1
|
Karaosmanoglu Yoneten K, Kasap M, Arga KY, Akpinar G, Utkan NZ. Decreased serum levels of glycerol-3- phosphate dehydrogenase 1 and monoacylglycerol lipase act as diagnostic biomarkers for breast cancer. Cancer Biomark 2022; 34:67-76. [PMID: 34657876 DOI: 10.3233/cbm-203093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Breast cancer (BC) is one of the most life-threatening cancer types among women. Despite major developments in medical sciences and technologies, the incidence and mortality rates of BC cases are still increasing. One of the reasons for this increase is the absence of an easy to perform early-diagnostic tool. Although there are defined BC biomarkers routinely used for diagnostic and prognostic purposes, none of these biomarkers is useful for early diagnosis. Therefore, early diagnosis of BC remains an important challenge and there is a great need for the early-diagnostic biomarker(s). OBJECTIVE In this study, we aimed to evaluate the diagnostic and prognostic values of glycerol-3-phosphate dehydrogenase (GPD1) and monoacylglycerol lipase (MAGL) proteins as non-invasive serum biomarkers. METHODS GPD1 and MAGL serum levels were determined by ELISA for BC patients (n= 100) from five different subtypes, and healthy controls (n= 20), and a comparative analysis was performed to determine statistically significant expression differences among the groups. RESULTS The results provided evidence that GPD1 acted as a diagnostic biomarker in distinguishing triple-negative breast cancer (TNBC) patients from other subtypes, and MAGL acted as a diagnostic biomarker in distinguishing healthy individuals from BC patients. CONCLUSION GPD1 and MAGL might be proposed as non-invasive diagnostic biomarkers for BC with high sensitivity and specificity.
Collapse
Affiliation(s)
| | - Murat Kasap
- Department of Medical Biology, Medical School, Kocaeli University, Kocaeli, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Gurler Akpinar
- Department of Medical Biology, Medical School, Kocaeli University, Kocaeli, Turkey
| | - Nihat Zafer Utkan
- Department of General Surgery, Medical School, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
2
|
Ramer R, Wittig F, Hinz B. The Endocannabinoid System as a Pharmacological Target for New Cancer Therapies. Cancers (Basel) 2021; 13:cancers13225701. [PMID: 34830856 PMCID: PMC8616499 DOI: 10.3390/cancers13225701] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cannabinoids have been shown to suppress tumour cell proliferation, tumour invasion, metastasis, angiogenesis, chemoresistance and epithelial-mesenchymal transition and to induce tumour cell apoptosis, autophagy and immune response. This review focuses on the current status of investigations on the impact of inhibitors of endocannabinoid-degrading enzymes on tumour growth and spread in preclinical oncology research. Abstract Despite the long history of cannabinoid use for medicinal and ritual purposes, an endogenous system of cannabinoid-controlled receptors, as well as their ligands and the enzymes that synthesise and degrade them, was only discovered in the 1990s. Since then, the endocannabinoid system has attracted widespread scientific interest regarding new pharmacological targets in cancer treatment among other reasons. Meanwhile, extensive preclinical studies have shown that cannabinoids have an inhibitory effect on tumour cell proliferation, tumour invasion, metastasis, angiogenesis, chemoresistance and epithelial-mesenchymal transition (EMT) and induce tumour cell apoptosis and autophagy as well as immune response. Appropriate cannabinoid compounds could moreover be useful for cancer patients as potential combination partners with other chemotherapeutic agents to increase their efficacy while reducing unwanted side effects. In addition to the direct activation of cannabinoid receptors through the exogenous application of corresponding agonists, another strategy is to activate these receptors by increasing the endocannabinoid levels at the corresponding pathological hotspots. Indeed, a number of studies accordingly showed an inhibitory effect of blockers of the endocannabinoid-degrading enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) on tumour development and spread. This review summarises the relevant preclinical studies with FAAH and MAGL inhibitors compared to studies with cannabinoids and provides an overview of the regulation of the endocannabinoid system in cancer.
