending techniques on the performance of dry powder inhalers. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
|
4
|
Aziz S, Scherlieβ R, Steckel H. Development of High Dose Oseltamivir Phosphate Dry Powder for Inhalation Therapy in Viral Pneumonia. Pharmaceutics 2020; 12:E1154. [PMID: 33261071 PMCID: PMC7760073 DOI: 10.3390/pharmaceutics12121154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022] Open
Abstract
Oseltamivir phosphate (OP) is an antiviral drug available only as oral therapy for the treatment of influenza and as a potential treatment option when in combination with other medication in the fight against the corona virus disease (COVID-19) pneumonia. In this study, OP was formulated as a dry powder for inhalation, which allows drug targeting to the site of action and potentially reduces the dose, aiming a more efficient therapy. Binary formulations were based on micronized excipient particles acting like diluents, which were blended with the drug OP. Different excipient types, excipient ratios, and excipient size distributions were prepared and examined. To investigate the feasibility of delivering high doses of OP in a single dose, 1:1, 1:3, and 3:1 drug/diluent blending ratios have been prepared. Subsequently, the aerosolization performance was evaluated for all prepared formulations by cascade impaction using a novel medium-resistance capsule-based inhaler (UNI-Haler). Formulations with micronized trehalose showed relatively excellent aerosolization performance with highest fine-particle doses in comparison to examined lactose, mannitol, and glucose under similar conditions. Focusing on the trehalose-based dry-powder inhalers' (DPIs) formulations, a physicochemical characterization of extra micronized grade trehalose in relation to the achieved performance in dispersing OP was performed. Additionally, an early indication of inhaled OP safety on lung cells was noted by the viability MTT assay utilizing Calu-3 cells.
Collapse
Affiliation(s)
- Shahir Aziz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, German University in Cairo, Cairo 11835, Egypt
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, D-24118 Kiel, Germany;
| | - Regina Scherlieβ
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, D-24118 Kiel, Germany;
| | | |
Collapse
|
5
|
Madadlou A, Saint-Jalmes A, Guyomarc'h F, Floury J, Dupont D. Development of an aqueous two-phase emulsion using hydrophobized whey proteins and erythritol. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.02.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Jetzer MW, Schneider M, Morrical BD, Imanidis G. Investigations on the Mechanism of Magnesium Stearate to Modify Aerosol Performance in Dry Powder Inhaled Formulations. J Pharm Sci 2018; 107:984-998. [DOI: 10.1016/j.xphs.2017.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/21/2017] [Accepted: 12/01/2017] [Indexed: 11/27/2022]
|
7
|
Imagine the Superiority of Dry Powder Inhalers from Carrier Engineering. JOURNAL OF DRUG DELIVERY 2018; 2018:5635010. [PMID: 29568652 PMCID: PMC5820590 DOI: 10.1155/2018/5635010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/06/2017] [Indexed: 01/14/2023]
Abstract
Inhalation therapy has strong history of more than 4000 years and it is well recognized around the globe within every culture. In early days, inhalation therapy was designed for treatment of local disorders such as asthma and other pulmonary diseases. Almost all inhalation products composed a simple formulation of a carrier, usually α-lactose monohydrate orderly mixed with micronized therapeutic agent. Most of these formulations lacked satisfactory pulmonary deposition and dispersion. Thus, various alternative carrier's molecules and powder processing techniques are increasingly investigated to achieve suitable aerodynamic performance. In view of this fact, more suitable and economic alternative carrier's molecules with advanced formulation strategies are discussed in the present review. Furthermore, major advances, challenges, and the future perspective are discussed.
Collapse
|
8
|
Rahimpour Y, Kouhsoltani M, Hamishehkar H. Alternative carriers in dry powder inhaler formulations. Drug Discov Today 2013; 19:618-26. [PMID: 24269834 DOI: 10.1016/j.drudis.2013.11.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 10/18/2013] [Accepted: 11/14/2013] [Indexed: 10/26/2022]
Abstract
The aerosolization efficiency of a powder is highly dependent on carrier characteristics, such as particle size distribution, shape and surface properties. The main objective in the inhalation field is to achieve a high and reproducible pulmonary deposition. This can be provided by successful carrier selection and careful process optimization for carrier modification. Lactose is the most common and frequently used carrier in dry powder inhaler (DPI) formulations. But lactose shows some limitations in formulation with certain drugs and peptides that prohibit its usage as a carrier in DPI formulations. Here, we criticality review the most important alternative carriers to lactose with merits, demerits and applications in DPI formulations.
