1
|
Berdiaki A, Neagu M, Giatagana EM, Kuskov A, Tsatsakis AM, Tzanakakis GN, Nikitovic D. Glycosaminoglycans: Carriers and Targets for Tailored Anti-Cancer Therapy. Biomolecules 2021; 11:395. [PMID: 33800172 PMCID: PMC8001210 DOI: 10.3390/biom11030395] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment (TME) is composed of cancerous, non-cancerous, stromal, and immune cells that are surrounded by the components of the extracellular matrix (ECM). Glycosaminoglycans (GAGs), natural biomacromolecules, essential ECM, and cell membrane components are extensively altered in cancer tissues. During disease progression, the GAG fine structure changes in a manner associated with disease evolution. Thus, changes in the GAG sulfation pattern are immediately correlated to malignant transformation. Their molecular weight, distribution, composition, and fine modifications, including sulfation, exhibit distinct alterations during cancer development. GAGs and GAG-based molecules, due to their unique properties, are suggested as promising effectors for anticancer therapy. Considering their participation in tumorigenesis, their utilization in drug development has been the focus of both industry and academic research efforts. These efforts have been developing in two main directions; (i) utilizing GAGs as targets of therapeutic strategies and (ii) employing GAGs specificity and excellent physicochemical properties for targeted delivery of cancer therapeutics. This review will comprehensively discuss recent developments and the broad potential of GAG utilization for cancer therapy.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| | - Monica Neagu
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| | - Andrey Kuskov
- Department of Technology of Chemical Pharmaceutical and Cosmetic Substances, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Aristidis M. Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - George N. Tzanakakis
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
- Laboratory of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| |
Collapse
|
2
|
Kargozar S, Baino F, Hamzehlou S, Hamblin MR, Mozafari M. Nanotechnology for angiogenesis: opportunities and challenges. Chem Soc Rev 2020; 49:5008-5057. [PMID: 32538379 PMCID: PMC7418030 DOI: 10.1039/c8cs01021h] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis plays a critical role within the human body, from the early stages of life (i.e., embryonic development) to life-threatening diseases (e.g., cancer, heart attack, stroke, wound healing). Many pharmaceutical companies have expended huge efforts on both stimulation and inhibition of angiogenesis. During the last decade, the nanotechnology revolution has made a great impact in medicine, and regulatory approvals are starting to be achieved for nanomedicines to treat a wide range of diseases. Angiogenesis therapies involve the inhibition of angiogenesis in oncology and ophthalmology, and stimulation of angiogenesis in wound healing and tissue engineering. This review aims to summarize nanotechnology-based strategies that have been explored in the broad area of angiogenesis. Lipid-based, carbon-based and polymeric nanoparticles, and a wide range of inorganic and metallic nanoparticles are covered in detail. Theranostic and imaging approaches can be facilitated by nanoparticles. Many preparations have been reported to have a bimodal effect where they stimulate angiogenesis at low dose and inhibit it at higher doses.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, 917794-8564 Mashhad, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 101 29 Torino, Italy
| | - Sepideh Hamzehlou
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Masoud Mozafari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Yu S, Chen Z, Zeng X, Chen X, Gu Z. Advances in nanomedicine for cancer starvation therapy. Theranostics 2019; 9:8026-8047. [PMID: 31754379 PMCID: PMC6857045 DOI: 10.7150/thno.38261] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/25/2019] [Indexed: 12/24/2022] Open
Abstract
Abnormal cell metabolism with vigorous nutrition consumption is one of the major physiological characteristics of cancers. As such, the strategy of cancer starvation therapy through blocking the blood supply, depleting glucose/oxygen and other critical nutrients of tumors has been widely studied to be an attractive way for cancer treatment. However, several undesirable properties of these agents, such as low targeting efficacy, undesired systemic side effects, elevated tumor hypoxia, induced drug resistance, and increased tumor metastasis risk, limit their future applications. The recent development of starving-nanotherapeutics combined with other therapeutic methods displayed the promising potential for overcoming the above drawbacks. This review highlights the recent advances of nanotherapeutic-based cancer starvation therapy and discusses the challenges and future prospects of these anticancer strategies.