Collapse
|
3
|
On the Biomedical Properties of Endocannabinoid Degradation and Reuptake Inhibitors: Pre-clinical and Clinical Evidence. Neurotox Res 2021; 39:2072-2097. [PMID: 34741755 DOI: 10.1007/s12640-021-00424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 10/19/2022]
Abstract
The endocannabinoid system (ECS) is composed of endogenous cannabinoids; components involved in their synthesis, transport, and degradation; and an expansive variety of cannabinoid receptors. Hypofunction or deregulation of the ECS is related to pathological conditions. Consequently, endogenous enhancement of endocannabinoid levels and/or regulation of their metabolism represent promising therapeutic approaches. Several major strategies have been suggested for the modulation of the ECS: (1) blocking endocannabinoids degradation, (2) inhibition of endocannabinoid cellular uptake, and (3) pharmacological modulation of cannabinoid receptors as potential therapeutic targets. Here, we focused in this review on degradation/reuptake inhibitors over cannabinoid receptor modulators in order to provide an updated synopsis of contemporary evidence advancing mechanisms of endocannabinoids as pharmacological tools with therapeutic properties for the treatment of several disorders. For this purpose, we revisited the available literature and reported the latest advances regarding the biomedical properties of fatty acid amide hydrolase and monoacylglycerol lipase inhibitors in pre-clinical and clinical studies. We also highlighted anandamide and 2-arachidonoylglycerol reuptake inhibitors with promising results in pre-clinical studies using in vitro and animal models as an outlook for future research in clinical trials.
Collapse
|
4
|
Prüser JL, Ramer R, Wittig F, Ivanov I, Merkord J, Hinz B. The Monoacylglycerol Lipase Inhibitor JZL184 Inhibits Lung Cancer Cell Invasion and Metastasis via the CB 1 Cannabinoid Receptor. Mol Cancer Ther 2021; 20:787-802. [PMID: 33632876 DOI: 10.1158/1535-7163.mct-20-0589] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/01/2020] [Accepted: 02/19/2021] [Indexed: 11/16/2022]
Abstract
A targeted modulation of the endocannabinoid system is currently discussed as a promising strategy for cancer treatment. An important enzyme for the endocannabinoid metabolism is the monoacylglycerol lipase (MAGL), which catalyzes the degradation of 2-arachidonoylglycerol (2-AG) to glycerol and free fatty acids. In this study, we investigated the influence of MAGL inhibition on lung cancer cell invasion and metastasis. Using LC-MS, significantly increased 2-AG levels were detected in A549 cells treated with the MAGL inhibitor JZL184. In athymic nude mice, JZL184 suppressed metastasis of A549 cells in a dose-dependent manner, whereby the antimetastatic effect was cancelled by the CB1 receptor antagonist AM-251. In vitro, JZL184 induced a time- and concentration-dependent reduction of A549 cell invasion through Matrigel-coated membranes, which was likewise reversed by AM-251. An MAGL inhibition-associated reduction of free fatty acids as a cause of the anti-invasive effect could be excluded by add-back experiments with palmitic acid. Both JZL184 and the MAGL substrate 2-AG led to an increased formation of the tissue inhibitor of metalloproteinase-1 (TIMP-1), whereby a TIMP-1 knockdown using siRNA significantly attenuated the anti-invasive effects of both substances. Decreased invasion and TIMP-1 upregulation was also caused by the MAGL inhibitors JW651 and MJN110 or transfection with MAGL siRNA. A CB1- and TIMP-1-dependent anti-invasive effect was further confirmed for JZL184 in H358 lung cancer cells. In conclusion, MAGL inhibition led to a CB1-dependent decrease in human lung cancer cell invasion and metastasis via inhibition of 2-AG degradation, with TIMP-1 identified as a mediator of the anti-invasive effect.