Collapse
Affiliation(s)
- Yahya Rahimpour
- Biotechnology Research Center and Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Kouhsoltani
- Research Center for Pharmaceutical Nanotechnology and Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Pharmaceutical Technology Laboratory, Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Traini D, Scalia S, Adi H, Marangoni E, Young PM. Polymer coating of carrier excipients modify aerosol performance of adhered drugs used in dry powder inhalation therapy. Int J Pharm 2012; 438:150-9. [DOI: 10.1016/j.ijpharm.2012.08.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 07/25/2012] [Accepted: 08/18/2012] [Indexed: 11/16/2022]
|
10
|
Advanced microscopy techniques to assess solid-state properties of inhalation medicines. Adv Drug Deliv Rev 2012; 64:369-82. [PMID: 22120022 DOI: 10.1016/j.addr.2011.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/07/2011] [Accepted: 11/11/2011] [Indexed: 11/22/2022]
Abstract
Efficient control and characterisation of the physico-chemical properties of active pharmaceutical ingredients (APIs) and excipients for orally inhaled drug products (OIDPs) are critical to successful product development. Control and reduction of risk require the introduction of a material science based approach to product development and the use of advanced analytical tools in understanding how the solid-state properties of the input materials influence structure and product functionality. The key issues to be addressed, at a microscopic scale, are understanding how the critical quality attributes of input materials influence surface, interfacial and particulate interactions within OIDPs. This review offers an in-depth discussion on the use of advanced microscopy techniques in characterising of the solid-state properties of particulate materials for OIDPs. The review covers the fundamental principles of the techniques, instrumentation types, data interpretation and specific applications in relation to the product development of OIDPs.
Collapse
|
11
|
Lactose characteristics and the generation of the aerosol. Adv Drug Deliv Rev 2012; 64:233-56. [PMID: 21616107 DOI: 10.1016/j.addr.2011.05.003] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 04/27/2011] [Accepted: 05/06/2011] [Indexed: 11/23/2022]
Abstract
The delivery efficiency of dry-powder products for inhalation is dependent upon the drug formulation, the inhaler device, and the inhalation technique. Dry powder formulations are generally produced by mixing the micronised drug particles with larger carrier particles. These carrier particles are commonly lactose. The aerosol performance of a powder is highly dependent on the lactose characteristics, such as particle size distribution and shape and surface properties. Because lactose is the main component in these formulations, its selection is a crucial determinant of drug deposition into the lung, as interparticle forces may be affected by the carrier-particle properties. Therefore, the purpose of this article is to review the various grades of lactose, their production, and the methods of their characterisation. The origin of their adhesive and cohesive forces and their influence on aerosol generation are described, and the impact of the physicochemical properties of lactose on carrier-drug dispersion is discussed in detail.
