1
|
Ma Y, Li L, Mo L, Wang X, Liu C, Wu Y, Liu C. Preparation and anti-tumor effects of mesoporous silica nanoparticles loaded with trifluoperazine. J Mater Chem B 2023; 11:10395-10403. [PMID: 37876312 DOI: 10.1039/d3tb01472j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
We have developed a targeted nano-drug delivery system that effectively harnesses the anti-tumor properties of trifluoperazine (TFP), while concurrently mitigating its side effects on the central nervous system. The manufacturing process entailed the preparation of mesoporous silica nanoparticles (MSN-NH2), followed by the loading of trifluoperazine into the pores of MSN-NH2 and then surface modification with polyethylene glycol (PEG) and anisamide (AA), resulting in the formation of TFP@MSN@PEG-AA (abbreviated as TMPA) nanoparticles. In vitro and in vivo anti-tumor activity and hemolysis experiments showed that TMPA had an excellent safety profile and a good anti-tumor effect. Importantly, the drug content of the TMPA nanoparticle group was found to be significantly lower than that of the TFP group in the mouse brain tissue as determined by High Performance Liquid Chromatography (HPLC) detection. Therefore, the developed drug delivery system achieved the goal of maintaining TFP's anti-tumor action while avoiding its negative effects on the central nervous system.
Collapse
Affiliation(s)
- Yunfeng Ma
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, 475004, People's Republic of China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, People's Republic of China
| | - Longxia Li
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
| | - Liufang Mo
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
| | - Xiaochen Wang
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
| | - Chenyue Liu
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, 475004, People's Republic of China
| | - Yijun Wu
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
| | - Chaoqun Liu
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
2
|
Zitzmann-Kolbe S, Kristian A, Zopf D, Kamfenkel C, Politz O, Ellingsen C, Hilbig J, Juul MU, Fonslet J, Nielsen CH, Schatz CA, Bjerke RM, Cuthbertson AS, Mumberg D, Hagemann UB. A Targeted Thorium-227 Conjugate Demonstrates Efficacy in Preclinical Models of Acquired Drug Resistance and Combination Potential with Chemotherapeutics and Antiangiogenic Therapies. Mol Cancer Ther 2023; 22:1073-1086. [PMID: 37365121 PMCID: PMC10477831 DOI: 10.1158/1535-7163.mct-22-0808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/17/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Targeted alpha therapies (TAT) are an innovative class of therapies for cancer treatment. The unique mode-of-action of TATs is the induction of deleterious DNA double-strand breaks. Difficult-to-treat cancers, such as gynecologic cancers upregulating the chemoresistance P-glycoprotein (p-gp) and overexpressing the membrane protein mesothelin (MSLN), are promising targets for TATs. Here, based on the previous encouraging findings with monotherapy, we investigated the efficacy of the mesothelin-targeted thorium-227 conjugate (MSLN-TTC) both as monotherapy and in combination with chemotherapies and antiangiogenic compounds in ovarian and cervical cancer models expressing p-gp. MSLN-TTC monotherapy showed equal cytotoxicity in vitro in p-gp-positive and -negative cancer cells, while chemotherapeutics dramatically lost activity on p-gp-positive cancer cells. In vivo, MSLN-TTC exhibited dose-dependent tumor growth inhibition with treatment/control ratios of 0.03-0.44 in various xenograft models irrespective of p-gp expression status. Furthermore, MSLN-TTC was more efficacious in p-gp-expressing tumors than chemotherapeutics. In the MSLN-expressing ST206B ovarian cancer patient-derived xenograft model, MSLN-TTC accumulated specifically in the tumor, which combined with pegylated liposomal doxorubicin (Doxil), docetaxel, bevacizumab, or regorafenib treatment induced additive-to-synergistic antitumor efficacy and substantially increased response rates compared with respective monotherapies. The combination treatments were well tolerated and only transient decreases in white and red blood cells were observed. In summary, we demonstrate that MSLN-TTC treatment shows efficacy in p-gp-expressing models of chemoresistance and has combination potential with chemo- and antiangiogenic therapies.
Collapse
|
3
|
Boichuk S, Dunaev P, Mustafin I, Mani S, Syuzov K, Valeeva E, Bikinieva F, Galembikova A. Infigratinib (BGJ 398), a Pan-FGFR Inhibitor, Targets P-Glycoprotein and Increases Chemotherapeutic-Induced Mortality of Multidrug-Resistant Tumor Cells. Biomedicines 2022; 10:biomedicines10030601. [PMID: 35327403 PMCID: PMC8945560 DOI: 10.3390/biomedicines10030601] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/01/2023] Open
Abstract
The microtubule-targeting agents (MTAs) are well-known chemotherapeutic agents commonly used for therapy of a broad spectrum of human malignancies, exhibiting epithelial origin, including breast, lung, and prostate cancer. Despite the impressive response rates shortly after initiation of MTA-based therapy, the vast majority of human malignancies develop resistance to MTAs due to the different mechanisms. Here, we report that infigratinib (BGJ 398), a potent FGFR1-4 inhibitor, restores sensitivity of a broad spectrum of ABCB1-overexpressing cancer cells to certain chemotherapeutic agents, including paclitaxel (PTX) and doxorubicin (Dox). This was evidenced for the triple-negative breast cancer (TNBC), and gastrointestinal stromal tumor (GIST) cell lines, as well. Indeed, when MDR-overexpressing cancer cells were treated with a combination of BGJ 398 and PTX (or Dox), we observed a significant increase of apoptosis which was evidenced by an increased expression of cleaved forms of PARP, caspase-3, and increased numbers of Annexin V-positive cells, as well. Moreover, BGJ 398 used in combination with PTX significantly decreased the viability and proliferation of the resistant cancer cells. As expected, no apoptosis was found in ABCB1-overexpressing cancer cells treated with PTX, Dox, or BGJ 398 alone. Inhibition of FGFR-signaling by BGJ 398 was evidenced by the decreased expression of phosphorylated (i.e., activated) forms of FGFR and FRS-2, a well-known adaptor protein of FGFR signaling, and downstream signaling molecules (e.g., STAT-1, -3, and S6). In contrast, expression of MDR-related ABC-transporters did not change after BGJ 398 treatment, thereby suggesting an impaired function of MDR-related ABC-transporters. By using the fluorescent-labeled chemotherapeutic agent PTX-Alexa488 (Flutax-2) and doxorubicin, exhibiting an intrinsic fluorescence, we found that BGJ 398 substantially impairs their efflux from MDR-overexpressing TNBC cells. Moreover, the efflux of Calcein AM, a well-known substrate for ABCB1, was also significantly impaired in BGJ 398-treated cancer cells, thereby suggesting the ABCB1 as a novel molecular target for BGJ 398. Of note, PD 173074, a potent FGFR1 and VEGFR2 inhibitor failed to retain chemotherapeutic agents inside ABCB1-overexpressing cells. This was consistent with the inability of PD 173074 to sensitize Tx-R cancer cells to PTX and Dox. Collectively, we show here for the first time that BGJ 398 reverses the sensitivity of MDR-overexpressing cancer cells to certain chemotherapeutic agents due to inhibition of their efflux from cancer cells via ABCB1-mediated mechanism.
Collapse
Affiliation(s)
- Sergei Boichuk
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia; (P.D.); (S.M.); (K.S.); (F.B.); (A.G.)
