1
|
Bošković J, Dobričić V, Savić J, Rupar J, Aleksić M, Marković B, Čudina O. In Vitro Evaluation of Pharmacokinetic Properties of Selected Dual COX-2 and 5-LOX Inhibitors. Pharmaceuticals (Basel) 2024; 17:1329. [PMID: 39458971 PMCID: PMC11510591 DOI: 10.3390/ph17101329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Evaluation of pharmacokinetic properties is a significant step at the early stages of drug development. In this study, an in vitro evaluation of the pharmacokinetic properties of five newly synthesized compounds was performed. These compounds belong to N-hydroxyurea and hydroxamic acid derivatives and analogs of NSAIDs indomethacin, flurbiprofen, diclofenac, ibuprofen, and naproxen (compounds 1, 2, 3, 11, and 12, respectively) with dual COX-2 and 5-LOX inhibitory activity. Two in vitro methods (biopartitioning micellar chromatography (BMC) and PAMPA) were used to evaluate passive gastrointestinal absorption, while high-performance affinity chromatography (HPAC) and differential pulse voltammetry (DPV) were used to evaluate binding to human serum albumin (HSA). The introduction of N-hydroxyurea and hydroxamic acid groups into the structure of NSAIDs decreases both expected passive gastrointestinal absorption (BMC k values were from 3.02 to 9.50, while for NSAIDs were from 5.29 to 13.36; PAMPA -logPe values were between 3.81 and 4.76, while for NSAIDs were ≤3.46) and HSA binding (HPAC logk values were from 2.03 to 9.54, while for NSAIDs were ≥11.03; DPV peak potential shifts were between 7 and 34, while for NSAIDs were ≥54). Structural modifications of all tested compounds that increase lipophilicity could be considered to enhance their passive gastrointestinal absorption. Considering lower expected HSA binding and higher lipophilicity of tested compounds compared to corresponding NSAIDs, it can be expected that the volume of distribution of compounds 1, 2, 3, 11, and 12 will be higher. Reduced HSA binding may also decrease interactions with other drugs in comparison to corresponding NSAIDs. All tested compounds showed significant microsomal instability (25.07-58.44% decrease in concentration) in comparison to indomethacin (14.47%) and diclofenac (20.99%).
Collapse
Affiliation(s)
- Jelena Bošković
- Department of Pharmaceutical Chemistry, University of Belgrade–Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia (B.M.)
| | - Vladimir Dobričić
- Department of Pharmaceutical Chemistry, University of Belgrade–Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia (B.M.)
| | - Jelena Savić
- Department of Pharmaceutical Chemistry, University of Belgrade–Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia (B.M.)
| | - Jelena Rupar
- Department of Physical Chemistry and Instrumental Methods, University of Belgrade–Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Mara Aleksić
- Department of Physical Chemistry and Instrumental Methods, University of Belgrade–Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Bojan Marković
- Department of Pharmaceutical Chemistry, University of Belgrade–Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia (B.M.)
| | - Olivera Čudina
- Department of Pharmaceutical Chemistry, University of Belgrade–Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia (B.M.)
| |
Collapse
|
2
|
Kim R, Sung JH. Recent Advances in Gut- and Gut-Organ-Axis-on-a-Chip Models. Adv Healthc Mater 2024; 13:e2302777. [PMID: 38243887 DOI: 10.1002/adhm.202302777] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/21/2023] [Indexed: 01/22/2024]
Abstract
The human gut extracts nutrients from the diet while forming the largest barrier against the outer environment. In addition, the gut actively maintains homeostasis through intricate interactions with the gut microbes, the immune system, the enteric nervous system, and other organs. These interactions influence digestive health and, furthermore, play crucial roles in systemic health and disease. Given its primary role in absorbing and metabolizing orally administered drugs, there is significant interest in the development of preclinical in vitro model systems that can accurately emulate the intestine in vivo. A gut-on-a-chip system holds great potential as a testing and screening platform because of its ability to emulate the physiological aspects of in vivo tissues and expandability to incorporate and combine with other organs. This review aims to identify the key physiological features of the human gut that need to be incorporated to build more accurate preclinical models and highlights the recent progress in gut-on-a-chip systems and competing technologies toward building more physiologically relevant preclinical model systems. Furthermore, various efforts to construct multi-organ systems with the gut, called gut-organ-axis-on-a-chip models, are discussed. In vitro gut models with physiological relevance can provide valuable platforms for bridging the gap between preclinical and clinical studies.
