1
|
Li S, Feng K, Lee J, Gong Y, Wu F, Newman B, Yoon M, Fang L, Zhao L, Gobburu JVS. Pharmacokinetic Models for Inhaled Fluticasone Propionate and Salmeterol Xinafoate to Quantify Batch-to-Batch Variability. AAPS J 2024; 26:56. [PMID: 38671158 DOI: 10.1208/s12248-024-00913-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Advair Diskus is an essential treatment for asthma and chronic obstructive pulmonary disease. It is a dry powder inhaler with a combination of fluticasone propionate (FP) and salmeterol xinafoate (SX). However, the pharmacokinetics (PK) batch-to-batch variability of the reference-listed drug (RLD) hindered its generic product development. This work developed the PK models for inhaled FP and SX that could represent potential batch variability. Two batches each of the reference and the test product (R1, R2, T1, T2) of Advair Diskus (100 μg FP/50 μg SX inhalation) were administered to 60 healthy subjects in a 4-period, 4-sequence crossover study. The failure of the bioequivalence (BE) between R1 and R2 confirmed the high between-batch variability of the RLD. Non-linear mixed effect modeling was used to estimate the population mean PK parameters for each batch. For FP, a 2-compartment model with a sequential dual zero-order absorption best described the PK profile. For SX, a 2-compartment model with a first-order absorption model best fit the data. Both models were able to capture the plasma concentration, the maximum concentration, and the total exposure (AUCinf) adequately for each batch, which could be used to simulate the BE study in the future. In vitro properties were also measured for each batch, and the batch with a higher fraction of the fine particle (diameter < 1 µm, < 2 µm) had a higher AUCinf. This positive correlation for both FP and SX could potentially assist the batch selection for the PK BE study.
Collapse
Affiliation(s)
- Shuhui Li
- Center for Translational Medicine, School of Pharmacy, University of Maryland, 20 North Pine Street, Baltimore, Maryland, 21201, USA
| | - Kairui Feng
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Jieon Lee
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Yuqing Gong
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Fang Wu
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Bryan Newman
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Miyoung Yoon
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Lanyan Fang
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Liang Zhao
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Jogarao V S Gobburu
- Center for Translational Medicine, School of Pharmacy, University of Maryland, 20 North Pine Street, Baltimore, Maryland, 21201, USA.
| |
Collapse
|
2
|
Drescher SK, Jiao Y, Chen MJ, Kurumaddali A, Shao J, Amini E, Hochhaus G, Bulitta JB. Central and peripheral lung deposition of fluticasone propionate dry powder inhaler formulations in humans characterized by population pharmacokinetics. Pharm Res 2023; 40:1177-1191. [PMID: 37081302 PMCID: PMC10686290 DOI: 10.1007/s11095-023-03472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/12/2023] [Indexed: 04/22/2023]
Abstract
This study aimed to gain an in-depth understanding of the pulmonary fate of three experimental fluticasone propionate (FP) dry powder inhaler formulations which differed in mass median aerodynamic diameters (MMAD; A-4.5 µm, B-3.8 µm and C-3.7 µm; total single dose: 500 µg). Systemic disposition parameter estimates were obtained from published pharmacokinetic data after intravenous dosing to improve robustness. A biphasic pulmonary absorption model, with mucociliary clearance from the slower absorption compartment, and three systemic disposition compartments was most suitable. Rapid absorption, presumably from peripheral lung, had half-lives of 6.9 to 14.6 min. The peripherally deposited dose (12.6 µg) was significantly smaller for formulation A-4.5 µm than for the other formulations (38.7 and 39.3 µg for B-3.8 µm and C-3.7 µm). The slow absorption half-lives ranged from 6.86 to 9.13 h and were presumably associated with more central lung regions, where mucociliary clearance removed approximately half of the centrally deposited dose. Simulation-estimation studies showed that a biphasic absorption model could be reliably identified and that parameter estimates were unbiased and reasonably precise. Bioequivalence assessment of population pharmacokinetics derived central and peripheral lung doses suggested that formulation A-4.5 µm lacked bioequivalence compared to the other formulations both for central and peripheral doses. In contrast, the other fomulations were bioequivalent. Overall, population pharmacokinetics holds promise to provide important insights into the pulmonary fate of inhalation drugs, which are not available from non-compartmental analysis. This supports the assessment of the pulmonary bioequivalence of fluticasone propionate inhaled formulations through pharmacokinetic approaches, and may be helpful for discussions on evaluating alternatives to clinical endpoint studies.
