1
|
Reyna-Lázaro L, Morales-Becerril A, Aranda-Lara L, Isaac-Olivé K, Ocampo-García B, Gibbens-Bandala B, Olea-Mejía O, Morales-Avila E. Pharmaceutical Nanoplatforms Based on Self-nanoemulsifying Drug Delivery Systems for Optimal Transport and Co-delivery of siRNAs and Anticancer Drugs. J Pharm Sci 2024; 113:1907-1918. [PMID: 38369021 DOI: 10.1016/j.xphs.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Small interfering RNAs (siRNAs) have the ability to induce selective gene silencing, although siRNAs are vulnerable to degradation in vivo. Various active pharmaceutical ingredients (APIs) are currently used as effective therapeutics in the treatment of cancer. However, routes of administration are limited due to their physicochemical and biopharmaceutical properties. This research aimed to develop oral pharmaceutical formulations based on self-nanoemulsifying drug delivery systems (SNEDDS) for optimal transport and co-delivery of siRNAs related to cancer and APIs. Formulations were developed using optimal mixing design (Design-Expert 11 software) for SNEDDS loading with siRNA (water/oil emulsion), API (oil/water emulsion), and siRNA-API (multiphase water/oil/water emulsion). The final formulations were characterized physicochemically and biologically. The nanosystems less than 50 nm in size had a drug loading above 48 %. The highest drug release occurred at intestinal pH, allowing drug protection in physiological fluids. SNEDDS-siRNA-APIs showed a twofold toxicity effect than APIs in solution and higher transfection and internalization of siRNA in cancer cells with respect to free siRNAs. In the duodenum, higher permeability was observed with SNEDDS-API than with the API solution, as determined by ex-vivo fluorescence microscopy. The multifunctional formulation based on SNEDDS was successfully prepared, siRNA, hydrophobic chemotherapeutics (doxorubicin, valrubicin and methotrexate) and photosensitizers (rhodamine b and protoporphyrin IX) agents were loaded, using a chitosan-RNA core, and Labrafil® M 1944 CS, Cremophor® RH40, phosphatidylcholine shell, forming stable hybrid SNEDDS as multiphasic emulsion, suitable as co-delivery system with a potent anticancer activity.
Collapse
Affiliation(s)
- Luz Reyna-Lázaro
- Universidad Autónoma del Estado de México, Facultad de Química, Toluca 50120, Estado de México, Mexico
| | - Aideé Morales-Becerril
- Universidad Autónoma del Estado de México, Facultad de Química, Toluca 50120, Estado de México, Mexico
| | - Liliana Aranda-Lara
- Universidad Autónoma del Estado de México, Facultad de Medicina, Toluca 50180, Estado de México, Mexico
| | - Keila Isaac-Olivé
- Universidad Autónoma del Estado de México, Facultad de Medicina, Toluca 50180, Estado de México, Mexico
| | - Blanca Ocampo-García
- Instituto Nacional de Investigaciones Nucleares, Departamento de Materiales Radiactivos, Ocoyoacac 52750, Estado de México, Mexico
| | - Brenda Gibbens-Bandala
- Instituto Nacional de Investigaciones Nucleares, Departamento de Materiales Radiactivos, Ocoyoacac 52750, Estado de México, Mexico
| | - Oscar Olea-Mejía
- Centro Conjunto de Investigación en Química Sustentable (CCIQS), Universidad Autónoma del Estado de México-Universidad Nacional Autónoma de México, Km 14.5 Carretera Toluca-Ixtlahuaca, San Cayetano de Morelos, 50200 Toluca, Mexico
| | - Enrique Morales-Avila
- Universidad Autónoma del Estado de México, Facultad de Química, Toluca 50120, Estado de México, Mexico.
| |
Collapse
|
2
|
Huynh VTT, de Paiva Lacerda S, Espitalier F, Beyssac E, Ré MI. Effect of talc and vitamin E TPGS on manufacturability, stability and release properties of trilaurin-based formulations for hot-melt coating. Int J Pharm 2024; 653:123866. [PMID: 38286194 DOI: 10.1016/j.ijpharm.2024.123866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
This study was focused on one particular case of hot-melt coating with trilaurin - a solid medium-chain monoacid triglyceride. The challenge of using trilaurin as coating agent in melting-based processes is linked to its relatively low melting profile: 15.6 °C (Tm,α), 35.1 °C ( [Formula: see text] ) and 45.7 °C (Tm,β). From a process perspective, the only possibility to generate products coated with formulations composed of trilaurin is by setting thermal operational conditions above Tm,α. From a material perspective, this processing possibility depends principally on trilaurin crystallisation which was investigated via a set of analytical techniques including turbidimetry, calorimetry, hot-melt goniometry, and polarised light microscopy. A highly soluble drug model substrate (sodium chloride crystals) was coated with three selected trilaurin-based formulations: (i) trilaurin, (ii) trilaurin plus talc, and (iii) trilaurin plus vitamin E TPGS and talc. Coated salt crystals were then analysed to investigate processing performance, coating quality, stability and release properties under digestion effect. The results show that firstly, talc addition promotes nucleation and crystal growth and, as a consequence, it facilitates the manufacture of trilaurin-based formulations. Secondly, the formulation of a solid triglyceride and a hydrophilic surfactant could potentially cause release instability, but formula (iii) was found to be stabilised by a mechanism whereby trilaurin crystallization enhanced in the presence of talc immobilised vitamin E TPGS in its crystal lattice. Thirdly, talc addition did not significantly influence trilaurin digestion which endows products with an immediate release in lipolytic conditions instead of an extended liberation in pure water. Nor did the addition of one or two additives alter the extent of trilaurin digestion under the conditions studied. These important findings relate to product manufacturability, stability, and release properties. A good understanding of material properties (e.g. crystallisation, polymorphism, digestibility) is essential for melt-processing, lipid coating stabilising and modulation of release profile of solid lipid-coated product, as demonstrated in this case study with trilaurin.
Collapse
Affiliation(s)
- Van-Trung-Tin Huynh
- RAPSODEE - Centre de recherche d'Albi en génie des procédés des solides divisés, de l'énergie et de l'environnement, Albi, France
| | - Suenia de Paiva Lacerda
- RAPSODEE - Centre de recherche d'Albi en génie des procédés des solides divisés, de l'énergie et de l'environnement, Albi, France
| | - Fabienne Espitalier
- RAPSODEE - Centre de recherche d'Albi en génie des procédés des solides divisés, de l'énergie et de l'environnement, Albi, France
| | - Eric Beyssac
- UFR de Pharmacie, Université de Clermont Auvergne, Clermont-Ferrand, France
| | - Maria-Inês Ré
- RAPSODEE - Centre de recherche d'Albi en génie des procédés des solides divisés, de l'énergie et de l'environnement, Albi, France.
| |
Collapse
|
3
|
Zarenezhad E, Marzi M, Abdulabbas HT, Jasim SA, Kouhpayeh SA, Barbaresi S, Ahmadi S, Ghasemian A. Bilosomes as Nanocarriers for the Drug and Vaccine Delivery against Gastrointestinal Infections: Opportunities and Challenges. J Funct Biomater 2023; 14:453. [PMID: 37754867 PMCID: PMC10531812 DOI: 10.3390/jfb14090453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 09/28/2023] Open
Abstract
The gastrointestinal tract (GIT) environment has an intricate and complex nature, limiting drugs' stability, oral bioavailability, and adsorption. Additionally, due to the drugs' toxicity and side effects, renders are continuously seeking novel delivery systems. Lipid-based drug delivery vesicles have shown various loading capacities and high stability levels within the GIT. Indeed, most vesicular platforms fail to efficiently deliver drugs toward this route. Notably, the stability of vesicular constructs is different based on the different ingredients added. A low GIT stability of liposomes and niosomes and a low loading capacity of exosomes in drug delivery have been described in the literature. Bilosomes are nonionic, amphiphilic, flexible surfactant vehicles that contain bile salts for the improvement of drug and vaccine delivery. The bilosomes' stability and plasticity in the GIT facilitate the efficient carriage of drugs (such as antimicrobial, antiparasitic, and antifungal drugs), vaccines, and bioactive compounds to treat infectious agents. Considering the intricate and harsh nature of the GIT, bilosomal formulations of oral substances have a remarkably enhanced delivery efficiency, overcoming these conditions. This review aimed to evaluate the potential of bilosomes as drug delivery platforms for antimicrobial, antiviral, antifungal, and antiparasitic GIT-associated drugs and vaccines.