Collapse
Affiliation(s)
- Raehyun Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong, 30016, Republic of Korea
| | - Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea
| |
Collapse
|
3
|
Komesli Y, Karasulu E. Permeability of Olmesartan Medoxomil from Lipid Based and Suspension Formulations using an Optimized HDM-PAMPA Model. Pharm Dev Technol 2022; 27:749-757. [PMID: 35972198 DOI: 10.1080/10837450.2022.2114495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Hexadecane membrane-parallel artificial membrane permeability assay (HDM-PAMPA) is based on an artificial hexadecane membrane that separates the two compartments (donor and acceptor compartment). This model is used to predict the permeability of drugs in gastrointestinal tract and to simulate the passive absorption. In vivo behaviour of the drugs can be estimated with these systems in drug development studies. In our study we optimized HDM-PAMPA model to determine permeability of olmesartan medoxomil (OM) lipid based drug delivery system (OM-LBDDS). In order to prove that LBDDS formulation facilitates the weak permeability of OM, permeation rates were compared with the OM suspension formula (containing 0.25% v/w CMC). The experiment was performed on a 96-well MultiScreen® PAMPA filter plate (MAIPN4510). The permeability of olmesartan formulations from the donor to acceptor compartment separated by a HDM membrane were determined by the previous validated HPLC method. We created positive control series without coating hexadecane membrane to present the LBDDS and suspension formulation permeability from uncoated plates. The effective permeability constant (Pe) was calculated by the formula and improvement of permeability of OM-LBDDS formulation from hexadecane membrane was confirmed. On the contrary there was no permeation of OM-Suspension in the hexadecane coated plates. As a result, the intestinal permeability of OM-LBDDS was calculated to be at least 100 times more than the suspension. OM-Suspension permeation was only observed in the hexadecane uncoated positive control plates. This was also manifestation of HDM-PAMPA mimicking permeability of intestines because of its lipidic construction.
Collapse
Affiliation(s)
- Yelda Komesli
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Altinbas University, Istanbul, Turkey
| | - Ercument Karasulu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ege University, Izmir, Turkey.,Center for Drug R&D and Pharmacokinetic Applications (ARGEFAR), Ege University, 35040, Izmir, Turkey
| |
Collapse
|
4
|
Hagiwara Y, Kumagai H, Ouwerkerk N, Gijzen L, Annida R, Bokkers M, van Vught R, Yoshinari K, Katakawa Y, Motonaga K, Tajiri T. A Novel In Vitro Membrane Permeability Methodology Using Three-dimensional Caco-2 Tubules in a Microphysiological System Which Better Mimics In Vivo Physiological Conditions. J Pharm Sci 2021; 111:214-224. [PMID: 34838780 DOI: 10.1016/j.xphs.2021.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 01/27/2023]
Abstract
The aim of this study was to develop an in vitro drug permeability methodology which mimics the gastrointestinal environment more accurately than conventional 2D methodologies through a three-dimensional (3D) Caco-2 tubules using a microphysiological system. Such a system offers significant advantages, including accelerated cellular polarization and more accurate mimicry of the in vivo environment. This methodology was confirmed by measuring the permeability of propranolol as a model compound, and subsequently applied to those of solifenacin and bile acids for a comprehensive understanding of permeability for the drug product in the human gastrointestinal tract. To protect the Caco-2 tubules from bile acid toxicity, a mucus layer was applied on the surface of Caco-2 tubules and it enables to use simulated intestinal fluid. The assessment using propranolol reproduced results equivalent to those obtained from conventional methodology, while that using solifenacin indicated fluctuations in the permeability of solifenacin due to various factors, including interaction with bile acids. We therefore suggest that this model will serve as an alternative testing system for measuring drug absorption in an environment closely resembling that of the human gastrointestinal tract.