Collapse
Affiliation(s)
- Jan Lukas Prüser
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Robert Ramer
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Felix Wittig
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Igor Ivanov
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Jutta Merkord
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|
5
|
Yin H, Li W, Mo L, Deng S, Lin W, Ma C, Luo Z, Luo C, Hong H. Adipose triglyceride lipase promotes the proliferation of colorectal cancer cells via enhancing the lipolytic pathway. J Cell Mol Med 2021; 25:3963-3975. [PMID: 33621408 PMCID: PMC8051714 DOI: 10.1111/jcmm.16349] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/04/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
Abnormal lipid metabolism is the sign of tumour cells. Previous researches have revealed that the lipolytic pathway may contribute to the progression of colorectal cancer (CRC). However, adipose triglyceride lipase (ATGL) role in CRC cells remains unclear. Here, we find that elevated ATGL positively correlates with CRC clinical stages and negatively associates with overall survival. Overexpression of ATGL significantly promotes CRC cell proliferation, while knockdown of ATGL inhibits the proliferation and promotes the apoptosis of CRC cells in vitro. Moreover, in vivo experiments, ATGL promotes the growth of CRC cells. Mechanistically, ATGL enhances the carcinogenic function of CRC cells via promoting sphingolipid metabolism and CoA biosynthesis pathway‐related gene levels by degrading triglycerides, which provides adequate nutrition for the progression of CRC. Our researches clarify for the first time that ATGL is a novel oncogene in CRC and may provide an important prognostic factor and therapeutic target for CRC.
Collapse
Affiliation(s)
- Haofan Yin
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wentao Li
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Laiming Mo
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shaotuan Deng
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Weijia Lin
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Caiqi Ma
- Reproductive Medical Center, Guangzhou Women and Children's Medical Center of Sun Yat-sen University, Guangzhou, China
| | - Zhaofan Luo
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chuanghua Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Honghai Hong
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Tang Z, Xie H, Heier C, Huang J, Zheng Q, Eichmann TO, Schoiswohl G, Ni J, Zechner R, Ni S, Hao H. Enhanced monoacylglycerol lipolysis by ABHD6 promotes NSCLC pathogenesis. EBioMedicine 2020; 53:102696. [PMID: 32143183 PMCID: PMC7057193 DOI: 10.1016/j.ebiom.2020.102696] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Tumor cells display metabolic changes that correlate with malignancy, including an elevated hydrolysis of monoacylglycerol (MAG) in various cancer types. However, evidence is absent for the relationship between MAG lipolysis and NSCLC. METHODS MAG hydrolase activity assay, migration, invasion, proliferation, lipids quantification, and transactivation assays were performed in vitro. Tumor xenograft studies and lung metastasis assays were examined in vivo. The correlations of MAGL/ABHD6 expression in cancerous tissues with the clinicopathological characteristics and survival of NSCLC patients were validated. FINDINGS ABHD6 functions as the primary MAG lipase and an oncogene in NSCLC. MAG hydrolase activities were more than 11-fold higher in cancerous lung tissues than in paired non-cancerous tissues derived from NSCLC patients. ABHD6, instead of MAGL, was significantly associated with advanced tumor node metastasis (TNM) stage (HR, 1.382; P = 0.004) and had a negative impact on the overall survival of NSCLC patients (P = 0.001). ABHD6 silencing reduced migration and invasion of NSCLC cells in vitro as well as metastatic seeding and tumor growth in vivo. Conversely, ectopic overexpression of ABHD6 provoked the pathogenic potential. ABHD6 blockade significantly induced intracellular MAG accumulation which activated PPARα/γ signaling and inhibited cancer pathophysiology. INTERPRETATION The present study provide evidence for a previously uncovered pro-oncogenic function of ABHD6 in NSCLC, with the outlined metabolic mechanisms shedding light on new potential strategies for anticancer therapy. FUND: This work was supported by the Project for Major New Drug Innovation and Development (2015ZX09501010 and 2018ZX09711001-002-003).
Collapse
Affiliation(s)
- Zhiyuan Tang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China; Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Hao Xie
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Christoph Heier
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Jianfei Huang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Qiuling Zheng
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria; Center for Explorative Lipidomics, BioTechMed-Graz, Graz 8010, Austria
| | | | - Jun Ni
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fujian 350000, China
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Songshi Ni
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China.