Collapse
Affiliation(s)
- Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa P.O. Box 7461686688, Iran; (E.Z.); (M.M.); (S.A.)
| | - Mahrokh Marzi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa P.O. Box 7461686688, Iran; (E.Z.); (M.M.); (S.A.)
| | - Hussein T. Abdulabbas
- Department of Medical Microbiology, Medical College, Al Muthanna University, Al Muthanna P.O. Box 07835544777, Iraq;
| | | | - Seyed Amin Kouhpayeh
- Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa P.O. Box 7461686688, Iran;
| | - Silvia Barbaresi
- Department of Movement and Sports Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Shiva Ahmadi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa P.O. Box 7461686688, Iran; (E.Z.); (M.M.); (S.A.)
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa P.O. Box 7461686688, Iran; (E.Z.); (M.M.); (S.A.)
| |
Collapse
|
4
|
Intrinsic lipolysis rate for systematic design of lipid-based formulations. Drug Deliv Transl Res 2022; 13:1288-1304. [PMID: 36209313 PMCID: PMC10102029 DOI: 10.1007/s13346-022-01246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/03/2022]
Abstract
Lipid-based formulations (LBFs) are used by the pharmaceutical industry in oral delivery systems for both poorly water-soluble drugs and biologics. Digestibility is key for the performance of LBFs and in vitro lipolysis is commonly used to compare the digestibility of LBFs. Results from in vitro lipolysis experiments depend highly on the experimental conditions and formulation characteristics, such as droplet size (which defines the surface area available for digestion) and interfacial structure. This study introduced the intrinsic lipolysis rate (ILR) as a surface area-independent approach to compare lipid digestibility. Pure acylglycerol nanoemulsions, stabilized with polysorbate 80 at low concentration, were formulated and digested according to a standardized pH-stat lipolysis protocol. A methodology originally developed to calculate the intrinsic dissolution rate of poorly water-soluble drugs was adapted for the rapid calculation of ILR from lipolysis data. The impact of surfactant concentration on the apparent lipolysis rate and lipid structure on ILR was systematically investigated. The surfactant polysorbate 80 inhibited lipolysis of tricaprylin nanoemulsions in a concentration-dependent manner. Coarse-grained molecular dynamics simulations supported these experimental observations. In the absence of bile and phospholipids, tricaprylin was shielded from lipase at 0.25% polysorbate 80. In contrast, the inclusion of bile salt and phospholipid increased the surfactant-free area and improved the colloidal presentation of the lipids to the enzyme, especially at 0.125% polysorbate 80. At a constant and low surfactant content, acylglycerol digestibility increased with decreasing acyl chain length, decreased esterification, and increasing unsaturation. The calculated ILR of pure acylglycerols was successfully used to accurately predict the IRL of binary lipid mixtures. The ILR measurements hold great promise as an efficient method supporting pharmaceutical formulation scientists in the design of LBFs with specific digestion profiles.
Collapse
|
5
|
Bravo-Alfaro DA, Ochoa-Rodríguez LR, Villaseñor-Ortega F, Luna-Barcenas G, García HS. Self-nanoemulsifying drug delivery system (SNEDDS) improves the oral bioavailability of betulinic acid. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Zöller K, To D, Knoll P, Bernkop-Schnürch A. Digestion of lipid excipients and lipid-based nanocarriers by pancreatic lipase and pancreatin. Eur J Pharm Biopharm 2022; 176:32-42. [PMID: 35584719 DOI: 10.1016/j.ejpb.2022.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022]
Abstract
The digestion behaviour of lipid-based nanocarriers (LNC) has a great impact on their oral drug delivery properties. In this study, various excipients including surfactants, glycerides and waxes, as well as various drug-delivery systems, namely self-emulsifying drug delivery systems (SEDDS), solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) were examined via the pH-stat lipolysis model. Lipolysis experiments with lipase and pancreatin revealed the highest release of fatty acids for medium chain glycerides, followed by long chain glycerides and surfactants. Waxes appeared to be poor substrates with a maximum digestion of up to 10% within 60 min. Within the group of surfactants, the enzymatic cleavage decreased in the following order: glycerol monostearate > polyoxyethylene (20) sorbitan monostearate > PEG-35 castor oil > sorbitan monostearate. After digestion experiments of the excipients, SEDDS, SLN and NLC with sizes between 30 and 300 nm were prepared. The size of almost all formulations was increasing during lipolysis and levelled off after approximately 15 min except for the SLN and NLC consisting of cetyl palmitate. SEDDS exceeded 6000 nm after some minutes and were almost completely hydrolysed by pancreatin. No significant difference was observed between comparable SLN and NLC but surfactant choice and selection of the lipid component had an impact on digestion. SLN and NLC with cetyl palmitate were only digested by 5% whereas particles with glyceryl distearate were decomposed by 40-80% within 60 min. Additionally, the digestion of the same SLN or NLC, only differing in the surfactant, was higher for SLN/NLC containing polyoxyethylene (20) sorbitan monostearate than PEG-35 castor oil. This observation might be explained by the higher PEG content of PEG-35 castor oil causing a more pronounced steric hindrance for the access of lipase. Generally, digestion experiments performed with pancreatin resulted in a higher digestion compared to lipase. According to these results, the digestion behaviour of LNC depends on both, the type of nanocarrier and on the excipients used for them.
Collapse
Affiliation(s)
- Katrin Zöller
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Dennis To
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Patrick Knoll
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
7
|
Zhang L, Wahlgren M, Bergenståhl B. Oil-Based Delivery Control Release System Targeted to the Later Part of the Gastrointestinal Tract-A Mechanistic Study. Pharmaceutics 2022; 14:pharmaceutics14050896. [PMID: 35631482 PMCID: PMC9144740 DOI: 10.3390/pharmaceutics14050896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Oil-based drug delivery systems have been studied in different aspects. The present study proposes a new application for an oil-based delivery system, focusing on controlled release until the drug reaches the later part of the small intestine. Bulk surfactants and interfacial surfactants were added into the oil formulation to provide a better mechanistic understating of the lipolysis. Validation of the modified in vitro method shows the overall conversion from medium-chain triglyceride oil (MCT oil) to free fatty acids (FFA) of 100 ± 4% in five replicates. This fully converted level and high reproducibility are fundamental for the following investigations where any retarding effect can be distinguished from the experimental errors. The results show that viscosity and thermodynamic activity have limited retardation. Furthermore, the former may change the kinetics of lipolysis, while the latter changes the equilibrium level. The gel-forming retarder (ethylcellulose) displayed a strong effect. Whereas the lipolysis was significantly retarded (>50%) when the retarders altered the interfacial composition (poloxamer 407), degradable interfacial surfactants did not have the same effect. However, surface-active, lipolysis-resistant retarders with a high CMC did not show a retarding effect.
Collapse
|
8
|
Oral delivery of therapeutic peptides and proteins: Technology landscape of lipid-based nanocarriers. Adv Drug Deliv Rev 2022; 182:114097. [PMID: 34999121 DOI: 10.1016/j.addr.2021.114097] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/04/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
Abstract
The oral administration of therapeutic peptides and proteins is favoured from a patient and commercial point of view. In order to reach the systemic circulation after oral administration, these drugs have to overcome numerous barriers including the enzymatic, sulfhydryl, mucus and epithelial barrier. The development of oral formulations for therapeutic peptides and proteins is therefore necessary. Among the most promising formulation approaches are lipid-based nanocarriers such as oil-in-water nanoemulsions, self-emulsifying drug delivery systems (SEDDS), solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), liposomes and micelles. As the lipophilic character of therapeutic peptides and proteins can be tremendously increased such as by the formation of hydrophobic ion pairs (HIP) with hydrophobic counter ions, they can be incorporated in the lipophilic phase of these carriers. Since gastrointestinal (GI) peptidases as well as sulfhydryl compounds such as glutathione and dietary proteins are too hydrophilic to enter the lipophilic phase of these carriers, the incorporated therapeutic peptide or protein is protected towards enzymatic degradation as well as unintended thiol/disulfide exchange reactions. Stability of lipid-based nanocarriers towards lipases can be provided by the use to excipients that are not or just poorly degraded by these enzymes. Nanocarriers with a size <200 nm and a mucoinert surface such as PEG or zwitterionic surfaces exhibit high mucus permeating properties. Having reached the underlying absorption membrane, lipid-based nanocarriers enable paracellular and lymphatic drug uptake, induce endocytosis and transcytosis or simply fuse with the cell membrane releasing their payload into the systemic circulation. Numerous in vivo studies provide evidence for the potential of these delivery systems. Within this review we provide an overview about the different barriers for oral peptide and protein delivery, highlight the progress made on lipid-based nanocarriers in order to overcome them and discuss strengths and weaknesses of these delivery systems in comparison to other technologies.