Collapse
|
12
|
Dillon BR, Roberts DF, Entwistle DA, Glossop PA, Knight CJ, Laity DA, James K, Praquin CF, Strang RS, Watson CAL. Development of a Scaleable Synthesis of a Geminal Dimethyl Tertiary Amine as an Inhaled Muscarinic Antagonist for the Treatment of COPD. Org Process Res Dev 2012. [DOI: 10.1021/op200233r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Barry R. Dillon
- Department
of Worldwide Medicinal Chemistry, †Department of Pharmaceutical Sciences, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - Dannielle F. Roberts
- Department
of Worldwide Medicinal Chemistry, †Department of Pharmaceutical Sciences, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - David A. Entwistle
- Department
of Worldwide Medicinal Chemistry, †Department of Pharmaceutical Sciences, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - Paul A. Glossop
- Department
of Worldwide Medicinal Chemistry, †Department of Pharmaceutical Sciences, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - Craig J. Knight
- Department
of Worldwide Medicinal Chemistry, †Department of Pharmaceutical Sciences, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - Daniel A. Laity
- Department
of Worldwide Medicinal Chemistry, †Department of Pharmaceutical Sciences, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - Kim James
- Department
of Worldwide Medicinal Chemistry, †Department of Pharmaceutical Sciences, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - Celine F. Praquin
- Department
of Worldwide Medicinal Chemistry, †Department of Pharmaceutical Sciences, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - Ross S. Strang
- Department
of Worldwide Medicinal Chemistry, †Department of Pharmaceutical Sciences, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| | - Christine A. L. Watson
- Department
of Worldwide Medicinal Chemistry, †Department of Pharmaceutical Sciences, Pfizer Global Research and Development, Sandwich Laboratories, Ramsgate Road, Kent CT13 9NJ, U.K
| |
Collapse
|
13
|
A perspective on synthetic and solid-form enablement of inhalation candidates. Future Med Chem 2011; 3:1679-701. [DOI: 10.4155/fmc.11.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The administration of compounds by a dry-powder inhaler presents significant challenges to the development and discovery chemist, owing to the stringent requirements placed upon the physical characteristics of the active pharmaceutical ingredient and the high complexity of the molecules concerned. The current state of synthetic chemistry technology is such that commercial syntheses of these compounds are demanding but achievable. While synthetic chemistry will remain a major component of the development of inhaled therapies, the main challenge facing practitioners in this area is the early identification of a suitable solid form. Further advances in the prediction of solid-form properties would significantly enable this field and may allow triage of molecules to be carried out at the design stage of projects.
Collapse
|
14
|
Ooi J, Traini D, Hoe S, Wong W, Young PM. Does carrier size matter? A fundamental study of drug aerosolisation from carrier based dry powder inhalation systems. Int J Pharm 2011; 413:1-9. [DOI: 10.1016/j.ijpharm.2011.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/22/2011] [Accepted: 04/01/2011] [Indexed: 11/28/2022]
|
15
|
Bunker M, Zhang J, Blanchard R, Roberts CJ. Characterising the surface adhesive behavior of tablet tooling components by atomic force microscopy. Drug Dev Ind Pharm 2011; 37:875-85. [DOI: 10.3109/03639045.2010.546402] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Hamishehkar H, Emami J, Najafabadi AR, Gilani K, Minaiyan M, Mahdavi H, Nokhodchi A. Effect of carrier morphology and surface characteristics on the development of respirable PLGA microcapsules for sustained-release pulmonary delivery of insulin. Int J Pharm 2010; 389:74-85. [DOI: 10.1016/j.ijpharm.2010.01.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 12/24/2009] [Accepted: 01/10/2010] [Indexed: 11/16/2022]
|
17
|
Erythritol: Crystal growth from the melt. Int J Pharm 2010; 388:129-35. [DOI: 10.1016/j.ijpharm.2009.12.043] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 12/18/2009] [Accepted: 12/22/2009] [Indexed: 11/22/2022]
|
18
|
Jesus AL, Redinha J. On the structure of erythritol and L-threitol in the solid state: An infrared spectroscopic study. J Mol Struct 2009. [DOI: 10.1016/j.molstruc.2009.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Learoyd TP, Burrows JL, French E, Seville PC. Modified release of beclometasone dipropionate from chitosan-based spray-dried respirable powders. POWDER TECHNOL 2008. [DOI: 10.1016/j.powtec.2008.02.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Traini D, Young PM, Thielmann F, Acharya M. The Influence of Lactose Pseudopolymorphic Form on Salbutamol Sulfate–Lactose Interactions in DPI Formulations. Drug Dev Ind Pharm 2008; 34:992-1001. [DOI: 10.1080/03639040802154889] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Daniela Traini
- Advanced Drug Delivery Group, Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Paul M. Young
- Advanced Drug Delivery Group, Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | | | | |
Collapse
|
21
|