- Сentral Research Laboratory, Kazan State Medical University, 420012 Kazan, Russia;
- Department of Radiotherapy and Radiology, Faculty of Surgery, Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
- Correspondence: ; Tel.: +7-917-397-80-93; Fax: +7-843-236-06-52
| | - Pavel Dunaev
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia; (P.D.); (S.M.); (K.S.); (F.B.); (A.G.)
| | - Ilshat Mustafin
- Department of Biochemistry, Kazan State Medical University, 420012 Kazan, Russia;
| | - Shinjit Mani
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia; (P.D.); (S.M.); (K.S.); (F.B.); (A.G.)
| | - Kirill Syuzov
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia; (P.D.); (S.M.); (K.S.); (F.B.); (A.G.)
| | - Elena Valeeva
- Сentral Research Laboratory, Kazan State Medical University, 420012 Kazan, Russia;
| | - Firuza Bikinieva
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia; (P.D.); (S.M.); (K.S.); (F.B.); (A.G.)
| | - Aigul Galembikova
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia; (P.D.); (S.M.); (K.S.); (F.B.); (A.G.)
| |
Collapse
|
4
|
Halloy F, Iyer PS, Ghidini A, Lysenko V, Barman-Aksözen J, Grubenmann CP, Jucker J, Wildner-Verhey van Wijk N, Ruepp MD, Minder EI, Minder AE, Schneider-Yin X, Theocharides APA, Schümperli D, Hall J. Repurposing of glycine transport inhibitors for the treatment of erythropoietic protoporphyria. Cell Chem Biol 2021; 28:1221-1234.e6. [PMID: 33756123 DOI: 10.1016/j.chembiol.2021.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/19/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022]
Abstract
Erythropoietic protoporphyria (EPP) is a rare disease in which patients experience severe light sensitivity. It is caused by a deficiency of ferrochelatase (FECH), the last enzyme in heme biosynthesis (HBS). The lack of FECH causes accumulation of its photoreactive substrate protoporphyrin IX (PPIX) in patients' erythrocytes. Here, we explored an approach for the treatment of EPP by decreasing PPIX synthesis using small-molecule inhibitors directed to factors in the HBS pathway. We generated a FECH-knockout clone from K562 erythroleukemia cells, which accumulates PPIX and undergoes oxidative stress upon light exposure. We used these matched cell lines to screen a set of publicly available inhibitors of factors in the HBS pathway. Inhibitors of the glycine transporters GlyT1 and GlyT2 lowered levels of PPIX and markers of oxidative stress selectively in K56211B4 cells, and in primary erythroid cultures from an EPP patient. Our findings open the door to investigation of glycine transport inhibitors for HBS disorders.
Collapse
Affiliation(s)
- François Halloy
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Pavithra S Iyer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Alice Ghidini
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Veronika Lysenko
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Jasmin Barman-Aksözen
- Institute of Laboratory Medicine, Municipal Hospital Waid and Triemli, 8063 Zurich, Switzerland
| | - Chia-Pei Grubenmann
- Institute of Laboratory Medicine, Municipal Hospital Waid and Triemli, 8063 Zurich, Switzerland
| | - Jessica Jucker
- Institute of Laboratory Medicine, Municipal Hospital Waid and Triemli, 8063 Zurich, Switzerland
| | | | - Marc-David Ruepp
- UK Dementia Research Institute at King's College London, SE5 9RT London, UK; Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF London, UK
| | - Elisabeth I Minder
- Department for Endocrinology, Diabetology, Porphyria, Municipal Hospital Waid and Triemli, 8063 Zurich, Switzerland
| | - Anna-Elisabeth Minder
- Department for Endocrinology, Diabetology, Porphyria, Municipal Hospital Waid and Triemli, 8063 Zurich, Switzerland
| | - Xiaoye Schneider-Yin
- Institute of Laboratory Medicine, Municipal Hospital Waid and Triemli, 8063 Zurich, Switzerland
| | - Alexandre P A Theocharides
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Daniel Schümperli
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| | - Jonathan Hall
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
5
|
Ammar M, Louati N, Frikha I, Medhaffar M, Ghozzi H, Elloumi M, Menif H, Zeghal K, Ben Mahmoud L. Overexpression of P-glycoprotein and resistance to Imatinib in chronic myeloid leukemia patients. J Clin Lab Anal 2020; 34:e23374. [PMID: 32715517 PMCID: PMC7521244 DOI: 10.1002/jcla.23374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/07/2020] [Accepted: 04/20/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The P-glycoprotein (P-gp) is one of the mechanisms of Imatinib (IM) resistance in chronic myeloid leukemia (CML). P-gp has been identified as an efflux pump involved in releasing of IM outside CML cells. To date, the P-gp involvement in the IM resistance development was not completely understood. Therefore, the present study aimed at measuring the P-gp expression level on lymphocytes from Tunisian patients with CML and correlating this level with a molecular response to IM. METHOD The expression of P-gp on peripheral blood lymphocytes from 59 Tunisian patients with CML (27 IM responder patients vs 32 IM non-responder patients) was evaluated by flow cytometry. RESULT Our finding showed significantly positive expression of P-gp in the lymphocytes from the IM non-responder group when compared to the IM-responder group (P = .001). In IM non-responder CML patients, the comparison between CCyR achievers and non-achievers showed a high mean fluorescence intensity (MFI) of P-gp expression in patients who did not achieve their CCyR (P = .001). The comparison between patients with primary and secondary resistance to IM showed an increasing MFI value in patients with primary resistance to IM (P = .001). Besides, the comparison between nilotinib-treated and dasatinib-treated patients proved a high value of MFI in nilotinib-treated patients (P = .001). CONCLUSION The overexpression of P-gp on lymphocytes has significantly correlated with the failed molecular response to IM in patients with CML.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Antineoplastic Agents/pharmacology
- Biomarkers, Tumor/metabolism
- Case-Control Studies
- Drug Resistance, Neoplasm
- Female
- Follow-Up Studies
- Humans
- Imatinib Mesylate/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Male
- Middle Aged
- Prognosis
- Retrospective Studies
- Survival Rate
Collapse
Affiliation(s)
- Mariam Ammar
- Department of Pharmacology, Faculty of MedicineUniversity of SfaxSfaxTunisia
| | - Nour Louati
- Sfax Regional Center of Blood TransfusionSfaxTunisia
| | - Imen Frikha
- Department of Clinical HematologyHedi Chaker Hospital, University of SfaxSfaxTunisia
| | - Moez Medhaffar
- Department of Clinical HematologyHedi Chaker Hospital, University of SfaxSfaxTunisia
| | - Hanen Ghozzi
- Department of Pharmacology, Faculty of MedicineUniversity of SfaxSfaxTunisia
| | - Moez Elloumi
- Department of Clinical HematologyHedi Chaker Hospital, University of SfaxSfaxTunisia
| | - Hela Menif
- Sfax Regional Center of Blood TransfusionSfaxTunisia
| | - Khaled Zeghal
- Department of Pharmacology, Faculty of MedicineUniversity of SfaxSfaxTunisia
| | - Lobna Ben Mahmoud
- Department of Pharmacology, Faculty of MedicineUniversity of SfaxSfaxTunisia
| |
Collapse
|
6
|
Li A, Chen X, Jing Z, Chen J. Trifluoperazine induces cellular apoptosis by inhibiting autophagy and targeting NUPR1 in multiple myeloma. FEBS Open Bio 2020; 10:2097-2106. [PMID: 32810364 PMCID: PMC7530380 DOI: 10.1002/2211-5463.12960] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 12/22/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy of immunoglobulin-secreting plasma cells. Recent modern combination therapies have improved survival rates, but many patients develop resistance to novel drugs, leading to relapse. Trifluoperazine (TFP), a typical antipsychotic drug, has been reported to exert antitumor effects by targeting various pathways. Thus far, the role of TFP in MM has not been elucidated. In the current study, we demonstrated that TFP inhibited cell growth and autophagy activity but induced apoptosis of U266 and RPMI 8226 MM cells. Furthermore, cotreatment of these cell lines with TFP and rapamycin, a potent autophagy inducer, reduced cell apoptosis compared with TFP treatment alone. We also found that TFP inhibited nuclear protein 1 (NUPR1) expression. In the presence of TFP, cells stably overexpressing NUPR1 showed a higher viability than cells treated with the nonspecific control. Autophagy suppression and apoptosis induction caused by TFP were also reversed in MM cells upon NUPR1 overexpression. Overall, our results indicate that in the context of MM, TFP targets NUPR1, inhibiting cell growth and inducing apoptosis by autophagy inhibition. Our results could contribute toward efforts for the development of more effective therapies for MM to be tested in future clinical trials.