Collapse
|
9
|
Katona G, Sipos B, Ambrus R, Csóka I, Szabó-Révész P. Characterizing the Drug-Release Enhancement Effect of Surfactants on Megestrol-Acetate-Loaded Granules. Pharmaceuticals (Basel) 2022; 15:ph15020113. [PMID: 35215226 PMCID: PMC8879843 DOI: 10.3390/ph15020113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 01/11/2023] Open
Abstract
In this study, the effect of Cremophor® RH 40 (CR 40) classic micelles and Soluplus® (SP) polymeric micelles were investigated on a novel granule-type drug-delivery system containing megestrolacetate (MGA). Using a risk assessment-based approach on the formulation via melt technology resulted in the formation of these granules, presented as the dosage, with proper particle size and flow characteristics. Due to the application of a eutectic carrier base composition, gentle process conditions were reached, retaining the crystalline structure of the carrier system and allowing for the proper distribution of MGA in the granules. The increased water solubility (0.111 mg/mL to 2.154 mg/mL), and the decreased nano particle size (102.27 nm) with uniform distribution (polydispersity index of 0.259) and colloid stability (zeta potential of −12.99 mV) resulted in SP polymeric micelles prevailing over CR 40 micelles in this gastric dissolution study, performed in biorelevant fasted and fed state drug-release media. Mathematical characterization and kinetic model fitting supported the fast drug-release mechanism of polymeric micelles over micelles. The value-added polymeric micelle-containing formulation developed can be successfully administered perorally and the enhanced drug release offers the possibility of greater drug absorption in the gastrointestinal tract.
Collapse
|
10
|
Salaberría F, Delpino C, Palla CA, Carrín ME. Kinetic modeling of the production of fatty acids using lipases from castor bean powder as biocatalyst. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Feng W, Qin C, Cipolla E, Lee JB, Zgair A, Chu Y, Ortori CA, Stocks MJ, Constantinescu CS, Barrett DA, Fischer PM, Gershkovich P. Inclusion of Medium-Chain Triglyceride in Lipid-Based Formulation of Cannabidiol Facilitates Micellar Solubilization In Vitro, but In Vivo Performance Remains Superior with Pure Sesame Oil Vehicle. Pharmaceutics 2021; 13:1349. [PMID: 34575426 PMCID: PMC8472830 DOI: 10.3390/pharmaceutics13091349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Oral sesame oil-based formulation facilitates the delivery of poorly water-soluble drug cannabidiol (CBD) to the lymphatic system and blood circulation. However, this natural oil-based formulation also leads to considerable variability in absorption of CBD. In this work, the performance of lipid-based formulations with the addition of medium-chain triglyceride (MCT) or surfactants to the sesame oil vehicle has been tested in vitro and in vivo using CBD as a model drug. The in vitro lipolysis has shown that addition of the MCT leads to a higher distribution of CBD into the micellar phase. Further addition of surfactants to MCT-containing formulations did not improve distribution of the drug into the micellar phase. In vivo, formulations containing MCT led to lower or similar concentrations of CBD in serum, lymph and MLNs, but with reduced variability. MCT improves the emulsification and micellar solubilization of CBD, but surfactants did not facilitate further the rate and extent of lipolysis. Even though addition of MCT reduces the variability, the in vivo performance for the extent of both lymphatic transport and systemic bioavailability remains superior with a pure natural oil vehicle.
Collapse
Affiliation(s)
- Wanshan Feng
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (W.F.); (C.Q.); (E.C.); (J.B.L.); (A.Z.); (Y.C.); (C.A.O.); (M.J.S.); (D.A.B.); (P.M.F.)
| | - Chaolong Qin
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (W.F.); (C.Q.); (E.C.); (J.B.L.); (A.Z.); (Y.C.); (C.A.O.); (M.J.S.); (D.A.B.); (P.M.F.)
| | - Elena Cipolla
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (W.F.); (C.Q.); (E.C.); (J.B.L.); (A.Z.); (Y.C.); (C.A.O.); (M.J.S.); (D.A.B.); (P.M.F.)
- School of Pharmacy, Universita di Roma Tor Vergata, 00173 Rome, Italy
| | - Jong Bong Lee
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (W.F.); (C.Q.); (E.C.); (J.B.L.); (A.Z.); (Y.C.); (C.A.O.); (M.J.S.); (D.A.B.); (P.M.F.)
| | - Atheer Zgair
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (W.F.); (C.Q.); (E.C.); (J.B.L.); (A.Z.); (Y.C.); (C.A.O.); (M.J.S.); (D.A.B.); (P.M.F.)
- College of Pharmacy, University of Anbar, Ramadi 31001, Iraq
| | - Yenju Chu
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (W.F.); (C.Q.); (E.C.); (J.B.L.); (A.Z.); (Y.C.); (C.A.O.); (M.J.S.); (D.A.B.); (P.M.F.)
- Tri-Service General Hospital, Medical Supplies and Maintenance Office, National Defense Medical Center, Taipei 114202, Taiwan
| | - Catherine A. Ortori
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (W.F.); (C.Q.); (E.C.); (J.B.L.); (A.Z.); (Y.C.); (C.A.O.); (M.J.S.); (D.A.B.); (P.M.F.)
| | - Michael J. Stocks
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (W.F.); (C.Q.); (E.C.); (J.B.L.); (A.Z.); (Y.C.); (C.A.O.); (M.J.S.); (D.A.B.); (P.M.F.)
| | | | - David A. Barrett
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (W.F.); (C.Q.); (E.C.); (J.B.L.); (A.Z.); (Y.C.); (C.A.O.); (M.J.S.); (D.A.B.); (P.M.F.)
| | - Peter M. Fischer
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (W.F.); (C.Q.); (E.C.); (J.B.L.); (A.Z.); (Y.C.); (C.A.O.); (M.J.S.); (D.A.B.); (P.M.F.)
| | - Pavel Gershkovich
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (W.F.); (C.Q.); (E.C.); (J.B.L.); (A.Z.); (Y.C.); (C.A.O.); (M.J.S.); (D.A.B.); (P.M.F.)
| |
Collapse
|
12
|
Shahzadi I, Fürst A, Knoll P, Bernkop-Schnürch A. Nanostructured Lipid Carriers (NLCs) for Oral Peptide Drug Delivery: About the Impact of Surface Decoration. Pharmaceutics 2021; 13:1312. [PMID: 34452273 PMCID: PMC8399745 DOI: 10.3390/pharmaceutics13081312] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
This study was aimed to evaluate the impact of surfactants used for nanostructured lipid carriers (NLCs) to provide enzymatic protection for incorporated peptides. Insulin as a model peptide was ion paired with sodium dodecyl sulfate to improve its lipophilicity. Three NLC formulations containing polyethylene glycol ester (PEG-ester), polyethylene glycol ether (PEG-ether), and polyglycerol ester (PG-ester) surfactants were prepared by solvent diffusion method. NLCs were characterized regarding particle size, polydispersity index, and zeta potential. Biocompatibility of NLCs was assessed on Caco-2 cells via resazurin assay. In vitro lipolysis study was performed using a standard lipid digestion method. Proteolytic studies were performed in simulated gastric fluid containing pepsin and simulated intestinal fluid containing pancreatin. Lipophilicity of insulin in terms of log Poctanol/water was improved from -1.8 to 2.1. NLCs were in the size range of 64-217 nm with a polydispersity index of 0.2-0.5 and exhibited a negative surface charge. PG-ester NLCs were non-cytotoxic up to a concentration of 0.5%, PEG-ester NLCs up to a concentration of 0.25% and PEG-ether NLC up to a concentration of 0.125% (w/v). The lipolysis study showed the release of >90%, 70%, and 10% of free fatty acids from PEG-ester, PG-ester, and PEG-ether NLCs, respectively. Proteolysis results revealed the highest protective effect of PEG-ether NLCs followed by PG-ester and PEG-ester NLCs for incorporated insulin complex. Findings suggest that NLCs bearing substructures less susceptible to degrading enzymes on their surface can provide higher protection for incorporated peptides toward gastrointestinal proteases.