Collapse
Affiliation(s)
- Yuki Hagiwara
- Analytical Research Laboratories, Astellas Pharma Inc., Yaizu, Shizuoka 425-0072, Japan
| | - Harumi Kumagai
- Analytical Research Laboratories, Astellas Pharma Inc., Yaizu, Shizuoka 425-0072, Japan
| | - Niels Ouwerkerk
- European Analytical Research Laboratories, Astellas Pharma Europe B.V., Leiden 2333 BE, the Netherlands
| | - Linda Gijzen
- Mimetas B.V., Oegstgeest 2342 DH, the Netherlands
| | | | | | | | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yoshifumi Katakawa
- Analytical Research Laboratories, Astellas Pharma Inc., Yaizu, Shizuoka 425-0072, Japan
| | - Kei Motonaga
- Analytical Research Laboratories, Astellas Pharma Inc., Yaizu, Shizuoka 425-0072, Japan
| | - Tomokazu Tajiri
- Pharmaceutical Science and Technology Laboratories, Astellas Pharma Inc., Tsukuba, Ibaraki 300-2698, Japan.
| |
Collapse
|
5
|
Elkamhawy A, Kim HJ, Elsherbeny MH, Paik S, Park JH, Gotina L, Abdellattif MH, Gouda NA, Cho J, Lee K, Nim Pae A, Park KD, Roh EJ. Discovery of 3,4-dichloro-N-(1H-indol-5-yl)benzamide: A highly potent, selective, and competitive hMAO-B inhibitor with high BBB permeability profile and neuroprotective action. Bioorg Chem 2021; 116:105352. [PMID: 34562673 DOI: 10.1016/j.bioorg.2021.105352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/29/2021] [Accepted: 09/07/2021] [Indexed: 01/07/2023]
Abstract
Since there is no disease-modifying treatment discovered yet for Parkinson's disease (PD), there is still a vital need to develop novel selective monoamine oxidase B (MAO-B) inhibitors as promising therapeutically active candidates for PD patients. Herein, we report the design, synthesis, and full characterization of new twenty-six indole derivatives as potential human MAO-B (hMAO-B) selective inhibitors. Six compounds (2i, 3b-e, and 5) exhibited low micromolar to nanomolar inhibitory activities over hMAO-B; compared to our recently reported N-substituted indole-based lead compound VIII (hMAO-B IC50 = 777 nM), compound 5 (3,4-dichloro-N-(1H-indol-5-yl)benzamide) exhibited 18-fold increase in potency (IC50 = 42 nM). A selectivity study over hMAO-A revealed an excellent selectivity index of compound 5 (SI > 2375) with a 47-fold increase compared to rasagiline (II, a well-known MAO-B inhibitor, SI > 50). A further kinetic evaluation of compound 5 over hMAO-B showed a reversible and competitive mode of inhibition with Ki value of 7 nM. Highly effective permeability and high CNS bioavailability of compound 5 with Pe = 54.49 × 10-6 cm/s were demonstrated. Compound 5 also exhibited a low cytotoxicity profile and a promising neuroprotective effect against the 6-hydroxydopamine-induced neuronal cell damage in PC12 cells, which was more effective than that of rasagiline. Docking simulations on both hMAO-B and hMAO-A supported the in vitro data and served as further molecular evidence. Accordingly, we report the discovery of compound 5 as one of the most potent indole-based MAO-B inhibitors to date which is noteworthy to be further evaluated as a promising agent for PD treatment.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Hyeon Jeong Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Mohamed H Elsherbeny
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza 12566, Egypt
| | - Sora Paik
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Lizaveta Gotina
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Magda H Abdellattif
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Noha A Gouda
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Jungsook Cho
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
6
|