Collapse
Affiliation(s)
- Anmao Li
- Department of Hematology, the First Affiliated Hospital of Chongqing Medical University, Yuzhong, China
| | - Xuanxin Chen
- Department of Hematology, the First Affiliated Hospital of Chongqing Medical University, Yuzhong, China
| | - Zizi Jing
- Department of Hematology, the First Affiliated Hospital of Chongqing Medical University, Yuzhong, China
| | - Jianbin Chen
- Department of Hematology, the First Affiliated Hospital of Chongqing Medical University, Yuzhong, China
| |
Collapse
|
7
|
Dong J, Qin Z, Zhang WD, Cheng G, Yehuda AG, Ashby CR, Chen ZS, Cheng XD, Qin JJ. Medicinal chemistry strategies to discover P-glycoprotein inhibitors: An update. Drug Resist Updat 2020; 49:100681. [PMID: 32014648 DOI: 10.1016/j.drup.2020.100681] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022]
Abstract
The presence of multidrug resistance (MDR) in malignant tumors is one of the primary causes of treatment failure in cancer chemotherapy. The overexpression of the ATP binding cassette (ABC) transporter, P-glycoprotein (P-gp), which significantly increases the efflux of certain anticancer drugs from tumor cells, produces MDR. Therefore, inhibition of P-gp may represent a viable therapeutic strategy to overcome cancer MDR. Over the past 4 decades, many compounds with P-gp inhibitory efficacy (referred to as first- and second-generation P-gp inhibitors) have been identified or synthesized. However, these compounds were not successful in clinical trials due to a lack of efficacy and/or untoward toxicity. Subsequently, third- and fourth-generation P-gp inhibitors were developed but dedicated clinical trials did not indicate a significant therapeutic effect. In recent years, an extraordinary array of highly potent, selective, and low-toxicity P-gp inhibitors have been reported. Herein, we provide a comprehensive review of the synthetic and natural products that have specific inhibitory activity on P-gp drug efflux as well as promising chemosensitizing efficacy in MDR cancer cells. The present review focuses primarily on the structural features, design strategies, and structure-activity relationships (SAR) of these compounds.
Collapse
Affiliation(s)
- Jinyun Dong
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zuodong Qin
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Wei-Dong Zhang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Gang Cheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Assaraf G Yehuda
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Charles R Ashby
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China.
| | - Jiang-Jiang Qin
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
8
|
Trifluoperazine, an Antipsychotic Drug, Effectively Reduces Drug Resistance in Cisplatin-Resistant Urothelial Carcinoma Cells via Suppressing Bcl-xL: An In Vitro and In Vivo Study. Int J Mol Sci 2019; 20:ijms20133218. [PMID: 31262032 PMCID: PMC6651283 DOI: 10.3390/ijms20133218] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023] Open
Abstract
Cisplatin-based chemotherapy is the primary treatment for metastatic bladder urothelial carcinoma (UC). Most patients inevitably encounter drug resistance and resultant disease relapse. Reduced apoptosis plays a critical role in chemoresistance. Trifluoperazine (TFP), an antipsychotic agent, has demonstrated antitumor effects on various cancers. This study investigated the efficacy of TFP in inhibiting cisplatin-resistant bladder UC and explored the underlying mechanism. Our results revealed that cisplatin-resistant UC cells (T24/R) upregulated the antiapoptotic factor, B-cell lymphoma-extra large (Bcl-xL). Knockdown of Bcl-xL by siRNA resensitized cisplatin-resistant cells to the cisplatin cytotoxic effect. TFP (10–45 μM) alone elicited dose-dependent cytotoxicity, apoptosis, and G0/G1 arrest on T24/R cells. Co-treatment of TFP potentiated cisplatin-induced cytotoxicity in T24/R cells. The phenomenon that TFP alleviated cisplatin resistance to T24/R was accompanied with concurrent suppression of Bcl-xL. In vivo models confirmed that TFP alone effectively suppressed the T24/R xenograft in nude mice. TFP co-treatment enhanced the antitumor effect of cisplatin on the T24/R xenograft. Our results demonstrated that TFP effectively inhibited cisplatin-resistant UCs and circumvented cisplatin resistance with concurrent Bcl-xL downregulation. These findings provide a promising insight to develop a therapeutic strategy for chemoresistant UCs.
Collapse
|
9
|
Qian K, Sun L, Zhou G, Ge H, Meng Y, Li J, Li X, Fang X. Trifluoperazine as an alternative strategy for the inhibition of tumor growth of colorectal cancer. J Cell Biochem 2019; 120:15756-15765. [PMID: 31081173 DOI: 10.1002/jcb.28845] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 12/27/2022]
Abstract
The development of cancer in patients with schizophrenia is affected by genetic and environmental factors and antipsychotic medication. Several studies found that schizophrenia was associated with decreased risk of some cancers, and the neuroleptic medication might help to reduce the risk of colorectal cancer (CRC). Phenothiazine drugs including trifluoperazine (TFP) are widely used antipsychotic drugs and showed some antitumor effects, we here investigated the potential application of TFP in the treatment of colon cancer. A series doses of TFP were treated to the colon cancer cell line HCT116 and the inhibitory concentration (IC50 ) of TFP for HCT116 was determined by cell counting kit-8. The results indicated that the treatment of TFP impaired the cell vitality of HCT116 in a dose- and time-dependent manner. Meanwhile, the Edu assay demonstrated that the proliferation was also inhibited by TFP, which was accompanied with the induction of apoptosis and autophagy. The expression of CCNE1, CDK4, and antiapoptosis factor BCL-2 was downregulated but the proapoptosis factor BAX was upregulated. The autophagy inhibitor chloroquine could significantly reverse the TFP-induced apoptosis. Moreover, the ability of migration and invasion of HCT116 was found to be suppressed by TFP, which was associated with the inhibition of epithelial-mesenchymal transition (EMT). The function of TFP in vivo was further confirmed. The results showed that the administration of TFP remarkably abrogated the tumor growth with decreased tumor volume and proliferation index Ki-67 level in tumor tissues. The EMT phenotype was also confirmed to be inhibited by TFP in vivo, suggesting the promising antitumor effects of TFP in CRC.