Collapse
Affiliation(s)
| | | | | | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria; (I.S.); (A.F.); (P.K.)
| |
Collapse
|
13
|
Abbasi S, Higashino H, Sato Y, Minami K, Kataoka M, Yamashita S, Harashima H. Maximizing the Oral Bioavailability of Poorly Water-Soluble Drugs Using Novel Oil-Like Materials in Lipid-Based Formulations. Mol Pharm 2021; 18:3281-3289. [PMID: 34351769 DOI: 10.1021/acs.molpharmaceut.1c00197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lipid-based formulations, such as self-microemulsifying drug-delivery systems (SMEDDSs), are promising tools for the oral delivery of poorly water-soluble drugs. However, failure to maintain adequate aqueous solubility after coming into contact with gastrointestinal fluids is a major drawback. In this study, we examined the use of a novel cinnamic acid-derived oil-like material (CAOM) that binds drugs with a high affinity through π-π stacking and hydrophobic interactions, as an oil core in a SMEDDS for the oral delivery of fenofibrate in rats. The use of the CAOM in the SMEDDS resulted in an unprecedented enhancement in fenofibrate bioavailability, which exceeded the bioavailability values obtained using SMEDDSs based on corn oil, a conventional triglyceride oil, or Labrasol, an enhancer of intestinal permeation. Further characterization revealed that the CAOM SMEDDS does not alter the intestinal permeability and has no inhibitory activity on P-glycoprotein-mediated drug efflux. The results reported herein demonstrate the strong potential of CAOM formulations as new solubilizers for the efficient and safe oral delivery of drugs that have limited water solubility.
Collapse
Affiliation(s)
- Saed Abbasi
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Haruki Higashino
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, Hokkaido 060 0812, Japan
| | - Keiko Minami
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Makoto Kataoka
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Shinji Yamashita
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, Hokkaido 060 0812, Japan
| |
Collapse
|
14
|
Dille MJ, Baydin T, Kristiansen KA, Draget KI. The impact of emulsion droplet size on in vitro lipolysis rate and in vivo plasma uptake kinetics of triglycerides and vitamin D 3 in rats. Food Funct 2021; 12:3219-3232. [PMID: 33877246 DOI: 10.1039/d0fo03386c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Emulsions play an important role in the process of triglyceride (TG) digestion (lipolysis). Through emulsification, the oil-water interface is increased by orders of magnitude. This often leads to faster and more efficient lipolysis, which is potentially beneficial for the intestinal uptake of oils and lipophilic compounds. In this paper, we first examined the effect of emulsion droplet size on the in vitro lipolysis rate. Then an in vivo experiment was performed, to examine the plasma uptake kinetics of TGs and vitamin D3 (vitD3) over a 24 hours period after oral administration of the emulsions in rats. Basic corn oil emulsions loaded with vitD3 were prepared using polysorbate 80 as the emulsifier, with three different droplet sizes (D[3,2]): ∼3 μm (large), ∼1 μm (medium) and ∼0.3 μm (small). In vitro lipolysis experiments showed, as expected, that smaller droplets were lipolyzed more rapidly. However, the medium emulsion had by far the highest rate of lipolysis per surface area. This was attributed to bile salt limitation, polysorbate 80 lipolysis inhibition and TG digestion product accumulation. In vivo, the two smallest emulsions showed the highest uptake (Cmax and AUC) of vitD3 and TG, while the largest emulsion and bulk oil control showed lower values. However, only the (incremental) TG plasma values and kinetics displayed some statistically significant differences. These findings may have relevance for the formulation of functional foods/beverages or delivery units containing oils or lipophilic bioactives.
Collapse
Affiliation(s)
- Morten J Dille
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway.
| | | | | | | |
Collapse
|
15
|
Synergistic and antagonistic effects of non-ionic surfactants with bile salt + phospholipid mixed micelles on the solubility of poorly water-soluble drugs. Int J Pharm 2020; 588:119762. [DOI: 10.1016/j.ijpharm.2020.119762] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/31/2020] [Accepted: 08/09/2020] [Indexed: 01/08/2023]
|
16
|
Koehl NJ, Holm R, Kuentz M, Jannin V, Griffin BT. Exploring the Impact of Surfactant Type and Digestion: Highly Digestible Surfactants Improve Oral Bioavailability of Nilotinib. Mol Pharm 2020; 17:3202-3213. [PMID: 32649208 DOI: 10.1021/acs.molpharmaceut.0c00305] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The scientific rationale for selection of the surfactant type during oral formulation development requires an in-depth understanding of the interplay between surfactant characteristics and biopharmaceutical factors. Currently, however, there is a lack of comprehensive knowledge of how surfactant properties, such as hydrophilic-lipophilic balance (HLB), digestibility, and fatty acid (FA) chain length, translate into in vivo performance. In the present study, the relationship between surfactant properties, in vitro characteristics, and in vivo bioavailability was systematically evaluated. An in vitro lipolysis model was used to study the digestibility of a variety of nonionic surfactants. Eight surfactants and one surfactant mixture were selected for further analysis using the model poorly water-soluble drug nilotinib. In vitro lipolysis of all nilotinib formulations was performed, followed by an in vivo pharmacokinetic evaluation in rats. The in vitro lipolysis studies showed that medium-chain FA-based surfactants were more readily digested compared to long-chain surfactants. The in vivo study demonstrated that a Tween 20 formulation significantly enhanced the absolute bioavailability of nilotinib up to 5.2-fold relative to an aqueous suspension. In general, surfactants that were highly digestible in vitro tended to display higher bioavailability of nilotinib in vivo. The bioavailability may additionally be related to the FA chain length of digestible surfactants with an improved exposure in the case of medium-chain FA-based surfactants. There was no apparent relationship between the HLB value of surfactants and the in vivo bioavailability of nilotinib. The impact of this study's findings suggests that when designing surfactant-based formulations to enhance oral bioavailability of the poorly water-soluble drug nilotinib, highly digestible, medium chain-based surfactants are preferred. Additionally, for low-permeability drugs such as nilotinib, which is subject to efflux by intestinal P-glycoprotein, the biopharmaceutical effects of surfactants merit further consideration.
Collapse
Affiliation(s)
- Niklas J Koehl
- School of Pharmacy, University College Cork, T12 YN60 Cork, Ireland
| | - René Holm
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium.,Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Martin Kuentz
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Vincent Jannin
- Gattefossé SAS, 36 Chemin de Genas, 69804 Saint-Priest Cedex, France
| | | |
Collapse
|
17
|
Bravo-Alfaro DA, Muñoz-Correa MO, Santos-Luna D, Toro-Vazquez JF, Cano-Sarmiento C, García-Varela R, García HS. Encapsulation of an insulin-modified phosphatidylcholine complex in a self-nanoemulsifying drug delivery system (SNEDDS) for oral insulin delivery. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Temperature Effect on the Adsorption and Volumetric Properties of Aqueous Solutions of Kolliphor ®ELP. Molecules 2020; 25:molecules25030743. [PMID: 32050404 PMCID: PMC7037185 DOI: 10.3390/molecules25030743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/01/2022] Open
Abstract
Density, viscosity and surface tension of Kolliphor® ELP, the nonionic surfactant aqueous solutions were measured at temperature T = 293–318 K and at 5K interval. Steady-state fluorescence measurements have been also made using pyrene as a probe. On the basis of the obtained results, a number of thermodynamic, thermo-acoustic and anharmonic parameters of the studied surfactant have been evaluated and interpreted in terms of structural effects and solute–solvent interactions. The results suggest that the molecules of studied surfactant at concentrations higher than the critical micelle concentration act as structure makers of the water structure.
Collapse
|
19
|
McCartney F, Rosa M, Brayden DJ. Evaluation of Sucrose Laurate as an Intestinal Permeation Enhancer for Macromolecules: Ex Vivo and In Vivo Studies. Pharmaceutics 2019; 11:E565. [PMID: 31683652 PMCID: PMC6921008 DOI: 10.3390/pharmaceutics11110565] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Oral delivery of macromolecules requires permeation enhancers (PEs) adaptable to formulation. Sucrose laurate (SL) (D1216), a food grade surfactant, was assessed in Caco-2 monolayers, isolated rat intestinal tissue mucosae, and rat intestinal instillations. Accordingly, 1 mM SL increased the apparent permeability coefficient (Papp) of [14C]-mannitol and reduced transepithelial electrical resistance (TEER) across monolayers. It altered expression of the tight junction protein, ZO-1, increased plasma membrane potential, and decreased mitochondrial membrane potential in Caco-2 cells. The concentrations that increased flux were of the same order as those that induced cytotoxicity. In rat colonic tissue mucosae, the same patterns emerged in respect to the concentration-dependent increases in paracellular marker fluxes and TEER reductions with 5 mM being the key concentration. While the histology revealed some perturbation, ion transport capacity was retained. In rat jejunal and colonic instillations, 50 and 100 mM SL co-administered with insulin induced blood glucose reductions and achieved relative bioavailability values of 2.4% and 8.9%, respectively, on a par with the gold standard PE, sodium caprate (C10). The histology of the intestinal loops revealed little damage. In conclusion, SL is a candidate PE with high potential for emulsion-based systems. The primary action is plasma membrane perturbation, leading to tight junction openings and a predominant paracellular flux.