Collapse
Affiliation(s)
- Stefanie K Drescher
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Box 100494, Gainesville, FL, 32610, USA
| | - Yuanyuan Jiao
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, 6550 Sanger Road, Orlando, FL, 32827, USA
| | - Mong-Jen Chen
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Box 100494, Gainesville, FL, 32610, USA
| | - Abhinav Kurumaddali
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Box 100494, Gainesville, FL, 32610, USA
| | - Jie Shao
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Box 100494, Gainesville, FL, 32610, USA
| | - Elham Amini
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Box 100494, Gainesville, FL, 32610, USA
| | - Günther Hochhaus
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Box 100494, Gainesville, FL, 32610, USA.
| | - Jürgen B Bulitta
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, 6550 Sanger Road, Orlando, FL, 32827, USA.
| |
Collapse
|
3
|
Himstedt A, Braun C, Wicha SG, Borghardt JM. Understanding the suitability of established antibiotics for oral inhalation from a pharmacokinetic perspective: an integrated model-based investigation based on rifampicin, ciprofloxacin and tigecycline in vivo data. J Antimicrob Chemother 2022; 77:2922-2932. [PMID: 35904005 DOI: 10.1093/jac/dkac240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/16/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Treating pulmonary infections by administering drugs via oral inhalation represents an attractive alternative to usual routes of administration. However, the local concentrations after inhalation are typically not known and the presumed benefits are derived from experiences with drugs specifically optimized for inhaled administration. OBJECTIVES A physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model was developed to elucidate the pulmonary PK for ciprofloxacin, rifampicin and tigecycline and link it to bacterial PK/PD models. An exemplary sensitivity analysis was performed to potentially guide drug optimization regarding local efficacy for inhaled antibiotics. METHODS Detailed pulmonary tissue, endothelial lining fluid and systemic in vivo drug concentration-time profiles were simultaneously measured for all drugs in rats after intravenous infusion. Using this data, a PBPK/PD model was developed, translated to humans and adapted for inhalation. Simulations were performed comparing potential benefits of oral inhalation for treating bronchial infections, covering intracellular pathogens and bacteria residing in the bronchial epithelial lining fluid. RESULTS The PBPK/PD model was able to describe pulmonary PK in rats. Often applied optimization parameters for orally inhaled drugs (e.g. high systemic clearance and low oral bioavailability) showed little influence on efficacy and instead mainly increased pulmonary selectivity. Instead, low permeability, a high epithelial efflux ratio and a pronounced post-antibiotic effect represented the most impactful parameters to suggest a benefit of inhalation over systemic administration for locally acting antibiotics. CONCLUSIONS The present work might help to develop antibiotics for oral inhalation providing high pulmonary concentrations and fast onset of exposure coupled with lower systemic drug concentrations.
Collapse
Affiliation(s)
- Anneke Himstedt
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany.,Research DMPK, Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Clemens Braun
- Research DMPK, Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Sebastian Georg Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| | - Jens Markus Borghardt
- Research DMPK, Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| |
Collapse
|
4
|
Assessment of the predictive capability of modelling and simulation to determine bioequivalence of inhaled drugs: A systematic review. Daru 2022; 30:229-243. [PMID: 35094370 PMCID: PMC9114201 DOI: 10.1007/s40199-021-00423-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 10/18/2021] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES There are a multitude of different modelling techniques that have been used for inhaled drugs. The main objective of this review was to conduct an exhaustive survey of published mathematical models in the area of asthma and chronic obstructive pulmonary disease (COPD) for inhalation drugs. Additionally, this review will attempt to assess the applicability of these models to assess bioequivalence (BE) of orally inhaled products (OIPs). EVIDENCE ACQUISITION PubMed, Science Direct, Web of Science, and Scopus databases were searched from 1996 to 2020, to find studies that described mathematical models used for inhaled drugs in asthma/COPD. RESULTS 50 articles were finally included in this systematic review. This research identified 22 articles on in silico aerosol deposition models, 20 articles related to population pharmacokinetics and 8 articles on physiologically based pharmacokinetic modelling (PBPK) modelling for inhaled drugs in asthma/COPD. Among all the aerosol deposition models, computational fluid dynamics (CFD) simulations are more likely to predict regional aerosol deposition pattern in human respiratory tracts. Across the population PK articles, body weight, gender, age and smoking status were the most common covariates that were found to be significant. Further, limited published PBPK models reported approximately 29 parameters relevant for absorption and distribution of inhaled drugs. The strengths and weaknesses of each modelling technique has also been reviewed. CONCLUSION Overall, while there are different modelling techniques that have been used for inhaled drugs in asthma and COPD, there is very limited application of these models for assessment of bioequivalence of OIPs. This review also provides a ready reference of various parameters that have been considered in various models which will aid in evaluation if one model or hybrid in silico models need to be considered when assessing bioequivalence of OIPs.