Collapse
Affiliation(s)
- Kun Qian
- College of Life Sciences, Huzhou University, Huzhou, Zhejiang, People's Republic of China
| | - Laiyu Sun
- College of Life Sciences, Huzhou University, Huzhou, Zhejiang, People's Republic of China
| | - Guoqing Zhou
- College of Life Sciences, Huzhou University, Huzhou, Zhejiang, People's Republic of China
| | - Haixia Ge
- College of Life Sciences, Huzhou University, Huzhou, Zhejiang, People's Republic of China
| | - Yue Meng
- College of Life Sciences, Huzhou University, Huzhou, Zhejiang, People's Republic of China
| | - Jingfen Li
- College of Life Sciences, Huzhou University, Huzhou, Zhejiang, People's Republic of China
| | - Xiao Li
- College of Life Sciences, Huzhou University, Huzhou, Zhejiang, People's Republic of China
| | - Xinqiang Fang
- College of Life Sciences, Huzhou University, Huzhou, Zhejiang, People's Republic of China
| |
Collapse
|
10
|
Środa-Pomianek K, Michalak K, Palko-Łabuz A, Poła A, Dzięgiel P, Puła B, Świątek P, Wesołowska O. Cytotoxic and multidrug resistance reversal activity of phenothiazine derivative is strongly enhanced by theobromine, a phytochemical from cocoa. Eur J Pharmacol 2019; 849:124-134. [DOI: 10.1016/j.ejphar.2019.01.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/03/2019] [Accepted: 01/17/2019] [Indexed: 12/22/2022]
|
11
|
Chen X, Luo X, Cheng Y. Trifluoperazine prevents FOXO1 nuclear excretion and reverses doxorubicin-resistance in the SHG44/DOX drug-resistant glioma cell line. Int J Mol Med 2018; 42:3300-3308. [PMID: 30272254 PMCID: PMC6202074 DOI: 10.3892/ijmm.2018.3885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 09/04/2018] [Indexed: 01/09/2023] Open
Abstract
As a tumor suppressor, Forkhead box O1 (FOXO1) is located in the nucleus where it regulates gene expression and inhibits tumor progression. However, the antitumor effects of FOXO1 are attenuated in several tumors due to its translocation from the nucleus to the cytoplasm. Trifluoperazine (TFP) is able to reverse tumor drug resistance by inhibiting multidrug resistance (MDR), however, the detailed molecular mechanisms by which this occurs remain to be fully elucidated. In the present study, the doxorubicin (DOX)‑resistant SHG44/DOX glioma cell line was established. The results showed that TFP promoted DOX‑induced cytotoxicity, cell cycle arrest and early apoptosis using a Cell Counting Kit‑8 and flow cytometry. In vivo experiments also demonstrated that DOX combined with TFP reduced tumor volumes and proliferation indices, and led to higher protein levels of FOXO1. In addition, TFP inhibited the nuclear exclusion of FOXO1, contributing toward the downregulation of MDR genes and an increase in intracellular DOX concentrations by reverse transcription‑quantitative polymerase chain reaction, western blot analysis, immunofluorescence and spectrophotometer analysis. Therefore, TFP may inhibit DOX resistance by stimulating FOXO1 nuclear translocation and suppressing MDF genes in SHG44/DOX cells, contributing to promising clinical prospects for tumor chemotherapy.
Collapse
Affiliation(s)
- Xiaozhong Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010
| | - Xiaoquan Luo
- Department of Neurosurgery, Nanchong Central Hospital, Second Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010
| |
Collapse
|
12
|
Feng Z, Xia Y, Gao T, Xu F, Lei Q, Peng C, Yang Y, Xue Q, Hu X, Wang Q, Wang R, Ran Z, Zeng Z, Yang N, Xie Z, Yu L. The antipsychotic agent trifluoperazine hydrochloride suppresses triple-negative breast cancer tumor growth and brain metastasis by inducing G0/G1 arrest and apoptosis. Cell Death Dis 2018; 9:1006. [PMID: 30258182 PMCID: PMC6158270 DOI: 10.1038/s41419-018-1046-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 02/08/2023]
Abstract
Women with aggressive triple-negative breast cancer (TNBC) are at high risk of brain metastasis, which has no effective therapeutic option partially due to the poor penetration of drugs across the blood-brain barrier. Trifluoperazine (TFP) is an approved antipsychotic drug with good bioavailability in brain and had shown anticancer effect in several types of cancer. It drives us to investigate its activities to suppress TNBC, especially the brain metastasis. In this study, we chose three TNBC cell lines MDA-MB-468, MDA-MB-231, and 4T1 to assess its anticancer activities along with the possible mechanisms. In vitro, it induced G0/G1 cell cycle arrest via decreasing the expression of both cyclinD1/CDK4 and cyclinE/CDK2, and stimulated mitochondria-mediated apoptosis. In vivo, TFP suppressed the growth of subcutaneous xenograft tumor and brain metastasis without causing detectable side effects. Importantly, it prolonged the survival of mice bearing brain metastasis. Immunohistochemical analysis of Ki67 and cleaved caspase-3 indicated TFP could suppress the growth and induce apoptosis of cancer cells in vivo. Taken together, TFP might be a potential available drug for treating TNBC with brain metastasis, which urgently needs novel treatment options.
Collapse
Affiliation(s)
- Zhanzhan Feng
- Lab of Medicinal Chemistry, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Yong Xia
- Lab of Medicinal Chemistry, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Tiantao Gao
- Lab of Medicinal Chemistry, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Fuyan Xu
- Lab of Medicinal Chemistry, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Qian Lei
- Lab of Medicinal Chemistry, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Cuiting Peng
- School of Chemical Engineering, Sichuan University, 610041, Chengdu, China
| | - Yufei Yang
- Sichuan Yuanda Shuyang Pharmaceutical Co., Ltd., 610041, Chengdu, China
| | - Qiang Xue
- Lab of Medicinal Chemistry, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Xi Hu
- Lab of Medicinal Chemistry, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Qianqian Wang
- Lab of Medicinal Chemistry, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Ranran Wang
- West China School of Pharmacy, Sichuan University, 610041, Chengdu, China
| | - Zhiqiang Ran
- West China School of Pharmacy, Sichuan University, 610041, Chengdu, China
| | - Zhilin Zeng
- West China School of Pharmacy, Sichuan University, 610041, Chengdu, China
| | - Nan Yang
- West China School of Pharmacy, Sichuan University, 610041, Chengdu, China
| | - Zixin Xie
- West China School of Pharmacy, Sichuan University, 610041, Chengdu, China
| | - Luoting Yu
- Lab of Medicinal Chemistry, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China.
| |
Collapse
|
13
|
Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells. Sci Rep 2018; 8:967. [PMID: 29343829 PMCID: PMC5772368 DOI: 10.1038/s41598-018-19325-x] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/27/2017] [Indexed: 12/17/2022] Open
Abstract
Overexpression of ATP-binding cassette (ABC) transporters is often linked to multidrug resistance (MDR) in cancer chemotherapies. P-glycoprotein (P-gp) is one of the best studied drug transporters associated with MDR. There are currently no approved drugs available for clinical use in cancer chemotherapies to reverse MDR by inhibiting P-glycoprotein. Using computational studies, we previously identified several compounds that inhibit P-gp by targeting its nucleotide binding domain and avoiding its drug binding domains. Several of these compounds showed successful MDR reversal when tested on a drug resistant prostate cancer cell line. Using conventional two-dimensional cell culture of MDR ovarian and prostate cancer cells and three dimensional prostate cancer microtumor spheroids, we demonstrated here that co-administration with chemotherapeutics significantly decreased cell viability and survival as well as cell motility. The P-gp inhibitors were not observed to be toxic on their own. The inhibitors increased cellular retention of chemotherapeutics and reporter compounds known to be transport substrates of P-gp. We also showed that these compounds are not transport substrates of P-gp and that two of the three inhibit P-gp, but not the closely related ABC transporter, ABCG2/BCRP. The results presented suggest that these P-gp inhibitors may be promising leads for future drug development.