Collapse
Affiliation(s)
- Fiona McCartney
- UCD School of Veterinary Medicine and UCD Conway Institute, University, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Mónica Rosa
- Sublimity Therapeutics, DCU Alpha Innovation Campus, Dublin, Dublin 11, Ireland.
| | - David J Brayden
- UCD School of Veterinary Medicine and UCD Conway Institute, University, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
20
|
Szymczyk K, Szaniawska M, Terpiłowski K. Determination of Acoustical Parameters of Aqueous Solution of Kolliphors Binary Mixtures Using Density, Speed of Sound, Viscosity, and Surface Tension Measurements. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Katarzyna Szymczyk
- Department of Interfacial Phenomena, Faculty of ChemistryMaria Curie‐Skłodowska University, Maria Curie‐Skłodowska Sq. 3 20‐031 Lublin Poland
| | - Magdalena Szaniawska
- Department of Interfacial Phenomena, Faculty of ChemistryMaria Curie‐Skłodowska University, Maria Curie‐Skłodowska Sq. 3 20‐031 Lublin Poland
| | - Konrad Terpiłowski
- Department of Interfacial Phenomena, Faculty of ChemistryMaria Curie‐Skłodowska University, Maria Curie‐Skłodowska Sq. 3 20‐031 Lublin Poland
| |
Collapse
|
21
|
Al-Ali AAA, Nielsen RB, Steffansen B, Holm R, Nielsen CU. Nonionic surfactants modulate the transport activity of ATP-binding cassette (ABC) transporters and solute carriers (SLC): Relevance to oral drug absorption. Int J Pharm 2019; 566:410-433. [DOI: 10.1016/j.ijpharm.2019.05.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 01/11/2023]
|
22
|
Al-mahallawi AM, Fares AR, Abd-Elsalam WH. Enhanced Permeation of Methotrexate via Loading into Ultra-permeable Niosomal Vesicles: Fabrication, Statistical Optimization, Ex Vivo Studies, and In Vivo Skin Deposition and Tolerability. AAPS PharmSciTech 2019; 20:171. [PMID: 31004239 DOI: 10.1208/s12249-019-1380-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/26/2019] [Indexed: 01/17/2023] Open
Abstract
The aim of this study was to incorporate methotrexate (MTX) into ultra-permeable niosomal vesicles, containing cremophor RH40 as an edge activator (EA) and polyvinyl alcohol (PVA) as a stabilizer to enhance the drug permeation. Formulae were prepared by ethanol injection method following a Box-Behnken design in order to optimize the formulation variables (EA%, stabilizer %, and sonication time). To investigate the role of both cremophor RH40 and PVA, conventional MTX niosomes and MTX niosomes containing PVA only were fabricated. Drug entrapment efficiency percent (EE%), particle size (PS) analysis, zeta potential (ZP) measurements, and transmission electron microscopy (TEM) were conducted to characterize the vesicles. Cell viability studies and ex vivo permeation experiments of the optimized formula were conducted. Lastly, in vivo skin deposition of MTX from both the optimized formula and MTX solution was performed in rats. Besides, histopathological changes in rat skin were assessed. The optimized MTX ultra-permeable niosomal formula demonstrated spherical morphology, with an EE% of 65.16% and a PS of 453.6 nm. The optimized formula showed better physical stability in comparison with that of the same composition but lacking PVA. The cell viability studies verified the superior cytotoxicity of the optimized formula, and the ex vivo permeation studies revealed its ability to improve the drug permeation. The optimized formula demonstrated a significant deposition of MTX in rat dorsal skin, and histopathological evaluation confirmed the tolerability of the optimized formula in rats upon topical application. Accordingly, ultra-permeable noisomes, as a stable nanosystem, could be promising for effective delivery of MTX.
Collapse
|
23
|
Basic principles of drug delivery systems - the case of paclitaxel. Adv Colloid Interface Sci 2019; 263:95-130. [PMID: 30530177 DOI: 10.1016/j.cis.2018.11.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 01/15/2023]
Abstract
Cancer is the second cause of death worldwide, exceeded only by cardiovascular diseases. The prevalent treatment currently used against metastatic cancer is chemotherapy. Among the most studied drugs that inhibit neoplastic cells from acquiring unlimited replicative ability (a hallmark of cancer) are the taxanes. They operate via a unique molecular mechanism affecting mitosis. In this review, we show this mechanism for one of them, paclitaxel, and for other (non-taxanes) anti-mitotic drugs. However, the use of paclitaxel is seriously limited (its bioavailability is <10%) due to several long-standing challenges: its poor water solubility (0.3 μg/mL), its being a substrate for the efflux multidrug transporter P-gp, and, in the case of oral delivery, its first-pass metabolism by certain enzymes. Adequate delivery methods are therefore required to enhance the anti-tumor activity of paclitaxel. Thus, we have also reviewed drug delivery strategies in light of the various physical, chemical, and enzymatic obstacles facing the (especially oral) delivery of drugs in general and paclitaxel in particular. Among the powerful and versatile platforms that have been developed and achieved unprecedented opportunities as drug carriers, microemulsions might have great potential for this aim. This is due to properties such as thermodynamic stability (leading to long shelf-life), increased drug solubilization, and ease of preparation and administration. In this review, we define microemulsions and nanoemulsions, analyze their pertinent properties, and review the results of several drug delivery carriers based on these systems.
Collapse
|
24
|
Singh S, Kushwah V, Agrawal AK, Jain S. Insulin- and quercetin-loaded liquid crystalline nanoparticles: implications on oral bioavailability, antidiabetic and antioxidant efficacy. Nanomedicine (Lond) 2018; 13:521-537. [DOI: 10.2217/nnm-2017-0278] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: The present study reports insulin (INS)- and quercetin (QT)-lyotropic liquid crystalline nanoparticles (LCNPs) with improved bioavailability, antidiabetic and antioxidant efficacy following oral administration. Materials & methods: The developed INS-QT-LCNPs were evaluated for simulated gastric fluid stability. In vitro Caco-2 uptake studies were also performed. Furthermore, in vivo pharmacokinetics and pharmacodynamics of INS-QT-LCNPs were evaluated. Results & conclusion: INS entrapped within LCNPs demonstrated excellent stability in simulated gastric fluid. Higher uptake of fluorescein isothiocyanate-INS-LCNPs were observed in Caco-2 cells. INS-LCNPs demonstrated approximately 20% relative bioavailability compared with subcutaneously administered INS. Significant decrease in oxidative stress was confirmed by reduction in malondialdehyde level. Overall, combination strategy not only overcomes poor oral bioavailability of INS and QT, but also prevents the generation of reactive oxygen species, responsible for diabetes-mediated complications.
Collapse
Affiliation(s)
- Swapnil Singh
- Center for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, SAS Nagar, Punjab 160062, India
| | - Varun Kushwah
- Center for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, SAS Nagar, Punjab 160062, India
| | - Ashish Kumar Agrawal
- Center for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, SAS Nagar, Punjab 160062, India
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Sanyog Jain
- Center for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, SAS Nagar, Punjab 160062, India
| |
Collapse
|
25
|
Interactions between surfactants and hydrolytic enzymes. Colloids Surf B Biointerfaces 2017; 168:169-177. [PMID: 29248277 DOI: 10.1016/j.colsurfb.2017.12.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 11/23/2022]
Abstract
Hydrolytic enzymes are combined with surfactants in many types of formulations, for instance detergents and personal care products. If the surfactant interacts with the enzyme there may be conformational changes that eventually lead to loss of the enzymatic activity. From a practical point of view it is important to understand the nature and magnitude of these interactions. After an introduction of the topic the review briefly discusses enzyme catalyzed reactions where surfactants are substrates for the enzyme. The rest of the review relates to associations between surfactants and hydrolytic enzymes without the surfactant being a substrate in the reaction. A discussion about general principles for such interactions is followed by a survey of the relevant literature related to four important types of hydrolytic enzymes: lipases, proteases, amylases and cellulases. It is shown in the review that the effect exerted by the surfactant differs between the different types of enzymes; it is therefore difficult to make general statements about which surfactants are most detrimental to the activity of hydrolytic enzymes. However, as a general rule nonionic surfactants can be regarded as more benign to an enzyme than anionic and cationic surfactants. This difference can be ascribed to the difference in binding mode. Whereas a nonionic surfactant only binds to the enzyme through hydrophobic interactions, an ionic surfactant can bind by a combination of electrostatic attraction and hydrophobic interaction. This latter type of binding can be strong and lead to conformational changes already at very low surfactant concentration, often far below its critical micelle concentration.