Collapse
|
5
|
Chen W, Ruan Z, Chen J, Yang D, Shao R, Lou H, Jiang B. On the population pharmacokinetics and the enterohepatic recirculation of hyzetimibe and its main metabolite in Chinese healthy subjects. Br J Clin Pharmacol 2021; 88:3153-3161. [PMID: 34931372 DOI: 10.1111/bcp.15187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/16/2021] [Accepted: 11/27/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUNDS Hyzetimibe (HS-25), a new drug approved for hypercholesterolemia, exhibits obvious enterohepatic recirculation (EHC) after oral administration. Up to now, little is known about the kinetics of HS-25. Therefore, we performed this population pharmacokinetic (PopPK) analysis aiming to describe the PK behavior of HS-25 and its main metabolite (M1), and to identify significant covariates contributing to the variability. METHODS The plasma concentration data used for modeling were obtained from an open-label, single-dose, randomized, two-period crossover bioequivalence study. PopPK modeling was performed with NONMEM 7.4.1 using nonlinear mixed effect modeling approach. Goodness of fit plots, bootstrap and visual predictive check were used for model internal validation. Data from another study was used for external validation. RESULTS Data from 16 male and 8 female subjects were used in the PopPK analysis. HS-25 and M1 concentrations in the modeling cohort were well described by a one-compartment model incorporating first-pass metabolism and a gallbladder compartment, accounting for the EHC process. The release kinetic of gall was mimicked by a first-order constant plus a switch on/off effect. Body weight was identified as a significant covariate effecting on the clearance and apparent distribution volume of HS-25, as well as kmg , the transfer rate from metabolite compartment to gallbladder compartment. Internal and external validation demonstrated an acceptable predictive ability of the final model. CONCLUSIONS We present the first PopPK model describing HS-25 and M1 concentrations simultaneously, with the EHC process considered. The modeling and simulation results could provide reference for the clinical use of HS-25.
Collapse
Affiliation(s)
- Wenjun Chen
- Center of Clinical Pharmacology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zourong Ruan
- Center of Clinical Pharmacology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jinliang Chen
- Center of Clinical Pharmacology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Dandan Yang
- Center of Clinical Pharmacology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Rong Shao
- Center of Clinical Pharmacology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Honggang Lou
- Center of Clinical Pharmacology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Jiang
- Center of Clinical Pharmacology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Revising Pharmacokinetics of Oral Drug Absorption: II Bioavailability-Bioequivalence Considerations. Pharm Res 2021; 38:1345-1356. [PMID: 34341958 DOI: 10.1007/s11095-021-03078-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE To explore the application of the parameters of the physiologically based finite time pharmacokinetic (PBFTPK) models subdivided in first-order (PBFTPK)1 and zero-order (PBFTPK)0 models to bioavailability and bioequivalence. To develop a methodology for the estimation of absolute bioavailability, F, from oral data exclusively. METHODS Simulated concentration time data were generated from the Bateman equation and compared with data generated from the (PBFTPK)1 and (PBFTPK)0 models. The blood concentration Cb(τ) at the end of the absorption process τ, was compared to Cmax; the utility of [Formula: see text] and [Formula: see text] in bioequivalence assessment was also explored. Equations for the calculation of F from oral data were derived for the (PBFTPK)1 and (PBFTPK)0 models. An estimate for F was also derived from an areas proportionality using oral data exclusively. RESULTS The simulated data of the (PBFTPK)0 models exhibit rich dynamics encountered in complex drug absorption phenomena. Both (PBFTPK)1 and (PBFTPK)0 models result either in Cmax = Cb(τ) or Cmax > Cb(τ) for rapidly- and not rapidly-absorbed drugs, respectively; in the latter case, Cb(τ) and τ are meaningful parameters for drug's rate of exposure. For both (PBFTPK)1 and (PBFTPK)0 models, [Formula: see text] or portions of it cannot be used as early exposure rate indicators. [Formula: see text] is a useful parameter for the assessment of extent of absorption for very rapidly absorbed drugs. An estimate for F for theophylline formulations was found close to unity. CONCLUSION The (PBFTPK)1 and (PBFTPK)0 models are more akin to in vivo conditions. Estimates for F can be derived from oral data exclusively.