Collapse
|
14
|
Hu L, Zhang X, Wang J, Wang S, Amin HM, Shi P. Involvement of oncogenic tyrosine kinase NPM-ALK in trifluoperazine-induced cell cycle arrest and apoptosis in ALK+ anaplastic large cell lymphoma. Hematology 2017; 23:284-290. [DOI: 10.1080/10245332.2017.1396045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Linlin Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
- Key Laboratory of Organofluorine Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Shanghai, People’s Republic of China
| | - Xiaonan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Jian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Song Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Hesham M. Amin
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
- Key Laboratory of Organofluorine Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Shanghai, People’s Republic of China
| |
Collapse
|
15
|
Zhang X, Xu R, Zhang C, Xu Y, Han M, Huang B, Chen A, Qiu C, Thorsen F, Prestegarden L, Bjerkvig R, Wang J, Li X. Trifluoperazine, a novel autophagy inhibitor, increases radiosensitivity in glioblastoma by impairing homologous recombination. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:118. [PMID: 28870216 PMCID: PMC5584019 DOI: 10.1186/s13046-017-0588-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/28/2017] [Indexed: 01/16/2023]
Abstract
BACKGROUND Resistance to adjuvant radiotherapy is a major cause of treatment failure in patients with glioblastoma (GBM). Autophagy inhibitors have been shown to enhance the efficacy of radiotherapy for certain solid tumors. However, current inhibitors do not penetrate the blood-brain-barrier (BBB). Here, we assessed the radiosensitivity effects of the antipsychotic drug trifluoperazine (TFP) on GBM in vitro and in vivo. METHODS U251 and U87 GBM cell lines as well as GBM cells from a primary human biopsy (P3), were used in vitro and in vivo to evaluate the efficacy of TFP treatment. Viability and cytotoxicity was evaluated by CCK-8 and clonogenic formation assays. Molecular studies using immunohistochemistry, western blots, immunofluorescence and qPCR were used to gain mechanistic insight into the biological activity of TFP. Preclinical therapeutic efficacy was evaluated in orthotopic xenograft mouse models. RESULTS IC50 values of U251, U87 and P3 cells treated with TFP were 16, 15 and 15.5 μM, respectively. TFP increased the expression of LC3B-II and p62, indicating a potential disruption of autophagy flux. These results were further substantiated by a decreased Lysotracker Red uptake, indicating impaired acidification of the lysosomes. We show that TFP and radiation had an additive effect when combined. This effect was in part due to impaired TFP-induced homologous recombination. Mechanistically we show that down-regulation of cathepsin L might explain the radiosensitivity effect of TFP. Finally, combining TFP and radiation resulted in a significant antitumor effect in orthotopic GBM xenograft models. CONCLUSIONS This study provides a strong rationale for further clinical studies exploring the combination therapy of TFP and radiation to treat GBM patients.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Ran Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Chao Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Yangyang Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Mingzhi Han
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China
| | - Chen Qiu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Frits Thorsen
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.,The Molecular Imaging Center, Department of Biomedicine, University of Bergen, 5009, Bergen, Norway
| | - Lars Prestegarden
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.,Department of Dermatology, Haukeland University Hospital, 5009, Bergen, Norway
| | - Rolf Bjerkvig
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.,Department of Oncology, Luxembourg Institute of Health, L-1526, Strassen, Luxembourg
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China. .,Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, People's Republic of China.
| |
Collapse
|
16
|
Novel Thiazolo[5,4-b]phenothiazine Derivatives: Synthesis, Structural Characterization, and In Vitro Evaluation of Antiproliferative Activity against Human Leukaemia. Int J Mol Sci 2017; 18:ijms18071365. [PMID: 28672876 PMCID: PMC5535858 DOI: 10.3390/ijms18071365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/10/2017] [Accepted: 06/16/2017] [Indexed: 02/06/2023] Open
Abstract
The molecular frame of the reported series of new polyheterocyclic compounds was intended to combine the potent phenothiazine and benzothiazole pharmacophoric units. The synthetic strategy applied was based on oxidative cyclization of N-(phenothiazin-3-yl)-thioamides and it was validated by the preparation of new 2-alkyl- and 2-aryl-thiazolo[5,4-b]phenothiazine derivatives. Optical properties of the series were experimentally emphasized by UV-Vis absorption/emission spectroscopy and structural features were theoretically modelled using density functional theory (DFT). In vitro activity as antileukemic agents of thiazolo[5,4-b]phenothiazine and N-(phenothiazine-3-yl)-thioamides were comparatively evaluated using cultivated HL-60 human promyelocytic and THP-1 human monocytic leukaemia cell lines. Some representatives proved selectivity against tumour cell lines, cytotoxicity, apoptosis induction, and cellular metabolism impairment capacity. 2-Naphthyl-thiazolo[5,4-b]phenothiazine was identified as the most effective of the series by displaying against THP-1 cell lines a cytotoxicity close to cytarabine antineoplastic agent.
Collapse
|
17
|
González ML, Vera DMA, Laiolo J, Joray MB, Maccioni M, Palacios SM, Molina G, Lanza PA, Gancedo S, Rumjanek V, Carpinella MC. Mechanism Underlying the Reversal of Drug Resistance in P-Glycoprotein-Expressing Leukemia Cells by Pinoresinol and the Study of a Derivative. Front Pharmacol 2017; 8:205. [PMID: 28487651 PMCID: PMC5403950 DOI: 10.3389/fphar.2017.00205] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/31/2017] [Indexed: 11/17/2022] Open
Abstract
P-glycoprotein (P-gp) is a membrane protein associated with multidrug resistance (MDR) due to its key role in mediating the traffic of chemotherapeutic drugs outside cancer cells, leading to a cellular response that hinders efforts toward successful therapy. With the aim of finding agents that circumvent the MDR phenotype mediated by P-gp, 15 compounds isolated from native and naturalized plants of Argentina were screened. Among these, the non-cytotoxic lignan (±) pinoresinol successfully restored sensitivity to doxorubicin from 7 μM in the P-gp overexpressed human myelogenous leukemia cells, Lucena 1. This resistance-reversing effect was confirmed by competitively increasing the intracellular doxorubicin accumulation and by significantly inhibiting the efflux of doxorubicin and, to a lesser extent, that of rhodamine 123. The activity obtained was similar to that observed with verapamil. No such results were observed in the sensitive parental K562 cell line. To gain deeper insight into the mode of action of pinoresinol, its effect on P-gp function and expression was examined. The docking simulations indicated that the lignan bound to P-gp at the apex of the V-shaped transmembrane cavity, involving transmembrane helices 4, 5, and 6, and partially overlapped the binding region of tariquidar, which was used as a positive control. These results would shed some light on the nature of its interaction with P-gp at molecular level and merit further mechanistic and kinetic studies. In addition, it showed a maximum 29% activation of ATP hydrolysis and antagonized verapamil-stimulated ATPase activity with an IC50 of 20.9 μM. On the other hand, pinoresinol decreased the presence of P-gp in the cell surface. Derivatives of pinoresinol with improved activity were identified by docking studies. The most promising one, the non-cytotoxic 1-acetoxypinoresinol, caused a reversion of doxorubicin resistance from 0.11 μM and thus higher activity than the lead compound. It also caused a significant increase in doxorubicin accumulation. Results were similar to those observed with verapamil. The results obtained positioned these compounds as potential candidates for effective agents to overcome P-gp-mediated MDR, leading to better outcomes for leukemia chemotherapy.