Collapse
|
26
|
Zidan DW, Elmasry MS, Hassan WS, Shalaby AA. Utility of Cremophor RH 40 as a micellar improvement for spectrofluorimetric estimation of sorafenib in pure form, commercial preparation, and human plasma. LUMINESCENCE 2017; 33:326-335. [PMID: 29124884 DOI: 10.1002/bio.3417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 01/07/2023]
Abstract
An easy, quick, simple and accurate spectrofluorimetric method was recognized and validated for evaluation of sorafenib (SOR) in pure form and biologically in plasma. Cremophor RH 40 (Cr RH 40) used for enhancing the fluorescence activity of SOR in phosphate buffer (pH 7). Cr RH 40 improved the native fluorescence of SOR remarkably in water. The fluorescence spectrum of SOR was observed at 405 nm after excitation at 265 nm. The linearity appeared to be in the range of 5 to 600 ng ml-1 for pure and from 9 to 500 ng ml-1 for plasma using the protein precipitation (ppt) method while from 10 to 500 ng ml-1 for plasma using liquid-liquid extraction method. The precisions and the accuracy of the estimated method gave satisfactory results. The recommended method was effectively applied for determination of SOR in human plasma with high recovery values. The results of some compounds that are possibly found in plasma were studied. The proposed method was also focused on real volunteers and a drug dissolution test.
Collapse
Affiliation(s)
| | - Manal S Elmasry
- Analytical Chemistry Department, Pharmacy Faculty, Zagazig University, Zagazig, Egypt
| | - Wafaa S Hassan
- Analytical Chemistry Department, Pharmacy Faculty, Zagazig University, Zagazig, Egypt
| | - Abdalla A Shalaby
- Analytical Chemistry Department, Pharmacy Faculty, Zagazig University, Zagazig, Egypt
| |
Collapse
|
27
|
Preparation of Nanoemulsions by Premix Membrane Emulsification: Which Parameters Have a Significant Influence on the Resulting Particle Size? J Pharm Sci 2017; 106:2068-2076. [DOI: 10.1016/j.xphs.2017.04.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/17/2017] [Accepted: 04/19/2017] [Indexed: 11/18/2022]
|
28
|
Lupo N, Fidahic U, Hetényi G, Griesser J, Bernkop-Schnürch A. Inhibitory effect of emulsifiers in sedds on protease activity: Just an illusion? Int J Pharm 2017; 526:23-30. [DOI: 10.1016/j.ijpharm.2017.04.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/19/2017] [Accepted: 04/22/2017] [Indexed: 11/28/2022]
|
29
|
Elnaggar YSR, Shehata EMM, Galal S, Abdallah OY. Self-emulsifying preconcentrates of daidzein–phospholipid complex: design, in vitro and in vivo appraisal. Nanomedicine (Lond) 2017; 12:893-910. [DOI: 10.2217/nnm-2016-0387] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Self-emulsifying phospholipid-complex preconcentrates (SEPPs) were fabricated to improve oral bioavailability of daidzein (DAI), an anticancer drug with challenging amphiphobic nature and extensive presystemic metabolism. Methods: DAI–phosphatidylcholine complex was prepared to enhance DAI lipophilicity and loading in SEPPs. The physicochemical characteristics and the pharmacokinetic behavior in rats were studied. Results: Surfactant-free SEPP (plain DAI:Phosal® 53MCT complex) was monodisperse upon aqueous dilution with nanorange globule size (485 ± 15 nm). Compared with drug suspension, it showed enhanced drug release and 2.38-fold enhanced oral bioavailability with minimized drug-induced intestinal irritation. Addition of 30% surfactant/co-surfactant mixture did not show any significant difference in drug release rate or absorption profile. Conclusion: The highly safe surfactant-free SEPP could be an effective approach to improve DAI oral bioavailability.
Collapse
Affiliation(s)
- Yosra SR Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy & Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Eman MM Shehata
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sally Galal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
30
|
Vithani K, Hawley A, Jannin V, Pouton C, Boyd BJ. Inclusion of Digestible Surfactants in Solid SMEDDS Formulation Removes Lag Time and Influences the Formation of Structured Particles During Digestion. AAPS JOURNAL 2017; 19:754-764. [DOI: 10.1208/s12248-016-0036-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/22/2016] [Indexed: 11/30/2022]
|
31
|
Chiu J, Valente KN, Levy NE, Min L, Lenhoff AM, Lee KH. Knockout of a difficult-to-remove CHO host cell protein, lipoprotein lipase, for improved polysorbate stability in monoclonal antibody formulations. Biotechnol Bioeng 2016; 114:1006-1015. [PMID: 27943242 DOI: 10.1002/bit.26237] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 11/09/2016] [Accepted: 12/04/2016] [Indexed: 12/12/2022]
Abstract
While the majority of host cell protein (HCP) impurities are effectively removed in typical downstream purification processes, a small population of HCPs are particularly challenging. Previous studies have identified HCPs that are challenging for a variety of reasons. Lipoprotein lipase (LPL)-a Chinese hamster ovary (CHO) HCP that functions to hydrolyze esters in triglycerides-was one of ten HCPs identified in previous studies as being susceptible to retention in downstream processing. LPL may degrade polysorbate 80 (PS-80) and polysorbate 20 (PS-20) in final product formulations due to the structural similarity between polysorbates and triglycerides. In this work, recombinant LPL was found to have enzymatic activity against PS-80 and PS-20 in a range of solution conditions that are typical of mAb formulations. LPL knockout CHO cells were created with CRISPR and TALEN technologies and resulting cell culture harvest fluid demonstrated significantly reduced polysorbate degradation without significant impact on cell viability when compared to wild-type samples. Biotechnol. Bioeng. 2017;114: 1006-1015. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Josephine Chiu
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716.,Delaware Biotechnology Institute, Newark, Delaware, 19711
| | - Kristin N Valente
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716.,Delaware Biotechnology Institute, Newark, Delaware, 19711
| | - Nicholas E Levy
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716
| | - Lie Min
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716.,Delaware Biotechnology Institute, Newark, Delaware, 19711
| | - Abraham M Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716.,Delaware Biotechnology Institute, Newark, Delaware, 19711
| |
Collapse
|
32
|
Does the commonly used pH-stat method with back titration really quantify the enzymatic digestibility of lipid drug delivery systems? A case study on solid lipid nanoparticles (SLN). Eur J Pharm Biopharm 2016; 109:194-205. [DOI: 10.1016/j.ejpb.2016.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 08/30/2016] [Accepted: 10/22/2016] [Indexed: 11/18/2022]
|
33
|
Moya-Ramírez I, Fernández-Arteaga A, Jurado-Alameda E, García-Román M. Waste Frying Oils as Substrate for Enzymatic Lipolysis: Optimization of Reaction Conditions in O/W Emulsion. J AM OIL CHEM SOC 2016. [DOI: 10.1007/s11746-016-2900-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Mante A, Heider M, Zlomke C, Mäder K. PLGA nanoparticles for peroral delivery: How important is pancreatic digestion and can we control it? Eur J Pharm Biopharm 2016; 108:32-40. [PMID: 27553262 DOI: 10.1016/j.ejpb.2016.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/31/2016] [Accepted: 08/18/2016] [Indexed: 02/01/2023]
Abstract
Biodegradable nanoparticles made of Poly(lactide-co-glycolide) are increasingly proposed for the improvement of oral drug absorption, but also as carriers for the treatment of colonic diseases. Unfortunately, our knowledge of the digestibility of PLGA-NPs is rather limited. Therefore, we investigated the impact of pancreatin on the digestibility of PLGA-NPs stabilized with different emulsifiers. The pancreatin induced degradation was monitored by the pH-stat method and an enzymatic l-lactic acid assay. A high digestibility was found for poloxamer 188 and polysorbate 80 stabilized PLGA-NPs. The digestion could be blocked by Orlistat, indicating a major role of pancreatic lipase. PLGA-NPs stabilized with Poly(vinyl alcohol) (=PVA) were not digested at comparable surfactant concentrations (0.6%). However, PLGA-NPs stabilized with very low amounts of PVA (0.1%) were digestible. In conclusion, PLGA-NPs are substrates for the pancreatic lipase. The digestibility can be enhanced or blocked by the proper selection of the surfactant composition and concentration.