Collapse
|
7
|
Sakellariou P, Petrou M, Lyris E, Tsivou M, Fragkaki A, Kiousi P, Angelis YS, Pistos C. Determination of salmeterol, α-hydroxysalmeterol and fluticasone propionate in human urine and plasma for doping control using UHPLC-QTOF-MS. Biomed Chromatogr 2021; 35:e5114. [PMID: 33720401 DOI: 10.1002/bmc.5114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 01/03/2023]
Abstract
Salmeterol and fluticasone are included in the Prohibited List annually issued by the World Anti-Doping Agency. While for other permitted beta-2 agonists a threshold has been established, above which any finding constitutes an Adverse Analytical Finding, this is not the case with salmeterol. The salmeterol metabolite, α-hydroxysalmeterol, has been described as a potentially more suitable biomarker for the misuse of inhaled salmeterol. In this study, a new and rapid UHPLC-QTOF-MS method was developed and validated for the simultaneous quantification of salmeterol, α-hydroxysalmeterol and fluticasone in human urine and plasma, which can be used for doping control. The analytes of interest were extracted by means of solid phase extraction and were separated on a Zorbax Eclipse Plus C18 column. Detection was performed in a quadrupole time-of-flight mass spectrometer equipped with an electrospray ionization source, in positive mode for the detection of salmeterol and its metabolite and in negative mode for the detection of fluticasone. Method was validated over a linear range from 0.10 to 2.00 ng/ml for salmeterol and fluticasone, and from 1.00 to 20.0 ng/ml for α-hydroxysalmeterol, in urine, whereas in plasma, the linear range was from 0.025 to 0.500 ng/ml for salmeterol and fluticasone, respectively.
Collapse
Affiliation(s)
- Panagiotis Sakellariou
- Doping Control Laboratory of Athens, Institute of Biosciences and Applications, National Centre for Scientific Resarch "Demokritos", Maroussi, Greece.,Faculty of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Petrou
- Cyprus Anti-Doping Authority, Nicosia, Cyprus.,University of Nicosia, Nicosia, Cyprus
| | - Emmanouil Lyris
- Doping Control Laboratory of Athens, Institute of Biosciences and Applications, National Centre for Scientific Resarch "Demokritos", Maroussi, Greece
| | - Maria Tsivou
- Dopingkontroll-Labor, Chemical Analytics Seibersdorf Labor GmbH, Seibersdorf, Austria
| | - Argyro Fragkaki
- Doping Control Laboratory of Athens, Institute of Biosciences and Applications, National Centre for Scientific Resarch "Demokritos", Maroussi, Greece
| | - Polyxeni Kiousi
- Doping Control Laboratory of Athens, Institute of Biosciences and Applications, National Centre for Scientific Resarch "Demokritos", Maroussi, Greece
| | - Yiannis S Angelis
- Doping Control Laboratory of Athens, Institute of Biosciences and Applications, National Centre for Scientific Resarch "Demokritos", Maroussi, Greece
| | - Constantinos Pistos
- Department of Chemistry, West Chester University of Pennsylvania, West Chester, PA, USA
| |
Collapse
|
8
|
Desoqi MH, El-Sawy HS, Kafagy E, Ghorab M, Gad S. Fluticasone propionate-loaded solid lipid nanoparticles with augmented anti-inflammatory activity: optimisation, characterisation and pharmacodynamic evaluation on rats. J Microencapsul 2021; 38:177-191. [PMID: 33583315 DOI: 10.1080/02652048.2021.1887383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This work aimed to elaborate an optimised fluticasone propionate (FP)-loaded solid lipid nanoparticles (SLNs) to enhance FP effectiveness for topical inflammatory remediation. The influences of drug amount, lipid, and surfactant ratios, on drug release pattern and stability were investigated utilising Box-Behnken design. Elaboration, characterisation, and pharmacodynamic evaluation in comparison with the marketed formulation (Cutivate® cream, 0.05%w/w FP), were conducted for the optimised SLNs. The optimised SLNs with a size of 248.3 ± 1.89 nm (PDI = 0.275) and -32.4 ± 2.85 mV zeta potential were evidenced good stability physiognomies. The optimised SLNs pre-treated rats exhibited non-significant difference in paw volume from that of the control group and showed a significant reduction in both PGE2 and TNF-α levels by 51.5 and 61%, respectively, in comparison with the Carrageenan group. The optimised FP-loaded SLNs maximised the efficacy of FP towards inflammation alleviation that increase its potential as efficient implement in inflammatory skin diseases remediation.