Collapse
Affiliation(s)
- Shuangjiang Yu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. E-mail:
| | - Zhaowei Chen
- Department of Bioengineering, Jonsson Comprehensive Cancer Center, California Nanosystems Institute (CNSI), and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Xuan Zeng
- Department of Bioengineering, Jonsson Comprehensive Cancer Center, California Nanosystems Institute (CNSI), and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. E-mail:
| | - Zhen Gu
- Department of Bioengineering, Jonsson Comprehensive Cancer Center, California Nanosystems Institute (CNSI), and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Wang Y, Tong L, Wang J, Luo J, Tang J, Zhong L, Xiao Q, Niu W, Li J, Zhu J, Chen H, Li X, Wang Y. cRGD-functionalized nanoparticles for combination therapy of anti-endothelium dependent vessels and anti-vasculogenic mimicry to inhibit the proliferation of ovarian cancer. Acta Biomater 2019; 94:495-504. [PMID: 31252171 DOI: 10.1016/j.actbio.2019.06.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/31/2019] [Accepted: 06/21/2019] [Indexed: 12/19/2022]
Abstract
Accumulating evidence has disclosed effective anti-angiogenic strategies should simultaneously inhibit endothelium-dependent vessels (EDV) and tumor cell-mediated vasculogenic mimicry (VM). The αvβ3 integrin-targeting peptide cRGD has the ability to inhibit EDV and we have found cRGD can also suppress the formation of VM in ovarian cancer cells. Herein, a cRGD-based combination strategy was developed to suppress the proliferation of tumor cells by anti-EDV and anti-VM. We firstly engineered two cRGD functionalized nanoparticles (cRGD-NPs1 and cRGD-NPs2) by self-assembly using heparin conjugated with cRGD and folate. In vitro experiments demonstrated cRGD-NPs2 exhibited more significant cytotoxicity and higher intracellular uptake ability than cRGD-NPs1. Also, cRGD-NPs2 could efficiently discourage EDV, VM and proliferation in HUVECs and SKOV3 (VM+) cells. In vivo studies showed cRGD-NPs2 could specifically accumulate in ovarian cancer tissues and exerted a superior anti-tumor effect in SKOV3 xenografts. The mechanisms responsible for creating anti-EDV and anti-VM action of cRGD-NPs2 related to combined effects of cRGD, heparin and folate. The results demonstrated cRGD-NPs2 represented a versatile anti-angiogenic medicine via their combined inhibitory effect. STATEMENT OF SIGNIFICANCE: Accumulating documents indicate tumor cell-mediated vasculogenic mimicry (VM) is positively correlated with poor prognosis, occurrence of distant metastasis and low survival rate in cancer patients, suggesting VM is a potential therapeutic target for cancer treatment. Thus, effective anti-angiogenic strategies should simultaneously inhibit VM as well as endothelium-dependent vessels (EDV). Integrin αvβ3 is a crucial inducer involved in the formation of both EDV and VM. In this study, we engineered αvβ3 integrin-targeting peptide cRGD functionalized nanoparticles (cRGD-NPs) by self-assembly using heparin conjugated with cRGD and folate. The prepared cRGD-NPs represent a promising anti-angiogenic medicine in that they are able to inhibit endothelial sprouting angiogenesis and tumor cell-mediated VM. This work may provide useful information with which to construct effective anti-angiogenic nanomedicines.
Collapse
|
5
|
Jahanban-Esfahlan R, Seidi K, Banimohamad-Shotorbani B, Jahanban-Esfahlan A, Yousefi B. Combination of nanotechnology with vascular targeting agents for effective cancer therapy. J Cell Physiol 2017; 233:2982-2992. [PMID: 28608554 DOI: 10.1002/jcp.26051] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/12/2017] [Indexed: 12/28/2022]
Abstract
As a young science, nanotechnology promptly integrated into the current oncology practice. Accordingly, various nanostructure particles were developed to reduce drug toxicity and allow the targeted delivery of various diagnostic and therapeutic compounds to the cancer cells. New sophisticated nanosystems constantly emerge to improve the performance of current anticancer modalities. Targeting tumor vasculature is an attractive strategy to fight cancer. Though the idea was swiftly furthered from basic science to the clinic, targeting tumor vasculature had a limited potential in patients, where tumors relapse due to the development of multiple drug resistance and metastasis. The aim of this review is to discuss the advantages of nanosystem incorporation with various vascular targeting agents, including (i) endogen anti-angiogenic agents; (ii) inhibitors of angiogenesis-related growth factors; (iii) inhibitors of tyrosine kinase receptors; (iv) inhibitors of angiogenesis-related signaling pathways; (v) inhibitors of tumor endothelial cell-associated markers; and (vi) tumor vascular disrupting agents. We also review the efficacy of nanostructures as natural vascular targeting agents. The efficacy of each approach in cancer therapy is further discussed.