Collapse
Affiliation(s)
- Anika Mante
- Institute of Pharmacy, Faculty of Biosciences, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany.
| | - Martha Heider
- Institute of Pharmacy, Faculty of Biosciences, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany.
| | - Christin Zlomke
- Institute of Pharmacy, Faculty of Biosciences, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany.
| | - Karsten Mäder
- Institute of Pharmacy, Faculty of Biosciences, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany. http://pharmtech.pharmazie.uni-halle.de
| |
Collapse
|
35
|
Leonaviciute G, Zupančič O, Prüfert F, Rohrer J, Bernkop-Schnürch A. Impact of lipases on the protective effect of SEDDS for incorporated peptide drugs towards intestinal peptidases. Int J Pharm 2016; 508:102-8. [DOI: 10.1016/j.ijpharm.2016.04.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/13/2016] [Accepted: 04/16/2016] [Indexed: 12/17/2022]
|
36
|
The In Vitro Lipolysis of Lipid-Based Drug Delivery Systems: A Newly Identified Relationship between Drug Release and Liquid Crystalline Phase. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2364317. [PMID: 27294110 PMCID: PMC4884793 DOI: 10.1155/2016/2364317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to offer a new insight into the microstructure changes during in vitro lipolysis of five lipid-based drug delivery formulations belonging to different lipid formulation types. Five lipid-based formulations of indomethacin were investigated using an in vitro lipolysis model. During lipolysis, microstructures of the intermediate phase formed by lipolytic products were observed. The results showed that the time of liquid crystal formation during in vitro digestion for these formulations was Type I > Type II > Type IIIB > Type IV > Type IIIA (p < 0.05). After lipolysis, the drug releases from these formulations were determined. The results showed that the amount of drug distributed in the aqueous phase, obtained by ultracentrifuge after lipolysis, was, astonishingly, in inverse rank order of the above mentioned, that is, Type IIIA > Type IV > Type IIIB > Type II > Type I (p < 0.05). These results showed that the liquid crystalline phase probably has a critical influence on the fate of the drug during in vitro lipolysis and suggested that the liquid crystalline phase facilitated drug precipitation. These findings may improve the understanding of lipolysis of lipid-based drug delivery systems for designing better delivery system.
Collapse
|
37
|
Hall T, Sandefur SL, Frye CC, Tuley TL, Huang L. Polysorbates 20 and 80 Degradation by Group XV Lysosomal Phospholipase A 2 Isomer X1 in Monoclonal Antibody Formulations. J Pharm Sci 2016; 105:1633-1642. [DOI: 10.1016/j.xphs.2016.02.022] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/01/2016] [Accepted: 02/19/2016] [Indexed: 11/24/2022]
|
38
|
Micellar Enhanced Spectrofluorimetric Method for the Determination of Ponatinib in Human Plasma and Urine via Cremophor RH 40 as Sensing Agent. Int J Anal Chem 2015; 2015:210503. [PMID: 26880920 PMCID: PMC4736017 DOI: 10.1155/2015/210503] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/07/2015] [Accepted: 12/14/2015] [Indexed: 11/18/2022] Open
Abstract
An impressively simple and precise spectrofluorimetric procedure was established and validated for ponatinib (PTB) quantitation in biological fluids such as human plasma and human urine. This method depends on examining the fluorescence characteristics of PTB in a micellar system of Cremophor RH 40 (Cr RH 40). Cr RH 40 enhanced the intrinsic fluorescence of PTB distinctly in aqueous water. The fluorescence spectra of PTB was recorded at 457 nm following its excitation at 305 nm. Maximum fluorescence intensity was attained by addition of 0.7 mL of Cr RH 40 and one mL of phosphate buffer to PTB aliquots and then dilution with distilled water. There is a linear relationship between the fluorescence intensity of PTB and its concentration over the range 5–120 ngmL−1, with limit of detection and limit of quantification equal to 0.905 ngmL−1 and 2.742 ngmL−1, respectively. The accuracy and the precisions of the proposed method were checked and gave adequate results. The adopted method was applied with a great success for PTB quantitation in different biological matrices (spiked human plasma and urine) giving high recovery values.
Collapse
|
39
|
Chater PI, Wilcox MD, Pearson JP, Brownlee IA. The impact of dietary fibres on the physiological processes governing small intestinal digestive processes. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.bcdf.2015.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Leonaviciute G, Bernkop-Schnürch A. Self-emulsifying drug delivery systems in oral (poly)peptide drug delivery. Expert Opin Drug Deliv 2015; 12:1703-16. [PMID: 26477549 DOI: 10.1517/17425247.2015.1068287] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Oral administration of most therapeutic peptides and proteins is mainly restricted due to the enzymatic and absorption membrane barrier of the GI tract. In order to overcome these barriers, various technologies have been explored. Among them, self-emulsifying drug delivery systems (SEDDS) received considerable attention as potential carriers to facilitate oral peptide and protein delivery in recent years. AREAS COVERED This review article intends to summarize physiological barriers which limit the bioavailability of orally administrated peptide and protein drugs. Furthermore, the potential of SEDDS to protect incorporated peptides and proteins towards peptidases and proteases and to penetrate the mucus layer is reviewed. Their permeation-enhancing properties and their ability to release the drug in a controlled way are described. Moreover, this review covers the results of in vivo studies providing evidence for this promising approach. EXPERT OPINION As SEDDS can: i) provide a protective effect towards a presystemic metabolism; ii) efficiently permeate the intestinal mucus gel layer in order to reach the absorption membrane; and iii) be produced in a very simple and cost-effective manner, they are a promising tool for oral peptide and protein drug delivery.
Collapse
Affiliation(s)
- Gintare Leonaviciute
- a Leopold - Franzens University Innsbruck, Institut of Pharmacy, Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology , Innrain 80/82, Innsbruck, Austria +43 512 507 58601 ; +43 512 507 58699 ;
| | - Andreas Bernkop-Schnürch
- a Leopold - Franzens University Innsbruck, Institut of Pharmacy, Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology , Innrain 80/82, Innsbruck, Austria +43 512 507 58601 ; +43 512 507 58699 ;
| |
Collapse
|
41
|
Abu-Fayyad A, Behery F, Sallam AA, Alqahtani S, Ebrahim H, El Sayed KA, Kaddoumi A, Sylvester PW, Carroll JL, Cardelli JA, Nazzal S. PEGylated γ-tocotrienol isomer of vitamin E: Synthesis, characterization, in vitro cytotoxicity, and oral bioavailability. Eur J Pharm Biopharm 2015; 96:185-95. [PMID: 26235392 DOI: 10.1016/j.ejpb.2015.07.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/14/2015] [Accepted: 07/24/2015] [Indexed: 12/12/2022]
Abstract
Vitamin E refers to a family of eight isomers divided into two subgroups, tocopherols and the therapeutically active tocotrienols (T3). The PEGylated α-tocopherol isomer of vitamin E (vitamin E TPGS) has been extensively investigated for its solubilizing capacity as a nonionic surfactant in various drug delivery systems. Limited information, however, is available about the PEG conjugates of the tocotrienol isomers of vitamin E. In this study two PEGylated γ-T3 variants with mPEG molecular weights of 350 (γ-T3PGS 350) and 1000 (γ-T3PGS 1000) were synthesized by a two-step reaction procedure and characterized by (1)H NMR, HPLC, and mass spectroscopy. The physical properties of their self-assemblies in water were characterized by zeta, CMC, and size analysis. Similar physical properties were found between the PEGylated T3 and vitamin E TPGS. PEGylated T3 were also found to retain the in vitro cytotoxic activity of the free T3 against the MCF-7 and the triple-negative MDA-MB-231 breast cancer cells. PEGylated γ-T3 also increased the oral bioavailability of γ-T3 by threefolds when compared to the bioavailability of γ-T3 formulated into a self-emulsified drug delivery system. No significant differences in biological activity were found between the PEG 350 and 100 conjugates. Results from this study suggest that PEGylation of γ-T3 represents a viable platform for the oral and parenteral delivery of γ-T3 for potential use in the prevention of breast cancer.