Collapse
Affiliation(s)
- Mohamed H Desoqi
- Pharmacy Department, The Armed Forces Medical Complex, Al Qobry El Qoba, Ministry of Defence, Cairo, Egypt
| | - Hossam S El-Sawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Elsayed Kafagy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Mamdouh Ghorab
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Shadeed Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
9
|
Jessen S, Becker V, Rzeppa S, Backer V, Bengtsen KH, Hullstein I, Dehnes Y, Hostrup M. Pharmacokinetics of salmeterol and its main metabolite α-hydroxysalmeterol after acute and chronic dry powder inhalation in exercising endurance-trained men: Implications for doping control. Drug Test Anal 2020; 13:747-761. [PMID: 33210444 DOI: 10.1002/dta.2978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/22/2020] [Accepted: 11/12/2020] [Indexed: 01/30/2023]
Abstract
As of 2020, use of beta2 -agonist salmeterol is restricted by the World Anti-Doping Agency (WADA) and is only permitted by inhalation at therapeutic doses not exceeding 200 μg in 24 h. In contrast to beta2 -agonists salbutamol and formoterol, WADA has not established a urine threshold for salmeterol despite its muscle hypertrophic actions observed in animals. Herein, we investigated plasma (0-4 h) and urine (0-24 h) concentrations (by ultra-high-performance liquid chromatography-tandem mass spectrometry [UHPLC-MS/MS]) of salmeterol and α-hydroxysalmeterol after dry powder inhalation at supratherapeutic (400 μg) and high therapeutic (200 μg) doses, and after seven consecutive days of therapeutic inhalation (200 μg × day-1 ) in 11 healthy endurance-trained men. During each trial, participants inhaled salmeterol before 1½ h moderate-intensity cycling. Mean ± SD maximum urine concentrations of salmeterol unadjusted for specific gravity reached 4.0 ± 1.6, 2.1 ± 1.5, and 2.2 ± 1.1 ng × ml-1 for 400 μg, 200 μg, and seven consecutive days of 200 μg, respectively, with corresponding maximum urine concentrations of α-hydroxysalmeterol being 11.6 ± 6.1, 5.7 ± 4.6, and 6.5 ± 2.6 ng × ml-1 . Within the relevant window for doping control (first 6 h post-inhalation), the present data (119 samples), along with 64 biobank urine samples, showed that a combined salmeterol and α-hydroxysalmeterol urine threshold with equal cut-offs of 3.3 ng × ml-1 was superior to a salmeterol-only threshold to discriminate therapeutic (200 μg) from supratherapeutic use (400 μg) with a sensitivity of 24% with 0% false positives when applying the WADA technical document (TD2019DL.v2) method of specific gravity adjustment. Thus, a combination of urine salmeterol and α-hydroxysalmeterol concentrations may be suitable for discriminating between therapeutic and supratherapeutic prohibited inhalation of salmeterol.
Collapse
Affiliation(s)
- Søren Jessen
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Victoria Becker
- Department of Respiratory Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Sebastian Rzeppa
- Norwegian Doping Control Laboratory, Oslo University Hospital, Oslo, Norway
| | - Vibeke Backer
- Centre for Physical Activity Research, Rigshospitalet and Copenhagen University, Copenhagen, Denmark
| | - Kasper Høtoft Bengtsen
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Ingunn Hullstein
- Norwegian Doping Control Laboratory, Oslo University Hospital, Oslo, Norway
| | - Yvette Dehnes
- Norwegian Doping Control Laboratory, Oslo University Hospital, Oslo, Norway
| | - Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Himstedt A, Braun C, Wicha SG, Borghardt JM. Towards a Quantitative Mechanistic Understanding of Localized Pulmonary Tissue Retention-A Combined In Vivo/In Silico Approach Based on Four Model Drugs. Pharmaceutics 2020; 12:E408. [PMID: 32365674 PMCID: PMC7284631 DOI: 10.3390/pharmaceutics12050408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 01/25/2023] Open
Abstract
Increasing affinity to lung tissue is an important strategy to achieve pulmonary retention and to prolong the duration of effect in the lung. As the lung is a very heterogeneous organ, differences in structure and blood flow may influence local pulmonary disposition. Here, a novel lung preparation technique was employed to investigate regional lung distribution of four drugs (salmeterol, fluticasone propionate, linezolid, and indomethacin) after intravenous administration in rats. A semi-mechanistic model was used to describe the observed drug concentrations in the trachea, bronchi, and the alveolar parenchyma based on tissue specific affinities (Kp) and blood flows. The model-based analysis was able to explain the pulmonary pharmacokinetics (PK) of the two neutral and one basic model drugs, suggesting up to six-fold differences in Kp between trachea and alveolar parenchyma for salmeterol. Applying the same principles, it was not possible to predict the pulmonary PK of indomethacin, indicating that acidic drugs might show different pulmonary PK characteristics. The separate estimates for local Kp, tracheal and bronchial blood flow were reported for the first time. This work highlights the importance of lung physiology- and drug-specific parameters for regional pulmonary tissue retention. Its understanding is key to optimize inhaled drugs for lung diseases.