| | - Haiping Hao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
7
|
Yoneten KK, Kasap M, Akpinar G, Gunes A, Gurel B, Utkan NZ. Comparative Proteome Analysis of Breast Cancer Tissues Highlights the Importance of Glycerol-3-phosphate Dehydrogenase 1 and Monoacylglycerol Lipase in Breast Cancer Metabolism. Cancer Genomics Proteomics 2019; 16:377-397. [PMID: 31467232 PMCID: PMC6727073 DOI: 10.21873/cgp.20143] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/17/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIM Breast cancer (BC) incidence and mortality rates have been increasing due to the lack of appropriate diagnostic tools for early detection. Proteomics-based studies may provide novel targets for early diagnosis and efficient treatment. The aim of this study was to investigate the global changes occurring in protein profiles in breast cancer tissues to discover potential diagnostic or prognostic biomarkers. MATERIALS AND METHODS BC tissues and their corresponding healthy counterparts were collected, subtyped, and subjected to comparative proteomics analyses using two-dimensional gel electrophoresis (2-DE) and two-dimensional electrophoresis fluorescence difference gel (DIGE) coupled to matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF/TOF) to explore BC metabolism at the proteome level. Western blot analysis was used to verify changes occurring at the protein levels. RESULTS Bioinformatics analyses performed with differentially regulated proteins highlighted the changes occurring in triacylglyceride (TAG) metabolism, and directed our attention to TAG metabolism-associated proteins, namely glycerol-3-phosphate dehydrogenase 1 (GPD1) and monoacylglycerol lipase (MAGL). These proteins were down-regulated in tumor groups in comparison to controls. CONCLUSION GPD1 and MAGL might be promising tissue-based protein biomarkers with a predictive potential for BC.
Collapse
Affiliation(s)
| | - Murat Kasap
- Department of Medical Biology, Kocaeli University Medical School, Kocaeli, Turkey
| | - Gurler Akpinar
- Department of Medical Biology, Kocaeli University Medical School, Kocaeli, Turkey
| | - Abdullah Gunes
- Department of General Surgery, Derince Education and Application Hospital, Kocaeli, Turkey
| | - Bora Gurel
- Department of Pathology, Kocaeli University Medical School, Kocaeli, Turkey
| | - Nihat Zafer Utkan
- Department of General Surgery, Kocaeli University Medical School, Kocaeli, Turkey
| |
Collapse
|
8
|
Li X, Gao S, Li W, Liu Z, Shi Z, Qiu C, Jiang J. Effect of monoacylglycerol lipase on the tumor growth in endometrial cancer. J Obstet Gynaecol Res 2019; 45:2043-2054. [PMID: 31357249 PMCID: PMC6790660 DOI: 10.1111/jog.14070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022]
Abstract
Aim Abnormal lipid metabolism plays a dual role in tumorigenesis, specifically in the occurrence and development of cancers. Monoacylglycerol lipase (MAGL), a hydrolase that is important for lipid metabolism, plays a vital role in different aspects of tumorigenesis. Many studies have shown that MAGL is highly elevated in a variety of cancers and plays an active role. However, its potential role in supporting endometrial cancer (EC) growth and progression has not yet been explored in depth. Methods Immunohistochemistry and quantitative real‐time reverse transcription polymerase chain reaction were performed to estimate the protein and messenger RNA (mRNA) levels of MAGL in tumor tissues. Then, JZL184 and small interfering RNA (siRNA) were used to decrease the expression of MAGL in EC cells. The gene and protein expression levels of MAGL were measured using quantitative real‐time PCR and western blotting, respectively. Additionally, the effect of MAGL on tumor growth in EC was detected by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide , cell cycle and western blotting assay in vitro. Results We found that MAGL was overexpressed in EC and was significantly correlated with surgical‐pathological stage, myometrial invasion, number of pregnancies and body mass index. The growth and cell cycle progression of tumor cells were significantly impaired in vitro by the pharmacological and siRNA‐mediated MAGL inhibition. In addition, MAGL inhibition seemed to repress two target genes, Cyclin D1 and Bcl‐2. Conclusion In summary, we have demonstrated that MAGL is involved in EC growth and progression. Our results suggest that targeting MAGL may be a novel and valid treatment for EC.
