1
|
Nair A, Greeny A, Nandan A, Sah RK, Jose A, Dyawanapelly S, Junnuthula V, K V A, Sadanandan P. Advanced drug delivery and therapeutic strategies for tuberculosis treatment. J Nanobiotechnology 2023; 21:414. [PMID: 37946240 PMCID: PMC10634178 DOI: 10.1186/s12951-023-02156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023] Open
Abstract
Tuberculosis (TB) remains a significant global health challenge, necessitating innovative approaches for effective treatment. Conventional TB therapy encounters several limitations, including extended treatment duration, drug resistance, patient noncompliance, poor bioavailability, and suboptimal targeting. Advanced drug delivery strategies have emerged as a promising approach to address these challenges. They have the potential to enhance therapeutic outcomes and improve TB patient compliance by providing benefits such as multiple drug encapsulation, sustained release, targeted delivery, reduced dosing frequency, and minimal side effects. This review examines the current landscape of drug delivery strategies for effective TB management, specifically highlighting lipid nanoparticles, polymer nanoparticles, inorganic nanoparticles, emulsion-based systems, carbon nanotubes, graphene, and hydrogels as promising approaches. Furthermore, emerging therapeutic strategies like targeted therapy, long-acting therapeutics, extrapulmonary therapy, phototherapy, and immunotherapy are emphasized. The review also discusses the future trajectory and challenges of developing drug delivery systems for TB. In conclusion, nanomedicine has made substantial progress in addressing the challenges posed by conventional TB drugs. Moreover, by harnessing the unique targeting abilities, extended duration of action, and specificity of advanced therapeutics, innovative solutions are offered that have the potential to revolutionize TB therapy, thereby enhancing treatment outcomes and patient compliance.
Collapse
Affiliation(s)
- Ayushi Nair
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Alosh Greeny
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Amritasree Nandan
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Ranjay Kumar Sah
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Anju Jose
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India
| | | | - Athira K V
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India.
| | - Prashant Sadanandan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, Kerala, India.
| |
Collapse
|
2
|
Nie Y, Yi X, Zhao X, Yu S, Zhang J, Liu X, Liu S, Yuan Z, Zhang M. Directional porous polyimide/polyethylene glycol composite aerogel with enhanced CO 2 uptake performance. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221136051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cost of CO2 separation and energy consumption can be decreased through the use of CO2 adsorption. Due to the electron-rich heteroatoms in its network, polyimide (PI) has a remarkable affinity for CO2. Polyethylene glycol (PEG) can increase the layer spacing of polymers, so as to change the mass transfer of CO2 in it. Furthermore, the ether bond (-O-) in PEG has good affinity for CO2. In this study, PEG-1000 was introduced into PI aerogel by mild sol-gel method at low temperature, and freeze-drying was used to produce PI/PEG composite aerogels with directional pore structure. The effect of PEG-1000 content and directional pore structure of the PI/PEG composite aerogels on CO2 adsorption performance were further studied. The L-PI/PEG-4 composite aerogel, which contains 4 g PEG and is directionally frozen in liquid nitrogen, has a CO2 adsorption capacity of 16.76 cm3/g at 25°C and 1 bar. L-PI/PEG-4 aerogel also exhibits high CO2/N2 selectivity and adsorption cycle stability.
Collapse
Affiliation(s)
- Yihao Nie
- Shandong Provincial Key Laboratory of Special Silicone-Containing Materials, Advanced Materials Institute, QiLu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Xibin Yi
- Shandong Provincial Key Laboratory of Special Silicone-Containing Materials, Advanced Materials Institute, QiLu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Xinfu Zhao
- Shandong Provincial Key Laboratory of Special Silicone-Containing Materials, Advanced Materials Institute, QiLu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Shimo Yu
- Shandong Provincial Key Laboratory of Special Silicone-Containing Materials, Advanced Materials Institute, QiLu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Jing Zhang
- Shandong Provincial Key Laboratory of Special Silicone-Containing Materials, Advanced Materials Institute, QiLu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Xiaochan Liu
- Shandong Provincial Key Laboratory of Special Silicone-Containing Materials, Advanced Materials Institute, QiLu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Sijia Liu
- Shandong Provincial Key Laboratory of Special Silicone-Containing Materials, Advanced Materials Institute, QiLu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Zhipeng Yuan
- Shandong Provincial Key Laboratory of Special Silicone-Containing Materials, Advanced Materials Institute, QiLu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Minna Zhang
- Shandong Provincial Key Laboratory of Special Silicone-Containing Materials, Advanced Materials Institute, QiLu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| |
Collapse
|
4
|
Yang S, Qiu Z, Zhang Q, Chen J, Chen X. Inhibitory Effects of Calf Thymus DNA on Metabolism Activity of CYP450 Enzyme in Human Liver Microsomes. Drug Metab Pharmacokinet 2014; 29:475-81. [DOI: 10.2133/dmpk.dmpk-13-rg-131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Przybylski P, Pyta K, Klich K, Schilf W, Kamieński B. 13C and 15N CP/MAS, 1H-15N SCT CP/MAS and FTIR spectroscopy as tools for qualitative detection of the presence of zwitterionic and non-ionic forms of ansa-macrolide 3-formylrifamycin SV and its derivatives in solid state. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2014; 52:10-21. [PMID: 24347399 DOI: 10.1002/mrc.4028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 06/03/2023]
Abstract
(13)C, (15)N CP/MAS, including (1)H-(13)C and (1)H-(15)N short contact time CP/MAS experiments, and FTIR methods were applied for detailed structural characterization of ansa-macrolides as 3-formylrifamycin SV (1) and its derivatives (2-6) in crystal and in powder forms. Although HPLC chromatograms for 2/CH3 OH and 2/CH3 CCl3 were the same for rifampicin crystals dissolved in respective solvents, the UV-vis data recorded for them were different in 300-375 nm region. Detailed solid state (13)C and (15)N CP/MAS NMR and FTIR studies revealed that rifampicin (2), in contrast to 3-formylrifamycin SV (1) and its amino derivatives (3-6), can occur in pure non-ionic or zwitterionic forms in crystal and in pure these forms or a mixture of them in a powder. Multinuclear CP/MAS and FTIR studies demonstrated also that 3-6 derivatives were present exclusively in pure zwitterionic forms, both in powder and in crystal. On the basis of the solid state NMR and FTIR studies, two conformers of 3-formylrifamycin SV were detected in powder form due to the different orientations of carbonyl group of amide moiety. The PM6 molecular modeling at the semi-empirical level of theory, allowed visualization the most energetically favorable non-ionic and zwitterionic forms of 1-6 antibiotics, strongly stabilized via intramolecular H-bonds. FTIR studies indicated that the originally adopted forms of these type antibiotics in crystal or in powder are stable in standard laboratory conditions in time. The results presented point to the fact that because of a possible presence of two forms of rifampicin (compound 2), quantification of the content of this antibiotic in relevant pharmaceuticals needs caution.
Collapse
Affiliation(s)
- Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614, Poznan, Poland
| | | | | | | | | |
Collapse
|