Collapse
Affiliation(s)
- Ahmed Abu-Fayyad
- College of Health and Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Fathy Behery
- College of Health and Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Asmaa A Sallam
- College of Health and Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Saeed Alqahtani
- College of Health and Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Hassan Ebrahim
- College of Health and Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Khalid A El Sayed
- College of Health and Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Amal Kaddoumi
- College of Health and Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Paul W Sylvester
- College of Health and Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Jennifer L Carroll
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - James A Cardelli
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Sami Nazzal
- College of Health and Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA; College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
42
|
Hassan TH, Mäder K. Novel semisolid SNEDDS based on PEG-30-di-(polyhydroxystearate): Progesterone incorporation and in vitro digestion. Int J Pharm 2015; 486:77-87. [DOI: 10.1016/j.ijpharm.2015.03.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/12/2015] [Accepted: 03/16/2015] [Indexed: 01/26/2023]
|
43
|
Becker K, Salar-Behzadi S, Zimmer A. Solvent-free melting techniques for the preparation of lipid-based solid oral formulations. Pharm Res 2015; 32:1519-45. [PMID: 25788447 PMCID: PMC4381087 DOI: 10.1007/s11095-015-1661-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/19/2015] [Indexed: 01/08/2023]
Abstract
Lipid excipients are applied for numerous purposes such as taste masking, controlled release, improvement of swallowability and moisture protection. Several melting techniques have evolved in the last decades. Common examples are melt coating, melt granulation and melt extrusion. The required equipment ranges from ordinary glass beakers for lab scale up to large machines such as fluid bed coaters, spray dryers or extruders. This allows for upscaling to pilot or production scale. Solvent free melt processing provides a cost-effective, time-saving and eco-friendly method for the food and pharmaceutical industries. This review intends to give a critical overview of the published literature on experiences, formulations and challenges and to show possibilities for future developments in this promising field. Moreover, it should serve as a guide for selecting the best excipients and manufacturing techniques for the development of a product with specific properties using solvent free melt processing.
Collapse
Affiliation(s)
- Karin Becker
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens-University Graz, Member of BioTechMed, Universitätplatz 1, 8010 Graz, Austria
| | | | - Andreas Zimmer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens-University Graz, Member of BioTechMed, Universitätplatz 1, 8010 Graz, Austria
| |
Collapse
|
44
|
Berthelsen R, Holm R, Jacobsen J, Kristensen J, Abrahamsson B, Müllertz A. Kolliphor surfactants affect solubilization and bioavailability of fenofibrate. Studies of in vitro digestion and absorption in rats. Mol Pharm 2015; 12:1062-71. [PMID: 25679417 DOI: 10.1021/mp500545k] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Selection of excipients for drug formulations requires both intellectual and experimental considerations as many of the used excipients are affected by physiological factors, e.g., they may be digested by pancreatic enzymes in the gastrointestinal tract. In the present paper we have looked systematically into the differences between Kolliphor ELP, EL, and RH40 and how they affect the bioavailability of fenofibrate, through pharmacokinetic studies in rats and in vitro lipolysis studies. The study design was made as simple as possible to avoid confounding factors, for which reason the tested formulations only comprised an aqueous micellar solution of the model drug (fenofibrate) in varying concentrations (2-25% (w/v)) of the three tested surfactants. Increased concentrations of Kolliphor ELP and EL led to increased fenofibrate AUC0-24h values. For the Kolliphor RH40 formulations, an apparent fenofibrate absorption optimum was seen at 15% (w/v) surfactant, displaying both the highest AUC0-24h and Cmax. The reduced absorption of fenofibrate from the formulation containing the highest level of surfactant (25% w/v) was thought to be caused by some degree of trapping within Kolliphor RH40 micelles. In vitro, Kolliphor ELP and EL were found to be more prone to digestion than Kolliphor RH40, though not affecting the in vivo results. The highest fenofibrate bioavailability was attained from formulations with high Kolliphor ELP/EL levels (25% (w/v)), indicating that these surfactants are the better choice for solubilizing fenofibrate in order to increase the absorption upon oral administration. Due to drug dependent effects of the different types of Kolliphor, more studies are recommended in order to understand which type of Kolliphor is best suited for a given drug.
Collapse
Affiliation(s)
- Ragna Berthelsen
- †Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - René Holm
- †Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.,‡Biologics and Pharmaceutical Science, H. Lundbeck A/S, Valby, Denmark
| | - Jette Jacobsen
- †Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Anette Müllertz
- †Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.,⊥Bioneer:FARMA, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
45
|
Darwish HW, Bakheit AH. Micellar enhanced synchronous spectrofluorimetric method for determination of dasatinib in tablets, human plasma and urine: application to in vitro drug release and content uniformity test. RSC Adv 2015. [DOI: 10.1039/c5ra06795b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
46
|
Darwish HW, Abdelhameed AS, Bakheit AH, Alanazi AM. A new method to determine the new C-Met inhibitor “Cabozantinib” in dosage form and human plasma via micelle-enhanced spectrofluorimetry. RSC Adv 2015. [DOI: 10.1039/c5ra04109k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A highly sensitive and simple micelle-enhanced spectrofluorimetric method was developed for the determination of cabozantinib (CBZ) in its pharmaceutical formulation and spiked human plasma without any derivatization.
Collapse
Affiliation(s)
- Hany W. Darwish
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Kingdom of Saudi Arabia
- Analytical Chemistry Department
| | - Ali S. Abdelhameed
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Kingdom of Saudi Arabia
| | - Ahmed H. Bakheit
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Kingdom of Saudi Arabia
| | - Amer M. Alanazi
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Kingdom of Saudi Arabia
| |
Collapse
|
47
|
Pereira de Sousa I, Bernkop-Schnürch A. Pre-systemic metabolism of orally administered drugs and strategies to overcome it. J Control Release 2014; 192:301-9. [DOI: 10.1016/j.jconrel.2014.08.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 01/18/2023]
|
48
|
Kiss L, Hellinger É, Pilbat A, Kittel Á, Török Z, Füredi A, Szakács G, Veszelka S, Sipos P, Ózsvári B, Puskás LG, Vastag M, Szabó‐Révész P, Deli MA. Sucrose Esters Increase Drug Penetration, But Do Not Inhibit P‐Glycoprotein in Caco‐2 Intestinal Epithelial Cells. J Pharm Sci 2014; 103:3107-19. [DOI: 10.1002/jps.24085] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 06/14/2014] [Accepted: 06/16/2014] [Indexed: 01/11/2023]
|
49
|
Toward the Establishment of Standardized In Vitro Tests for Lipid-Based Formulations, Part 4: Proposing a New Lipid Formulation Performance Classification System. J Pharm Sci 2014; 103:2441-55. [DOI: 10.1002/jps.24067] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/01/2014] [Accepted: 06/04/2014] [Indexed: 11/07/2022]
|
50
|
Feeney OM, Williams HD, Pouton CW, Porter CJH. 'Stealth' lipid-based formulations: poly(ethylene glycol)-mediated digestion inhibition improves oral bioavailability of a model poorly water soluble drug. J Control Release 2014; 192:219-27. [PMID: 25058571 DOI: 10.1016/j.jconrel.2014.07.037] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/10/2014] [Accepted: 07/12/2014] [Indexed: 12/31/2022]
Abstract
For over 20years, stealth drug delivery has been synonymous with nanoparticulate formulations and intravenous dosing. The putative determinants of stealth in these applications are the molecular weight and packing density of a hydrophilic polymer (commonly poly(ethylene glycol) (PEG)) that forms a steric barrier at the surface of the nanoparticle. The current study examined the potential translation of the concepts learned from stealth technology after intravenous administration to oral drug delivery and specifically, to enhance drug exposure after administration of oral lipid-based formulations (LBFs) containing medium-chain triglycerides (MCT). MCT LBFs are rapidly digested in the gastrointestinal tract, typically resulting in losses in solubilisation capacity, supersaturation and drug precipitation. Here, non-ionic surfactants containing stealth PEG headgroups were incorporated into MCT LBFs in an attempt to attenuate digestion, reduce precipitation risk and enhance drug exposure. Stealth capabilities were assessed by measuring the degree of digestion inhibition that resulted from steric hindrance of enzyme access to the oil-water interface. Drug-loaded LBFs were assessed for maintenance of solubilising capacity during in vitro digestion and evaluated in vivo in rats. The data suggest that the structural determinants of stealth LBFs mirror those of parenteral formulations, i.e., the key factors are the molecular weight of the PEG in the surfactant headgroup and the packing density of the PEG chains at the interface. Interestingly, the data also show that the presence of labile ester bonds within a PEGylated surfactant also impact on the stealth properties of LBFs, with digestible surfactants requiring a PEG Mw of ~1800g/mol and non-digestible ether-based surfactants ~800g/mol to shield the lipidic cargo. In vitro evaluation of drug solubilisation during digestion showed stealth LBFs maintained drug solubilisation at or above 80% of drug load and reduced supersaturation in comparison to digestible counterparts. This trend was also reflected in vivo, where the relative bioavailability of drug after administration in two stealth LBFs increased to 120% and 182% in comparison to analogous digestible (non-stealth) formulations. The results of the current study indicate that self-assembled "stealth" LBFs have potential as a novel means of improving LBF performance.
Collapse
Affiliation(s)
- Orlagh M Feeney
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Hywel D Williams
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Colin W Pouton
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia.
| |
Collapse
|