Collapse
Affiliation(s)
- María L González
- Fine Chemical and Natural Products Laboratory, School of Chemistry, Catholic University of CórdobaCórdoba, Argentina
| | - D Mariano A Vera
- Department of Chemistry, QUIAMM-INBIOTEC-CONICET, College of Exact and Natural Sciences, National University of Mar del PlataMar del Plata, Argentina
| | - Jerónimo Laiolo
- Fine Chemical and Natural Products Laboratory, School of Chemistry, Catholic University of CórdobaCórdoba, Argentina
| | - Mariana B Joray
- Fine Chemical and Natural Products Laboratory, School of Chemistry, Catholic University of CórdobaCórdoba, Argentina
| | - Mariana Maccioni
- Immunology, Department of Biochemical Chemistry, CIBICI-CONICET, School of Chemical Sciences, National University of CórdobaCórdoba, Argentina
| | - Sara M Palacios
- Fine Chemical and Natural Products Laboratory, School of Chemistry, Catholic University of CórdobaCórdoba, Argentina
| | - Gabriela Molina
- Fine Chemical and Natural Products Laboratory, School of Chemistry, Catholic University of CórdobaCórdoba, Argentina
| | - Priscila A Lanza
- Department of Chemistry, QUIAMM-INBIOTEC-CONICET, College of Exact and Natural Sciences, National University of Mar del PlataMar del Plata, Argentina
| | - Samanta Gancedo
- Immunology, Department of Biochemical Chemistry, CIBICI-CONICET, School of Chemical Sciences, National University of CórdobaCórdoba, Argentina
| | - Vivian Rumjanek
- Institute of Medical Biochemistry, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - María C Carpinella
- Fine Chemical and Natural Products Laboratory, School of Chemistry, Catholic University of CórdobaCórdoba, Argentina
| |
Collapse
|
18
|
Mello JCD, Moraes VWR, Watashi CM, da Silva DC, Cavalcanti LP, Franco MKKD, Yokaichiya F, de Araujo DR, Rodrigues T. Enhancement of chlorpromazine antitumor activity by Pluronics F127/L81 nanostructured system against human multidrug resistant leukemia. Pharmacol Res 2016; 111:102-112. [DOI: 10.1016/j.phrs.2016.05.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/06/2016] [Accepted: 05/31/2016] [Indexed: 01/01/2023]
|
19
|
Abdülrezzak Ü, Erdoğan Z, Silov G, Özdal A, Turhal Ö. Effect of trifluoperazine on Tc-99m sestamibi uptake in patients with advanced nonsmall cell lung cancer. Indian J Nucl Med 2016; 31:103-7. [PMID: 27095857 PMCID: PMC4815380 DOI: 10.4103/0972-3919.178256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate whether there is an effect of trifluoperazine on Tc-99m methoxyisobutylisonitrile (MIBI) uptake in patients with advanced nonsmall cell lung cancer (NCLC). MATERIALS AND METHODS A total of 23 patients with biopsy-proven advanced NCLC who had no previous history of chemo-radiotherapy, underwent baseline dual phase planar, single photon emission computed tomography and whole body Tc-99m MIBI scintigraphy performed at 20 and 120 min. After oral administration of trifluoperazine (5 mg, 2 times a day, for 5 days), dual phase Tc-99m MIBI scintigraphy was repeated. For each patient, and for both studies, regions of interest were drawn over the tumor area (T) and over the normal lung area (L) on the contralateral side in transverse slices where tumor was visualized clearly. Then, early and delayed T/L ratios and washout rate (WR) were calculated. RESULTS Tc-99m MIBI was accumulated in the cancer tissue in all of the patients. Delayed ratio after the oral administration of trifluoperazine (DR2) was significantly higher (P = 0.039) than delayed ratio before trifluoperazine (DR1). We found no significant differences of early ratio before trifluoperazine (ER1) and early ratio after trifluoperazine (ER2), and washout rate before (WR1) and washout rate after trifluoperazine (WR2). CONCLUSION In patients with advanced NCLC, trifluoperazine treatment in addition to chemotherapy might be useful. However, our results need to be confirmed in larger series of patients.
Collapse
Affiliation(s)
- Ümmühan Abdülrezzak
- Department of Nuclear Medicine, Erciyes University School of Medicine, 38010-Kayseri, Turkey
| | - Zeynep Erdoğan
- Department of Nuclear Medicine, Kayseri Training and Research Hospital, 38010-Kayseri, Turkey
| | - Güler Silov
- Department of Nuclear Medicine, Kayseri Training and Research Hospital, 38010-Kayseri, Turkey
| | - Ayşegül Özdal
- Department of Nuclear Medicine, Kayseri Training and Research Hospital, 38010-Kayseri, Turkey
| | - Özgül Turhal
- Department of Nuclear Medicine, Kayseri Training and Research Hospital, 38010-Kayseri, Turkey
| |
Collapse
|
20
|
Lopez D, Martinez-Luis S. Marine natural products with P-glycoprotein inhibitor properties. Mar Drugs 2014; 12:525-46. [PMID: 24451193 PMCID: PMC3917285 DOI: 10.3390/md12010525] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 12/25/2022] Open
Abstract
P-glycoprotein (P-gp) is a protein belonging to the ATP-binding cassette (ABC) transporters superfamily that has clinical relevance due to its role in drug metabolism and multi-drug resistance (MDR) in several human pathogens and diseases. P-gp is a major cause of drug resistance in cancer, parasitic diseases, epilepsy and other disorders. This review article aims to summarize the research findings on the marine natural products with P-glycoprotein inhibitor properties. Natural compounds that modulate P-gp offer great possibilities for semi-synthetic modification to create new drugs and are valuable research tools to understand the function of complex ABC transporters.