Sung JH. Multi-organ-on-a-chip for pharmacokinetics and toxicokinetic study of drugs. Expert Opin Drug Metab Toxicol 2021; 17:969-986. [PMID: 33764248 DOI: 10.1080/17425255.2021.1908996] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Accurate prediction of pharmacokinetic (PK) and toxicokinetics (TK) of drugs is imperative for successful development of new pharmaceutics. Although conventional in vitro methods for predicting the PK and TK of drugs are well established, limitations still exist and more advanced chip-based in vitro platforms combined with mathematical models can help researchers overcome the limitations. Areas covered: We will review recent progress in the development of multi-organ-on-a-chip platforms for predicting PK and TK of drugs, as well as mathematical approaches that can be combined with these platforms for experiment design, data analysis and in vitro-in vivo extrapolation (IVIVE) for application to humans. Expert opinion: Although there remain some challenges to be addressed, the remarkable progress in the area of multi-organ-on-a-chip in recent years indicate that we will see tangible outcomes that can be utilized in the pharmaceutical industry in near future.
Collapse
Affiliation(s)
- Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul, sejong, Republic of Korea
| |
Collapse
|
7
|
Huang S, Huang Y, Yin X, Wang D, Xiang W, Wang M, Xia Z. Development of Ussing model coupled with artificial membrane for predicting intestinal absorption mechanisms of drugs. Int J Pharm 2020; 579:119170. [DOI: 10.1016/j.ijpharm.2020.119170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 10/25/2022]
|
8
|
Komesli Y, Burak Ozkaya A, Ugur Ergur B, Kirilmaz L, Karasulu E. Design and development of a self-microemulsifying drug delivery system of olmesartan medoxomil for enhanced bioavailability. Drug Dev Ind Pharm 2019; 45:1292-1305. [DOI: 10.1080/03639045.2019.1607868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yelda Komesli
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Ali Burak Ozkaya
- Department of Medical Biochemistry, Faculty of Medicine, Izmir University of Economics, Izmir, Turkey
| | - Bekir Ugur Ergur
- Department of Basic Medicine Sciences, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Levent Kirilmaz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Ercument Karasulu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| |
Collapse
|
9
|
(Pyrrolo-pyridin-5-yl)benzamides: BBB permeable monoamine oxidase B inhibitors with neuroprotective effect on cortical neurons. Eur J Med Chem 2019; 162:793-809. [DOI: 10.1016/j.ejmech.2018.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 01/06/2023]
|
10
|
A comparison of the in vitro permeation of niacinamide in mammalian skin and in the Parallel Artificial Membrane Permeation Assay (PAMPA) model. Int J Pharm 2018; 556:142-149. [PMID: 30529662 DOI: 10.1016/j.ijpharm.2018.11.065] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 11/23/2022]
Abstract
The in vitro skin penetration of pharmaceutical or cosmetic ingredients is usually assessed in human or animal tissue. However, there are ethical and practical difficulties associated with sourcing these materials; variability between donors may also be problematic when interpreting experimental data. Hence, there has been much interest in identifying a robust and high throughput model to study skin permeation that would generate more reproducible results. Here we investigate the permeability of a model active, niacinamide (NIA), in (i) conventional vertical Franz diffusion cells with excised human skin or porcine skin and (ii) a recently developed Parallel Artificial Membrane Permeation Assay (PAMPA) model. Both finite and infinite dose conditions were evaluated in both models using a series of simple NIA solutions and one commercial preparation. The Franz diffusion cell studies were run over 24 h while PAMPA experiments were conducted for 2.5 h. A linear correlation between both models was observed for the cumulative amount of NIA permeated in tested models under finite dose conditions. The corresponding correlation coefficients (r2) were 0.88 for porcine skin and 0.71 for human skin. These results confirm the potential of the PAMPA model as a useful screening tool for topical formulations. Future studies will build on these findings and expand further the range of actives investigated.