Adi S, Adi H, Chan HK, Young PM, Traini D, Yang R, Yu A. Scanning white-light interferometry as a novel technique to quantify the surface roughness of micron-sized particles for inhalation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:11307-11312. [PMID: 18759384 DOI: 10.1021/la8016062] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A novel approach of measuring the surface roughness of spherical and flat micron-sized drug particles using scanning white-light interferometry was applied to investigate the surface morphology of micron-sized active pharmaceutical ingredients (APIs) and excipient particles used for inhalation aerosols. Bovine serum albumin (BSA) and alpha-lactose monohydrate particles were chosen as model API and excipient particles, respectively. Both BSA and lactose particles were prepared with different degrees of surface corrugation using either controlled spray drying (four samples of BSA) or decantation (two samples of lactose). Particle size distributions were characterized by laser diffraction, and particles were imaged by scanning electron microscopy (SEM). Surface roughness of the BSA and lactose particles was quantified by white-light optical profilometry using vertical scanning interferometry (VSI) at full resolution using a 50x objective lens with 2.0x and 0.5x fields of view for BSA and lactose, respectively. Data were analyzed using Vision software (version 32, WYKO), and surface roughness values are expressed as root-mean-square roughness ( Rrms). Furthermore, data were compared to topographical measurements made using conventional atomic force microscopy. Analysis of the optical profilometry data showed significant variation in BSA roughness ranging from 18.58 +/- 3.80 nm to 110.90 +/- 13.16 nm for the smoothest and roughest BSA particles, respectively, and from 81.20 +/- 15.90 nm to 229.20 +/- 68.20 nm for decanted and normal lactose, respectively. The Rrms values were in good agreement with the AFM-derived values. The particle morphology was similar to SEM and AFM images. In conclusion, scanning white-light interferometry provides a useful complementary tool for rapid evaluation of surface morphology and roughness in particles used for dry powder inhalation formulation.
Collapse
Affiliation(s)
- Santoso Adi
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
22
|
Adi H, Traini D, Chan HK, Young PM. The Influence of Drug Morphology on Aerosolisation Efficiency of Dry Powder Inhaler Formulations. J Pharm Sci 2008; 97:2780-8. [PMID: 17894369 DOI: 10.1002/jps.21195] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The physicochemical properties of two forms of spray dried bovine serum albumin (BSA) have been investigated using particle sizing, surface energy measurement, atomic force microscopy (AFM) and colloid probe microscopy. The BSA powder had similar particle size distributions and surface energy but significantly different morphologies and roughness, classified as smooth and corrugated BSA. Adhesion forces between the corrugated BSA and alpha-lactose monohydrate indicated median adhesion forces were significantly less than for smooth/carrier interaction forces. These observations correlated well with aerosolisation from BSA/carrier blends, where the corrugated BSA particles gave a higher fine particle fraction than the smooth BSA, suggesting reduced BSA/carrier adhesion and increased drug liberation. The use of corrugated drug particle morphology in drug carrier DPI systems may lead to improved aerosol performance through reduced drug carrier contact area.
Collapse
Affiliation(s)
- Handoko Adi
- Advanced Drug Delivery Group, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|
23
|
Design of a Device for Simultaneous Particle Size and Electrostatic Charge Measurement of Inhalation Drugs. Pharm Res 2008; 25:2488-96. [DOI: 10.1007/s11095-008-9660-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 06/09/2008] [Indexed: 10/21/2022]
|
24
|
Jones MD, Harris H, Hooton JC, Shur J, King GS, Mathoulin CA, Nichol K, Smith TL, Dawson ML, Ferrie AR, Price R. An investigation into the relationship between carrier-based dry powder inhalation performance and formulation cohesive–adhesive force balances. Eur J Pharm Biopharm 2008; 69:496-507. [DOI: 10.1016/j.ejpb.2007.11.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 11/28/2007] [Accepted: 11/28/2007] [Indexed: 11/29/2022]
|
25
|
Hickey AJ, Mansour HM, Telko MJ, Xu Z, Smyth HDC, Mulder T, McLean R, Langridge J, Papadopoulos D. Physical characterization of component particles included in dry powder inhalers. I. Strategy review and static characteristics. J Pharm Sci 2007; 96:1282-301. [PMID: 17455324 DOI: 10.1002/jps.20916] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The performance of dry powder aerosols for the delivery of drugs to the lungs has been studied extensively in the last decade. The focus for different research groups has been on aspects of the powder formulation, which relate to solid state, surface and interfacial chemistry, bulk properties (static and dynamic) and measures of performance. The nature of studies in this field, tend to be complex and correlations between specific properties and performance seem to be rare. Consequently, the adoption of formulation approaches that on a predictive basis lead to desirable performance has been an elusive goal but one that many agree is worth striving towards. The purpose of this paper is to initiate a discussion of the use of a variety of techniques to elucidate dry particle behavior that might guide the data collection process. If the many researchers in this field can agree on this, or an alternative, guide then a database can be constructed that would allow predictive models to be developed. This is the first of two papers that discuss static and dynamic methods of characterizing dry powder inhaler formulations.