Collapse
Affiliation(s)
- Dioxelis Lopez
- Center for Drug Discovery and Biodiversity, Institute for Scientific Research and Technology Services (INDICASAT), Clayton, City of Knowledge, P.O. Box 0843-01103, Panama.
| | - Sergio Martinez-Luis
- Center for Drug Discovery and Biodiversity, Institute for Scientific Research and Technology Services (INDICASAT), Clayton, City of Knowledge, P.O. Box 0843-01103, Panama.
| |
Collapse
|
21
|
Yeh CT, Wu ATH, Chang PMH, Chen KY, Yang CN, Yang SC, Ho CC, Chen CC, Kuo YL, Lee PY, Liu YW, Yen CC, Hsiao M, Lu PJ, Lai JM, Wang LS, Wu CH, Chiou JF, Yang PC, Huang CYF. Trifluoperazine, an antipsychotic agent, inhibits cancer stem cell growth and overcomes drug resistance of lung cancer. Am J Respir Crit Care Med 2012; 186:1180-8. [PMID: 23024022 DOI: 10.1164/rccm.201207-1180oc] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
RATIONALE Cancer stem cell (CSC) theory has drawn much attention, with evidence supporting the contribution of stem cells to tumor initiation, relapse, and therapy resistance. OBJECTIVES To screen drugs that target CSCs to improve the current treatment outcome and overcome drug resistance in patients with lung cancer. METHODS We used publicly available embryonic stem cell and CSC-associated gene signatures to query the Connectivity Map for potential drugs that can, at least in part, reverse the gene expression profile of CSCs. High scores were noted for several phenothiazine-like antipsychotic drugs, including trifluoperazine. We then treated lung CSCs with different EGFR mutation status with trifluoperazine to examine its anti-CSC properties. Lung CSCs resistant to epidermal growth factor receptor-tyrosine kinase inhibitor or cisplatin were treated with trifluoperazine plus gefitinib or trifluoperazine plus cisplatin. Animal models were used for in vivo validation of the anti-CSC effect and synergistic effect of trifluoperazine with gefitinib. MEASUREMENTS AND MAIN RESULTS We demonstrated that trifluoperazine inhibited CSC tumor spheroid formation and down-regulated the expression of CSC markers (CD44/CD133). Trifluoperazine inhibited Wnt/β-catenin signaling in gefitinib-resistant lung cancer spheroids. The combination of trifluoperazine with either gefitinib or cisplatin overcame drug resistance in lung CSCs. Trifluoperazine inhibited the tumor growth and enhanced the inhibitory activity of gefitinib in lung cancer metastatic and orthotopic CSC animal models. CONCLUSIONS Using in silico drug screening by Connectivity Map followed by empirical validations, we repurposed an existing phenothiazine-like antipsychotic drug, trifluoperazine, as a potential anti-CSC agent that could overcome epidermal growth factor receptor-tyrosine kinase inhibitor and chemotherapy resistance.
Collapse
|
22
|
Abstract
P-glycoprotein (P-gp), a transmembrane permeability glycoprotein, is a member of ATP binding cassette (ABC) super family that functions specifically as a carrier mediated primary active efflux transporter. It is widely distributed throughout the body and has a diverse range of substrates. Several vital therapeutic agents are substrates to P-gp and their bioavailability is lowered or a resistance is induced because of the protein efflux. Hence P-gp inhibitors were explored for overcoming multidrug resistance and poor bioavailability problems of the therapeutic P-gp substrates. The sensitivity of drug moieties to P-gp and vice versa can be established by various experimental models in silico, in vitro and in vivo. Ever since the discovery of P-gp, the research plethora identified several chemical structures as P-gp inhibitors. The aim of this review was to emphasize on the discovery and development of newer, inert, non-toxic, and more efficient, specifically targeting P-gp inhibitors, like those among the natural herb extracts, pharmaceutical excipients and formulations, and other rational drug moieties. The applications of cellular and molecular biology knowledge, in silico designed structural databases, molecular modeling studies and quantitative structure-activity relationship (QSAR) analyses in the development of novel rational P-gp inhibitors have also been mentioned.
Collapse
|
23
|
Figueroa-González G, Jacobo-Herrera N, Zentella-Dehesa A, Pereda-Miranda R. Reversal of multidrug resistance by morning glory resin glycosides in human breast cancer cells. JOURNAL OF NATURAL PRODUCTS 2012; 75:93-97. [PMID: 22148475 DOI: 10.1021/np200864m] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Reversal of multidrug resistance (MDR) by thirty resin glycosides from the morning glory family (Convolvulaceae) was evaluated in vinblastine-resistant human breast carcinoma cells (MCF-7/Vin). The effects of these amphipathic compounds on the cytotoxicity and P-glycoprotein (P-gp)-mediated MDR were estimated with the sulforhodamine B colorimetric assay. Active noncytotoxic compounds exerted a potentiation effect of vinblastine susceptibility by 1- to over 1906-fold at tested concentrations of 5 and 25 μg/mL. Murucoidin V (1) enhanced vinblastine activity 255-fold when incorporated at 25 μg/mL and also, based on flow cytometry, significantly increased the intracellular accumulation of rhodamine 123 with the use of reserpine as a positive control for a MDR reversal agent. Incubation of MCF-7/Vin cells with 1 caused an increase in uptake and notably lowered the efflux rate of rhodamine 123. Decreased expression of P-glycoprotein by compound 1 was detected by immunofluorescence flow cytometry after incubation with an anti-P-gp monoclonal antibody. These results suggest that resin glycosides represent potential efflux pump inhibitors for overcoming MDR in cancer therapy.
Collapse
Affiliation(s)
- Gabriela Figueroa-González
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, 04510, DF, Mexico
| | | | | | | |
Collapse
|
24
|
Xu HB, Li L, Liu GQ. Reversal of multidrug resistance by guggulsterone in drug-resistant MCF-7 cell lines. Chemotherapy 2011; 57:62-70. [PMID: 21282948 DOI: 10.1159/000321484] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 07/23/2010] [Indexed: 11/19/2022]
Abstract
BACKGROUND Multidrug resistance (MDR) presents a serious problem in cancer chemotherapy. Our previous studies have shown that the MDR of K562/DOX cells could be reversed by guggulsterone through inhibiting the function and expression of P-glycoprotein. The purpose of this study was to investigate the reversal effect of guggulsterone on MDR in drug-resistant MCF-7 cells and the parental MCF-7 cells. METHODS MTT cytotoxicity assays, flow cytometry, and Western blot analysis were performed to investigate the antiproliferative effects of the combination of anticancer drugs with guggulsterone, to study the reversal of drug resistance and to examine the inhibitory effects on MRP1 expression. RESULTS The results showed that co-administration of guggulsterone (10 μM) resulted in a significant increase in chemosensitivity of MCF-7/DOX cells to doxorubicin, compared with doxorubicin treatment alone (p < 0.01). The fold reversal of 10 μM guggulsterone (11.48) was comparable to that of 10 μM verapamil (13.23). Rhodamine123 and doxorubicin accumulation in MCF-7/DOX cells was significantly enhanced after the incubation with guggulsterone (10 μM), compared with untreated MCF-7/DOX cells (p < 0.01). When doxorubicin (10 μM) was combined with guggulsterone (10 μM), the mean apoptotic population of MCF-7/DOX cells was 24.91%. It was increased by 6.15 times, compared with doxorubicin (10 μM) treatment alone. However, guggulsterone had little inhibitory effect on the expression of MRP1 proteins. CONCLUSION Guggulsterone is a novel and potent MDR reversal agent with the potential to be an adjunctive agent for tumor chemotherapy.