Collapse
Affiliation(s)
- Anneke Himstedt
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, 20146 Hamburg, Germany;
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany;
| | - Clemens Braun
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany;
| | - Sebastian Georg Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, 20146 Hamburg, Germany;
| | - Jens Markus Borghardt
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany;
| |
Collapse
|
11
|
Prospective evAluatIon foR inhalation devices in Greek patients with COPD and asthma: The PAIR study. Pulm Pharmacol Ther 2019; 60:101882. [PMID: 31881275 DOI: 10.1016/j.pupt.2019.101882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) and asthma remain a major health burden. Adherence to inhaled therapy is critical in order to optimize treatment effectiveness. Properly designed questionnaires can assess patients' satisfaction with their inhaler devices. PATIENTS AND METHODS A total of 766 patients with COPD, asthma or Asthma-COPD Overlap (ACO) were initially enrolled. During their first visit, patients were classified into three groups (Diskus™, Elpenhaler®, Turbuhaler®). Patients completed the FSI-10 questionnaire on Day 0 and Day 60. Test-retest reliability was evaluated. RESULTS A total of 705 patients completed the study. FSI-10 questionnaire had good test-retest reliability (Total Intraclass Correlation Coefficient: 0.86). All dry powder inhaler (DPIs) yielded satisfactory results. Median score of FSI-10 questionnaire in first visit (FSI-10-I) was significantly higher for patients receiving Elpenhaler® (45, 95% CI: 44 to 46) than patients receiving Diskus™ (42, 95% CI: 41 to 43) and Turbuhaler® (42, 95% CI: 41 to 43) (p < 0.001). Accordingly, median score of FSI-10 questionnaire in the final visit (FSI-10-II) was significantly higher for patients receiving Elpenhaler® (46, 95% CI: 45 to 47) than patients receiving Diskus™ (42, 95% CI: 41 to 43) and Turbuhaler® (43, 95% CI: 42 to 44) (p < 0.001). CONCLUSION FSI-10 questionnaire had good test-retest reliability and thus can be used in the follow-up of patients with COPD, asthma and ACO. All DPIs were highly acceptable among all study groups. Elpenhaler® achieved significantly higher ratings than Diskus™ and Turbuhaler® in FSI-10 score and presented higher preference among patients with obstructive lung diseases.
Collapse
|
12
|
Gojda J, Waldauf P, Hrušková N, Blahutová B, Krajčová A, Urban T, Tůma P, Řasová K, Duška F. Lactate production without hypoxia in skeletal muscle during electrical cycling: Crossover study of femoral venous-arterial differences in healthy volunteers. PLoS One 2019; 14:e0200228. [PMID: 30822305 PMCID: PMC6396965 DOI: 10.1371/journal.pone.0200228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 02/11/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Aim of the study was to compare metabolic response of leg skeletal muscle during functional electrical stimulation-driven unloaded cycling (FES) to that seen during volitional supine cycling. METHODS Fourteen healthy volunteers were exposed in random order to supine cycling, either volitional (10-25-50 W, 10 min) or FES assisted (unloaded, 10 min) in a crossover design. Whole body and leg muscle metabolism were assessed by indirect calorimetry with concomitant repeated measurements of femoral venous-arterial differences of blood gases, glucose, lactate and amino acids. RESULTS Unloaded FES cycling, but not volitional exercise, led to a significant increase in across-leg lactate production (from -1.1±2.1 to 5.5±7.4 mmol/min, p<0.001) and mild elevation of arterial lactate (from 1.8±0.7 to 2.5±0.8 mM). This occurred without widening of across-leg veno-arterial (VA) O2 and CO2 gaps. Femoral SvO2 difference was directly proportional to VA difference of lactate (R2 = 0.60, p = 0.002). Across-leg glucose uptake did not change with either type of exercise. Systemic oxygen consumption increased with FES cycling to similarly to 25W volitional exercise (138±29% resp. 124±23% of baseline). There was a net uptake of branched-chain amino acids and net release of Alanine from skeletal muscle, which were unaltered by either type of exercise. CONCLUSIONS Unloaded FES cycling, but not volitional exercise causes significant lactate production without hypoxia in skeletal muscle. This phenomenon can be significant in vulnerable patients' groups.