Collapse
Affiliation(s)
- Anthony J Hickey
- Division of Molecular Pharmaceutics, School of Pharmacy, University of North Carolina, Campus Box #7360, 1310 Kerr Hall, Kerr Hall, Chapel Hill, North Carolina 27599-7360, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Young PM, Sung A, Traini D, Kwok P, Chiou H, Chan HK. Influence of Humidity on the Electrostatic Charge and Aerosol Performance of Dry Powder Inhaler Carrier based Systems. Pharm Res 2007; 24:963-70. [PMID: 17377746 DOI: 10.1007/s11095-006-9218-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 12/15/2006] [Indexed: 10/23/2022]
Abstract
To investigate the influence of storage relative humidity (RH) on the aerosolisation efficiency and tribo-electrification of carrier based dry powder inhaler (DPI) formulations using the next generation impactor (NGI) in vitro methodology and the electrostatic low pressure impactor (ELPI). Micronised salbutamol (d (0.5) 1.48 +/- 0.03 microm) was blended with 63-90 microm sieve fractioned alpha-lactose monohydrate carrier and stored at a range of humidities (0-84% RH). The aerosolisation efficiency after storage for 24 h periods was investigated using the NGI. The same experiment was conducted using the ELPI, with corona charger switched off, to measure the net charge vs. mass deposition profile. Significant variations in the aerosolisation efficiency of the formulation were observed with respect to storage RH. In general, the fine particle fraction aerosol performance measured by NGI and ELPI (fraction with mass median aerodynamic diameter <4.46 and 4.04 microm, respectively) followed a positive parabola with aerosol performance increasing over the range 0-60% RH before decreasing >60% RH. Analysis of the ELPI charge data suggested that the micronised salbutamol sulphate had an electronegative charge when aerosolised from lactose based carriers, which was most electronegative at low RH. Increased storage RH resulted in a reduction in net charge to mass ratio with the greatest reduction at RH >60%. The aerosol performance of this binary system is dependent on both electrostatic and capillary forces. The use of the ELPI allows a degree of insight into how these forces affect formulation performances after storage at different RH.
Collapse
Affiliation(s)
- Paul M Young
- Advanced Drug Delivery Group, Faculty of Pharmacy, University of Sydney, Sydney, NSW, 2006, Australia.
| | | | | | | | | | | |
Collapse
|
27
|
Lopes Jesus AJ, Tomé LIN, Eusébio MES, Redinha JS. Determination of the Enthalpy of Solute−Solvent Interaction from the Enthalpy of Solution: Aqueous Solutions of Erythritol and l-Threitol. J Phys Chem B 2006; 110:9280-5. [PMID: 16671745 DOI: 10.1021/jp0561221] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work the enthalpy of the solute-solvent interaction of erythritol and L-threitol in aqueous solution was determined from the values obtained for the enthalpy of solvation. The values for this property were calculated from those determined for the enthalpies of solution and sublimation. To determine the values of the enthalpy of solute-solvent interaction, the solvation process is considered as taking place in three steps: opening a cavity in the solvent to hold the solute molecule, changing the solute conformation when it passes from the gas phase into solution, and interaction between the solute and the solvent molecules. The cavity enthalpy was calculated by the scaled particle theory and the conformational enthalpy change was estimated from the value of this function in the gas phase and in solution. Both terms were determined by DFT calculations. The solvent effect on the solute conformation in solution was estimated using the CPCM solvation model. The importance of the cavity and conformational terms in the interpretation of the enthalpy of solvation is noted. While the cavity term has been used by some authors, the conformational term is considered for the first time. The structural features in aqueous solution of erythritol and L-threitol are discussed.
Collapse
Affiliation(s)
- A J Lopes Jesus
- Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| | | | | | | |
Collapse
|