Collapse
|
11
|
Shokry DS, Waters LJ, Parkes GMB, Mitchell JC, Snowden MJ. Formation of a Bile Salt-Drug Hydrogel to Predict Human Intestinal Absorption. J Pharm Sci 2018; 108:279-287. [PMID: 30321545 DOI: 10.1016/j.xphs.2018.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/16/2022]
Abstract
The unique character of bile salts to self-assemble into hydrogels in the presence of halide salts was exploited in this work to facilitate the prediction of human intestinal absorption (%HIA) for a set of 25 compounds. This was achieved by firstly incorporating each compound separately within the process of gel formation to create a series of gel-drug membranes. Scanning electron microscopy analysis of the freeze-dried samples of the blank bile salt hydrogels and drug-loaded bile salt hydrogels indicated a unique microstructure made of a network of intertwined fibrils. Drug-loaded sodium deoxycholate hydrogels were then utilized as the donor phase to study permeability using flow-through and static diffusion cells. The resulting values of the release-permeability coefficient (Kp) were then analyzed, along with other molecular descriptors, for the %HIA using multiple linear regression. Overall, when comparing predicted values (using the systems presented in this study) with known literature values, it can be seen that both methods (i.e., using static and flow-through cells) had good predictability with R2PRED values of 79.8% and 79.7%, respectively. This study therefore proposes a novel, accurate, and precise way to predict HIA for compounds of pharmaceutical interest using a simple in vitro permeation system. It is important to develop alternatives to the current methods used in prediction of HIA, which are expensive and time-consuming or include the use of animals. Therefore, the proposed method in this study being economic and time-saving provides superiority over these current methods and suggests the possibility of its use as an alternate to such methods for prediction of HIA.
Collapse
Affiliation(s)
- Dina S Shokry
- Faculty of Engineering and Science, Medway Centre for Formulation Science, University of Greenwich, Chatham, Kent ME4 4TB, UK
| | - Laura J Waters
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
| | - Gareth M B Parkes
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - John C Mitchell
- Faculty of Engineering and Science, Medway Centre for Formulation Science, University of Greenwich, Chatham, Kent ME4 4TB, UK
| | - Martin J Snowden
- Faculty of Engineering and Science, Medway Centre for Formulation Science, University of Greenwich, Chatham, Kent ME4 4TB, UK
| |
Collapse
|
12
|
Crystal structures, binding interactions, and ADME evaluation of brain penetrant N -substituted indazole-5-carboxamides as subnanomolar, selective monoamine oxidase B and dual MAO-A/B inhibitors. Eur J Med Chem 2017; 127:470-492. [DOI: 10.1016/j.ejmech.2017.01.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/21/2016] [Accepted: 01/08/2017] [Indexed: 12/20/2022]
|
13
|
Billat PA, Roger E, Faure S, Lagarce F. Models for drug absorption from the small intestine: where are we and where are we going? Drug Discov Today 2017; 22:761-775. [PMID: 28115264 DOI: 10.1016/j.drudis.2017.01.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/12/2016] [Accepted: 01/13/2017] [Indexed: 02/07/2023]
Abstract
The small intestine is a complex organ with movements, flora, mucus and flows. Despite this, the most widely used absorption models consider the organ a cylindrical monoepithelial tube. This review presents the recent evolution of models to take into consideration the complex nature of gut physiology. The most commonly encountered issues are ethical (in vivo models) and differences in drug transport as a result of a modified expression of drug transporters or metabolic enzymes compared with human (in vitro and in vivo models). Finally, this review discusses the way forward to reach an ideal equilibrium between reproducibility, predictability and efficiency for predicting permeability. The features of an ideal model are listed as a guideline for future development.