Collapse
Affiliation(s)
- Jan Gojda
- Department of Anaesthesia and Intensive Care Medicine, Kralovske Vinohrady University Hospital and The Third Faculty of Medicine, Charles University, Prague, Czech Republic
- 2 Department of Internal Medicine, Kralovske Vinohrady University Hospital and The Third Faculty of Medicine, Charles University, Prague, Czech Republic
- * E-mail:
| | - Petr Waldauf
- Department of Anaesthesia and Intensive Care Medicine, Kralovske Vinohrady University Hospital and The Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Natália Hrušková
- Department of Rehabilitation, Kralovske Vinohrady University Hospital and The Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Barbora Blahutová
- Department of Rehabilitation, Kralovske Vinohrady University Hospital and The Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Adéla Krajčová
- Department of Anaesthesia and Intensive Care Medicine, Kralovske Vinohrady University Hospital and The Third Faculty of Medicine, Charles University, Prague, Czech Republic
- 2 Department of Internal Medicine, Kralovske Vinohrady University Hospital and The Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomáš Urban
- Department of Anaesthesia and Intensive Care Medicine, Kralovske Vinohrady University Hospital and The Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Tůma
- Department of Hygiene, The Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kamila Řasová
- Department of Rehabilitation, Kralovske Vinohrady University Hospital and The Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - František Duška
- Department of Anaesthesia and Intensive Care Medicine, Kralovske Vinohrady University Hospital and The Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
13
|
Soulele K, Karalis V. On the population pharmacokinetics and the enterohepatic recirculation of total ezetimibe. Xenobiotica 2018; 49:446-456. [PMID: 29629619 DOI: 10.1080/00498254.2018.1463117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ezetimibe is a potent cholesterol absorption inhibitor, with an erratic pharmacokinetic (PK) profile, attributed to an extensive enterohepatic recirculation (EHC). The aim of this study was to develop a population PK model able to adequately characterize the complex distribution processes of total ezetimibe. The analysis was performed on the individual concentration-time data obtained from 28 healthy subjects who participated in a bioequivalence study comparing two oral ezetimibe formulations. The population PK analysis was performed using nonlinear mixed effect modeling, where different EHC models were developed and evaluated for their performance. Total ezetimibe pharmacokinetics was best described by a four-compartment model featuring EHC through the inclusion of an additional gallbladder compartment, which was assumed to release drug at specific time-intervals consistent with food intake. The final PK model was able to adequately estimate the population pharmacokinetic parameters and to allow for a formal characterization of the pharmacokinetic profile and the secondary peaks due to enterohepatic recirculation.
Collapse
Affiliation(s)
- Konstantina Soulele
- a Department of Pharmacy, School of Health Sciences , National and Kapodistrian University of Athens , Athens , Greece
| | - Vangelis Karalis
- a Department of Pharmacy, School of Health Sciences , National and Kapodistrian University of Athens , Athens , Greece.,b Institute of Applied and Computational Mathematics (IACM)/Foundation of Research and Technology Hellas (FORTH) , Heraklion, Crete , Greece
| |
Collapse
|
14
|
Soulele K, Macheras P, Karalis V. On the pharmacokinetics of two inhaled budesonide/formoterol combinations in asthma patients using modeling approaches. Pulm Pharmacol Ther 2017; 48:168-178. [PMID: 29223508 DOI: 10.1016/j.pupt.2017.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/27/2017] [Accepted: 12/05/2017] [Indexed: 11/26/2022]
Abstract
Dry powder inhalers containing the budesonide/formoterol combination have currently a well-established position among other inhaled products. Even though their efficacy mainly depends on the local concentrations of the drug they deliver within the lungs, their safety profile is directly related to their total systemic exposure. The aim of the present investigation was to explore the absorption and disposition kinetics of the budesonide/formoterol combination delivered via two different dry powder inhalers in asthma patients. Plasma concentration-time data were obtained from a single-dose, crossover bioequivalence study in asthma patients. Non-compartmental and population compartmental approaches were applied to the available datasets. The non-compartmental analysis allowed for an initial characterization of the primary pharmacokinetic (PK) parameters of the two inhaled drugs and subsequently the bioequivalence assessment of the two different dry powder inhalers. The population pharmacokinetic analysis further explored the complex absorption and disposition characteristics of the two drugs. In case of inhaled FOR, a five-compartment PK model including an enterohepatic re-circulation process was developed. For inhaled BUD, the incorporation of two parallel first-order absorption rate constants (fast and slow) for lung absorption in a two-compartment PK model emphasized the importance of pulmonary anatomical features and underlying physiological processes during model development. The role of potential covariates on the variability of the PK parameters was also investigated.