Collapse
Affiliation(s)
- Rana Jahanban-Esfahlan
- Faculty of Advanced Medical Sciences, Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khaled Seidi
- Faculty of Advanced Medical Sciences, Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Banimohamad-Shotorbani
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran.,Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Molecular Targeting Therapy Research Group, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Palao-Suay R, Gómez-Mascaraque L, Aguilar M, Vázquez-Lasa B, Román JS. Self-assembling polymer systems for advanced treatment of cancer and inflammation. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2015.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Li J, Liu D, Hu C, Sun F, Gustave W, Tian H, Yang S. Flexible fibers wet-spun from formic acid modified chitosan. Carbohydr Polym 2016; 136:1137-43. [DOI: 10.1016/j.carbpol.2015.10.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 12/27/2022]
|
8
|
Oral absorption mechanism and anti-angiogenesis effect of taurocholic acid-linked heparin-docetaxel conjugates. J Control Release 2014; 177:64-73. [DOI: 10.1016/j.jconrel.2013.12.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/23/2013] [Accepted: 12/29/2013] [Indexed: 12/20/2022]
|
9
|
Li Y, Wen G, Wang D, Zhang X, Lu Y, Wang J, Zhong L, Cai H, Zhang X, Wang Y. A complementary strategy for enhancement of nanoparticle intracellular uptake. Pharm Res 2014; 31:2054-64. [PMID: 24558009 DOI: 10.1007/s11095-014-1307-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/14/2014] [Indexed: 01/08/2023]
Abstract
PURPOSE The complementary strategy by combining targeting ligand-mediated selectivity and CPP-mediated transmembrane function could be exploit synergies for enhancing cellular uptake of nanoparticles with negative charge. A heparin-based nanoparticles with negative charge was fabricated by complementary strategy, which was expected to attain efficient uptake and simultaneously exert great anticancer activity. METHODS We synthesized heparin-based nanoparticles with targeting ligand folate and CPP ligand Tat to deliver paclitaxel (H-F-Tat-P NPs). The NPs were characterized by (1)H NMR, DLS and TEM, respectively. The effect of dual ligands on system behavior in aqueous solution was investigated. Moreover, its cellular internalization and anticancer activity were detected by flow cytometry, confocal microscopy and MTT. RESULTS Folate played a key role in the formation of heparin-based NPs dependent on the balance of amphiphilic Tat and hydrophobic folate. Although H-F-Tat-P NPs primarily entered FR specific and non-specific cells by similar routes, there were no comparability due to cell-type specific variation. Unlike non-specific cells, the complementary ligands could help negative-charged NPs to enhance cellular uptake facilitating its endosome escape in specific cells thereby exhibiting great anticancer activity. CONCLUSIONS The complementary strategy for negative-charged NPs was presented a promising delivery system for diverse anticancer agents enable simultaneously targeting and drug delivery.
Collapse
Affiliation(s)
- Yingjia Li
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Nurunnabi M, Khatun Z, Moon WC, Lee G, Lee YK. Heparin based nanoparticles for cancer targeting and noninvasive imaging. Quant Imaging Med Surg 2012; 2:219-26. [PMID: 23256083 DOI: 10.3978/j.issn.2223-4292.2012.09.01] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 09/11/2012] [Indexed: 12/31/2022]
Abstract
Numerous papers on heparin nanoparticles have been reported regarding targeting therapy and biomedical imaging. Here, we have summarized the prospects and opportunities of heparin as a carrier for cancer targeting and imaging. First, we proposed heparin-anticancer drug conjugates showing higher anticancer activity than free drug. The conjugated heparin (heparin-deoxycholate sodium) retained its ability to bind with angiogenic factors, showing a significant decrease in endothelial tubular formation. Second, targeting ligands conjugated heparin derivatives have introduced for a receptor mediated delivery of anticancer drug. Heparin-folic acid-retinoic acid (HFR) bioconjugates for treating cancer cells showed 3 fold higher efficacy than heparin-retinoic acid (HR). Besides active and passive targeting drug delivery, several papers have been reported regarding delivery of imaging agents by heparin nanoparticles. Finally, this research highlight has covered imaging agents such as gold nanoparticles and quantum dots (QDs) for noninvasive biomedical imaging. Very recently our group demonstrated that semiconductor QDs loaded heparin nanoparticles could also be administered through orally for noninvasive imaging. Due to promising features of heparin such as less toxic polysaccharide and easier modification, it was considered as a potent carrier for imaging agent and drug delivery.
Collapse
Affiliation(s)
- Md Nurunnabi
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungbuk, 380-702 Republic of Korea
| | | | | | | | | |
Collapse
|
11
|
Biofuntional nanoparticle formation and folate-targeted antitumor effect of heparin-retinoic acid conjugates. Macromol Res 2012. [DOI: 10.1007/s13233-012-0073-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Self-quenchable biofunctional nanoparticles of heparin–folate-photosensitizer conjugates for photodynamic therapy. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2011.05.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Yoncheva K, Momekov G. Antiangiogenic anticancer strategy based on nanoparticulate systems. Expert Opin Drug Deliv 2011; 8:1041-56. [DOI: 10.1517/17425247.2011.585155] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|