Collapse
Affiliation(s)
- Xin Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China.,Department of Obstetrics and Gynecology, Zaozhuang Municipal Hospital, Zaozhuang, China
| | - Shuhong Gao
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, China
| | - Wenzhi Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Zhiming Liu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Zhengzheng Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunping Qiu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Jie Jiang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
9
|
Massai F, Saleeb M, Doruk T, Elofsson M, Forsberg Å. Development, Optimization, and Validation of a High Throughput Screening Assay for Identification of Tat and Type II Secretion Inhibitors of Pseudomonas aeruginosa. Front Cell Infect Microbiol 2019; 9:250. [PMID: 31355152 PMCID: PMC6635566 DOI: 10.3389/fcimb.2019.00250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/26/2019] [Indexed: 11/13/2022] Open
Abstract
Antibiotics are becoming less effective in treatment of infections caused by multidrug-resistant Pseudomonas aeruginosa. Antimicrobial therapies based on the inhibition of specific virulence-related traits, as opposed to growth inhibitors, constitute an innovative and appealing approach to tackle the threat of P. aeruginosa infections. The twin-arginine translocation (Tat) pathway plays an important role in the pathogenesis of P. aeruginosa, and constitutes a promising target for the development of anti-pseudomonal drugs. In this study we developed and optimized a whole-cell, one-well assay, based on native phospholipase C activity, to identify compounds active against the Tat system. Statistical robustness, sensitivity and consequently suitability for high-throughput screening (HTS) were confirmed by a dry run/pre-screening test scoring a Z′ of 0.82 and a signal-to-noise ratio of 49. Using this assay, we evaluated ca. 40,000 molecules and identified 59 initial hits as possible Tat inhibitors. Since phospholipase C is exported into the periplasm by Tat, and subsequently translocated across the outer membrane by the type II secretion system (T2SS), our assay could also identify T2SS inhibitors. To validate our hits and discriminate between compounds that inhibited either Tat or T2SS, two separate counter assays were developed and optimized. Finally, three Tat inhibitors and one T2SS inhibitor were confirmed by means of dose-response analysis and additional counter and confirming assays. Although none of the identified inhibitors was suitable as a lead compound for drug development, this study validates our assay as a simple, efficient, and HTS compatible method for the identification of Tat and T2SS inhibitors.
Collapse
Affiliation(s)
- Francesco Massai
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Michael Saleeb
- Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Tugrul Doruk
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Mikael Elofsson
- Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Åke Forsberg
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
10
|
Grabner GF, Zimmermann R, Schicho R, Taschler U. Monoglyceride lipase as a drug target: At the crossroads of arachidonic acid metabolism and endocannabinoid signaling. Pharmacol Ther 2017; 175:35-46. [PMID: 28213089 DOI: 10.1016/j.pharmthera.2017.02.033] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monoglyerides (MGs) are short-lived, intermediary lipids deriving from the degradation of phospho- and neutral lipids, and monoglyceride lipase (MGL), also designated as monoacylglycerol lipase (MAGL), is the major enzyme catalyzing the hydrolysis of MGs into glycerol and fatty acids. This distinct function enables MGL to regulate a number of physiological and pathophysiological processes since both MGs and fatty acids can act as signaling lipids or precursors thereof. The most prominent MG species acting as signaling lipid is 2-arachidonoyl glycerol (2-AG) which is the most abundant endogenous agonist of cannabinoid receptors in the body. Importantly, recent observations demonstrate that 2-AG represents a quantitatively important source for arachidonic acid, the precursor of prostaglandins and other inflammatory mediators. Accordingly, MGL-mediated 2-AG degradation affects lipid signaling by cannabinoid receptor-dependent and independent mechanisms. Recent genetic and pharmacological studies gave important insights into MGL's role in (patho-)physiological processes, and the enzyme is now considered as a promising drug target for a number of disorders including cancer, neurodegenerative and inflammatory diseases. This review summarizes the basics of MG (2-AG) metabolism and provides an overview on the therapeutic potential of MGL.
Collapse
Affiliation(s)
- Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Rudolf Schicho
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria.
| | - Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| |
Collapse
|
11
|
Monoacylglycerol Lipase: A Novel Potential Therapeutic Target and Prognostic Indicator for Hepatocellular Carcinoma. Sci Rep 2016; 6:35784. [PMID: 27767105 PMCID: PMC5073346 DOI: 10.1038/srep35784] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/27/2016] [Indexed: 12/13/2022] Open
Abstract
Monoacylglycerol lipase (MAGL) is a key enzyme in lipid metabolism that is demonstrated to be involved in tumor progression through both energy supply of fatty acid (FA) oxidation and enhancing cancer cell malignance. The aim of this study was to investigate whether MAGL could be a potential therapeutic target and prognostic indicator for hepatocellular carcinoma (HCC). To evaluate the relationship between MAGL levels and clinical characteristics, a tissue microarray (TMA) of 353 human HCC samples was performed. MAGL levels in HCC samples were closely linked to the degree of malignancy and patient prognosis. RNA interference, specific pharmacological inhibitor JZL-184 and gene knock-in of MAGL were utilized to investigate the effects of MAGL on HCC cell proliferation, apoptosis, and invasion. MAGL played important roles in both proliferation and invasion of HCC cells through mechanisms that involved prostaglandin E2 (PGE2) and lysophosphatidic acid (LPA). JZL-184 administration significantly inhibited tumor growth in mice. Furthermore, we confirmed that promoter methylation of large tumor suppressor kinase 1 (LATS1) resulted in dysfunction of the Hippo signal pathway, which induced overexpression of MAGL in HCC. These results indicate that MAGL could be a potentially novel therapeutic target and prognostic indicator for HCC.
Collapse
|
12
|
Electrochemically reduced water protects neural cells from oxidative damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:869121. [PMID: 25383141 PMCID: PMC4212634 DOI: 10.1155/2014/869121] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 08/19/2014] [Accepted: 09/02/2014] [Indexed: 12/17/2022]
Abstract
Aging-related neurodegenerative disorders are closely associated with mitochondrial dysfunction and oxidative stresses and their incidence tends to increase with aging. Brain is the most vulnerable to reactive species generated by a higher rate of oxygen consumption and glucose utilization compared to other organs. Electrochemically reduced water (ERW) was demonstrated to scavenge reactive oxygen species (ROS) in several cell types. In the present study, the protective effect of ERW against hydrogen peroxide (H2O2) and nitric oxide (NO) was investigated in several rodent neuronal cell lines and primary cells. ERW was found to significantly suppress H2O2 (50–200 μM) induced PC12 and SFME cell deaths. ERW scavenged intracellular ROS and exhibited a protective effect against neuronal network damage caused by 200 μM H2O2 in N1E-115 cells. ERW significantly suppressed NO-induced cytotoxicity in PC12 cells despite the fact that it did not have the ability to scavenge intracellular NO. ERW significantly suppressed both glutamate induced Ca2+ influx and the resulting cytotoxicity in primary cells. These results collectively demonstrated for the first time that ERW protects several types of neuronal cells by scavenging ROS because of the presence of hydrogen and platinum nanoparticles dissolved in ERW.
Collapse
|
13
|
Demarchi CA, Debrassi A, Buzzi FDC, Corrêa R, Filho VC, Rodrigues CA, Nedelko N, Demchenko P, Ślawska-Waniewska A, Dłużewski P, Greneche JM. A magnetic nanogel based on O-carboxymethylchitosan for antitumor drug delivery: synthesis, characterization and in vitro drug release. SOFT MATTER 2014; 10:3441-3450. [PMID: 24647530 DOI: 10.1039/c3sm53157k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This paper studied the synthesis, characterization and use of the magnetic chitosan nanogel for carrying meleimidic compounds. The hydrogel polymer was prepared using O-carboxymethylchitosan, which was crosslinked with epichlorohydrin for subsequent incorporation of iron oxide magnetic nanoparticles. The characterization revealed that the magnetic material comprises about 10% of the hydrogel. This material is comprised of magnetite and maghemite and exhibits ferro-ferrimagnetic behavior. The average particle size is 4.2 nm. There was high incorporation efficiency of maleimides in the magnetic nanogel. The release was of sustained character and there was a greater release when an external magnetic field was applied. The mathematical model that best explained the process of drug release by the magnetic hydrogel was that of Peppas-Sahlin. The magnetic nanogel proved to be an excellent candidate for use in drug-delivery systems.
Collapse
Affiliation(s)
- Carla Albetina Demarchi
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Itajaí, 88302-202, Santa Catarina, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bailly C. Contemporary challenges in the design of topoisomerase II inhibitors for cancer chemotherapy. Chem Rev 2012; 112:3611-40. [PMID: 22397403 DOI: 10.1021/cr200325f] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Christian Bailly
- Centre de Recherche et Développement, Institut de Recherche Pierre Fabre, Toulouse, France.
| |
Collapse
|