Collapse
Affiliation(s)
- Pierre-André Billat
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, France
| | - Emilie Roger
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, France
| | - Sébastien Faure
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, France
| | - Frédéric Lagarce
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, France; Pharmacy Department, Angers University Hospital, Angers, France.
| |
Collapse
|
14
|
Bujard A, Petit C, Carrupt PA, Rudaz S, Schappler J. HDM-PAMPA to predict gastrointestinal absorption, binding percentage, equilibrium and kinetics constants with human serum albumin and using 2 end-point measurements. Eur J Pharm Sci 2017; 97:143-150. [DOI: 10.1016/j.ejps.2016.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/12/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
|
15
|
Waters LJ, Shokry DS, Parkes GM. Predicting human intestinal absorption in the presence of bile salt with micellar liquid chromatography. Biomed Chromatogr 2016; 30:1618-24. [DOI: 10.1002/bmc.3731] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/22/2016] [Accepted: 03/29/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Laura J. Waters
- School of Applied Sciences; University of Huddersfield; Queensgate Huddersfield HD1 3DH UK
| | - Dina S. Shokry
- School of Applied Sciences; University of Huddersfield; Queensgate Huddersfield HD1 3DH UK
| | - Gareth M.B. Parkes
- School of Applied Sciences; University of Huddersfield; Queensgate Huddersfield HD1 3DH UK
| |
Collapse
|
16
|
Bujard A, Voirol H, Carrupt PA, Schappler J. Modification of a PAMPA model to predict passive gastrointestinal absorption and plasma protein binding. Eur J Pharm Sci 2015; 77:273-8. [PMID: 26118348 DOI: 10.1016/j.ejps.2015.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/05/2015] [Accepted: 06/24/2015] [Indexed: 01/17/2023]
Abstract
The Parallel Artificial Membrane Permeability Assay (PAMPA) is a well-known high throughput screening (HTS) technique for predicting in vivo passive absorption. In this technique, two compartments are separated by an artificial membrane that mimics passive permeability through biological membranes such as the dermal layer, the gastrointestinal tract (GIT), and the blood brain barrier (BBB). In the present study, a hexadecane artificial membrane (HDM)-PAMPA was used to predict the binding of compounds towards the human plasma using a mixture of human serum albumin (HSA) and alpha-1-acid glycoprotein (AGP). The ratio of HSA and AGP was equivalent to that found in the human plasma for both proteins (∼20:1). A pH gradient (5.0-7.4) was performed to increase the screening capacity and overcome the issue of passive permeability for acidic and amphoteric compounds. With this assay, the prediction of passive GIT absorption was maintained and the compounds were discriminated according to their permeability (on a no-to-high scale). The plasma protein binding (PPB) was estimated via the correlation of the differences between the amount of compound crossing the artificial membrane in assays conducted with and without protein using only a two end-point measurement. The use of a mixture of HSA and AGP to modulate drug permeation was compared to the use of the same concentrations of HSA and AGP used separately. The addition of HSA alone in the acceptor compartment was sufficient for estimating PPB, while it was demonstrated that AGP alone could enable the estimation of AGP binding.
Collapse
Affiliation(s)
- Alban Bujard
- School of Pharmaceutical Sciences, EPGL, University of Geneva, 30 Quai Ernest Ansermet, CH 1211 Geneva 4, Switzerland
| | - Hervé Voirol
- School of Pharmaceutical Sciences, EPGL, University of Geneva, 30 Quai Ernest Ansermet, CH 1211 Geneva 4, Switzerland
| | - Pierre-Alain Carrupt
- School of Pharmaceutical Sciences, EPGL, University of Geneva, 30 Quai Ernest Ansermet, CH 1211 Geneva 4, Switzerland
| | - Julie Schappler
- School of Pharmaceutical Sciences, EPGL, University of Geneva, 30 Quai Ernest Ansermet, CH 1211 Geneva 4, Switzerland.
| |
Collapse
|