Collapse
Affiliation(s)
- Hong-Bin Xu
- Department of Clinical Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | | | | |
Collapse
|
25
|
Min BW, Kim CG, Ko J, Lim Y, Lee YH, Shin SY. Transcription of the protein kinase C-delta gene is activated by JNK through c-Jun and ATF2 in response to the anticancer agent doxorubicin. Exp Mol Med 2009; 40:699-708. [PMID: 19116455 DOI: 10.3858/emm.2008.40.6.699] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Expression of protein kinase C-delta (PKCdelta) is up-regulated by apoptosis-inducing stimuli. However, very little is known about the signaling pathways that control PKCdelta gene transcription. In the present study, we demonstrate that JNK stimulates PKCdelta gene expression via c-Jun and ATF2 in response to the anticancer agent doxorubicin (DXR) in mouse lymphocytic leukemia L1210 cells. Luciferase reporter assays showed that DXR-induced activation of the PKCdelta promoter was enhanced by ectopic expression of JNK1, c-Jun, or ATF2, whereas it was strongly reduced by expression of dominant negative JNK1 or by treatment with the JNK inhibitor SP600125. Furthermore, point mutations in the core sequence of the c-Jun/ATF2 binding site suppressed DXR-induced activation of the PKCdelta promoter. Our results suggest an additional role for a JNK signaling cascade in DXR-induced PKCdelta gene expression.
Collapse
Affiliation(s)
- Byong Wook Min
- Department of Surgery, Korea University College of Medicine, Ansan 425-707, Korea
| | | | | | | | | | | |
Collapse
|
26
|
Lo Y, Ho C, Tsai F. Inhibit multidrug resistance and induce apoptosis by using glycocholic acid and epirubicin. Eur J Pharm Sci 2008; 35:52-67. [DOI: 10.1016/j.ejps.2008.06.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 05/26/2008] [Accepted: 06/05/2008] [Indexed: 01/21/2023]
|
27
|
Choi BH, Kim CG, Lim Y, Shin SY, Lee YH. Curcumin down-regulates the multidrug-resistance mdr1b gene by inhibiting the PI3K/Akt/NF kappa B pathway. Cancer Lett 2008; 259:111-8. [PMID: 18006147 DOI: 10.1016/j.canlet.2007.10.003] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Revised: 09/30/2007] [Accepted: 10/03/2007] [Indexed: 12/18/2022]
Abstract
Curcumin, a constituent of turmeric, has anti-inflammatory, anti-carcinogenic, and chemopreventive effects in several animal tumor models. The expression of P-glycoprotein (P-gp), encoded by the mdr gene, is often associated with multidrug resistance (MDR) to unrelated chemotherapeutic drugs in cancer cells. Here, we demonstrate that curcumin down-regulates P-gp expression in multidrug-resistant L1210/Adr cells. Transfection with a series of 5'-deleted constructs of the mdr1b gene promoter indicated that a proximal region between -205 and +42 of the sequence was responsible for the suppression of promoter activity by curcumin. This response might be associated with the inhibition of the phosphatidyinositol 3-kinase (PI3K)/Akt/nuclear factor-kappa B (NF-kappa B) signaling pathway by curcumin. Moreover, curcumin reversed the MDR of the L1210/Adr cells. Thus, curcumin can contribute to the reversal of the MDR phenotype, probably due to the suppression of P-gp expression via the inhibition of the PI3K/Akt/NF-kappa B signaling pathway.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Cell Line, Tumor
- Curcumin/pharmacology
- Curcumin/therapeutic use
- Dose-Response Relationship, Drug
- Down-Regulation
- Doxorubicin/pharmacology
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Neoplasm/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Leukemia L1210/drug therapy
- Leukemia L1210/enzymology
- Leukemia L1210/metabolism
- Mice
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- NIH 3T3 Cells
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Promoter Regions, Genetic/drug effects
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Proto-Oncogene Proteins c-akt/metabolism
- Sequence Deletion
- Signal Transduction/drug effects
- Transcription, Genetic/drug effects
- Transfection
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Byeong Hyeok Choi
- Department of Biomedical Science and Technology, IBST, Konkuk University, Seoul 143-701, Republic of Korea
| | | | | | | | | |
Collapse
|
28
|
Sulová Z, Macejová D, Seres M, Sedlák J, Brtko J, Breier A. Combined treatment of P-gp-positive L1210/VCR cells by verapamil and all-trans retinoic acid induces down-regulation of P-glycoprotein expression and transport activity. Toxicol In Vitro 2007; 22:96-105. [PMID: 17920233 DOI: 10.1016/j.tiv.2007.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 08/02/2007] [Accepted: 08/22/2007] [Indexed: 11/18/2022]
Abstract
The development of the most common multidrug resistance (MDR) phenotype associated with a massive overexpression of P-glycoprotein (P-gp) in neoplastic cells may result in more than one hundred fold higher resistance of these cells to several drugs. L1210/VCR is a P-gp-positive drug resistant cell line in which P-gp overexpression was achieved by repeated cultivation of parental cells with a stepwise increasing concentration of vincristine. Relatively little is known about regulation of P-gp expression. Therefore, serious efforts have been made to recognize all aspects involved in regulation of P-gp expression. Retinoic acid nuclear receptors are involved in regulating expression of a large number of different proteins. Several authors have described that all-trans retinoic acid (ATRA, ligand of retinoic acid receptors, RARs) may induce alterations in P-gp expression and/or activity in drug resistant malignant cell lines. There are also other nuclear receptors for retinoids--retinoid X receptors (RXRs)--that may be involved in the development of the P-gp-mediated MDR phenotype. The topic of the present paper is a study of the relationship, if any, between the regulatory pathways of nuclear receptors for retinoids and P-glycoprotein expression. Increased levels of mRNAs encoding the retinoic acid nuclear receptors RARalpha and gamma, as well as decreased levels of the mRNAs encoding RARbeta and the retinoid X receptor RXRgamma or slightly decreased levels of RXRbeta mRNA, were observed in L1210/VCR cells in comparison with parental L1210 cells. Neither L1210 cells nor L1210/VCR cells contained measurable amounts of mRNA encoding the RXRalpha receptor. ATRA did not influence the viability of L1210/VCR cells differently from L1210 cells. A combined treatment of L1210/VCR cells with vincristine (1.08 micromol/l) and ATRA induced slightly higher cell death than that observed with ATRA alone. When applied alone, ATRA did not influence P-gp expression (monitored by anti P-gp antibody c219 using western blot analysis) or transport activity (monitored by use of calcein/AM as a P-gp substrate by FACS) in L1210/VCR cells. In contrast, when ATRA was applied together with verapamil (an often used P-gp inhibitor), a significant decrease in P-gp expression and transport activity were observed. However, no significant differences in [11, 12-(3)H]-ATRA uptake were observed in either sensitive or resistant cells, in the latter case in the absence or presence of vincristine. Moreover, verapamil did not influence ATRA uptake under any conditions. Thus, we can conclude that the combined treatment of L1210/VCR cells with ATRA and verapamil is able to depress P-gp expression, and consequently its activity. ATRA is not a P-gp-transportable substance, and thus this effect could not be attributed to verapamil-induced inhibition of P-gp that would allow ATRA to reach retinoic acid nuclear receptors and activate them.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/drug effects
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Agents/pharmacology
- Biological Transport
- Cell Death/drug effects
- Cell Line, Tumor
- Cell Survival/drug effects
- Down-Regulation/drug effects
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Leukemia/drug therapy
- Leukemia/metabolism
- Mice
- RNA, Messenger/metabolism
- Retinoid X Receptors/drug effects
- Retinoid X Receptors/metabolism
- Tretinoin/pharmacology
- Verapamil/pharmacology
- Vincristine/pharmacology
Collapse
Affiliation(s)
- Zdena Sulová
- Institute of Molecular Physiology and Genetics, Centre of Excelence for Cardiovascular Research, Slovak Academy of Sciences, Vlárska 5, 83334 Bratislava, Slovak Republic
| | | | | | | | | | | |
Collapse
|