Collapse
Affiliation(s)
- K Soulele
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 157 84 Athens, Greece.
| | - P Macheras
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 157 84 Athens, Greece; Pharma-Informatics Unit of Research & Innovation Center ATHENA, 151 25 Maroussi, Greece.
| | - V Karalis
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 157 84 Athens, Greece; Institute of Applied and Computational Mathematics (IACM), Foundation of Research and Technology Hellas (FORTH), Greece.
| |
Collapse
|
15
|
Soulele K, Macheras P, Karalis V. Pharmacokinetic analysis of inhaled salmeterol in asthma patients: Evidence from two dry powder inhalers. Biopharm Drug Dispos 2017; 38:407-419. [PMID: 28374512 DOI: 10.1002/bdd.2077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/05/2017] [Accepted: 03/31/2017] [Indexed: 12/24/2022]
Abstract
Salmeterol (SAL) is a long-acting β2-adrenergic agonist, which is widely used in the therapy of asthma. The aim of this study was to investigate the pharmacokinetics (PK) of inhaled salmeterol in asthma patients using two different dry powder inhalers. This analysis was based on data from 45 subjects who participated in a two-sequence, four-period crossover bioequivalence (BE) study after single administration of the test (T) and reference (R) products. In order to mimic more closely the real treatment conditions, activated charcoal was not co-administered. Plasma concentration-time (C-t) data were initially analysed using classic non-compartmental PK approaches, while the main objective of the study was to apply population PK modeling. The relative fraction of the dose absorbed via the lungs (RL ) was set as a parameter in the structural model. The plasma C-t profiles of salmeterol showed a biphasic time course indicating a parallel pulmonary and gastrointestinal (GI) absorption. A two-compartment disposition model with first order absorption from the GI and very rapid absorption from lungs (like an i.v. bolus) was found to describe successfully the C-t profiles of salmeterol. The estimated RL value was 13% suggesting a high gut deposition of inhaled salmeterol. Women were found to exert less capability to eliminate salmeterol than men, while body weight (in allometric form) was found to be an important covariate on the peripheral volume of distribution.
Collapse
Affiliation(s)
- Konstantina Soulele
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, University Campus, Athens, 157 84, Greece
| | - Panos Macheras
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, University Campus, Athens, 157 84, Greece
| | - Vangelis Karalis
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, University Campus, Athens, 157 84, Greece
| |
Collapse
|
16
|
Zervas E, Samitas K, Gaga M. Assessment of satisfaction with different dry powder inhalation devices in Greek patients with COPD and asthma: the ANASA study. Int J Chron Obstruct Pulmon Dis 2016; 11:1845-55. [PMID: 27540287 PMCID: PMC4981170 DOI: 10.2147/copd.s113870] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Poor adherence to inhaled therapy is common in patients with asthma and COPD. An inhaler selection based on patients’ preference could be beneficial to adherence and treatment effectiveness. Properly designed questionnaires can assess patients’ satisfaction with their medication devices. The aim of this study was to estimate, using the Feeling of Satisfaction with Inhaler (FSI-10) questionnaire, the ease of use and satisfaction of patients regarding three different marketed dry powder inhalers (DPIs): Diskus® (DK), Elpenhaler® (EH), and Turbuhaler® (TH). The FSI-10 is a self-completed questionnaire to assess patients’ opinions regarding ease of use, portability, and usability of devices, irrespective of the drug used. Patients and methods We performed a 4-week, open, noninterventional, multicenter, parallel clinical study in 560 asthmatic and 561 COPD patients. During the first visit, patients were classified into three groups according to the DPI they were already using. Patients were regularly receiving their treatments (Seretide DK, Rolenium EH, and Symbicort TH) and agreed to complete the FSI-10 questionnaire in the second visit. Results A total of 517 COPD and 523 asthma patients completed the study. All DPIs tested received satisfactory results, while the EH obtained consistently higher scores in the FSI-10 in both COPD and asthma patients (44.7 and 44.1 vs 41.5 and 43 for TH, 40.8 and 41.4 for DK, P<0.001 and P<0.01, respectively). TH was rated better than DK by asthma patients. Patients suffering with severe COPD tended to express higher feeling of satisfaction than those with moderate or mild disease, irrespective of the device used. Conclusion All DPIs tested were highly acceptable by asthma and COPD patients of different ages; nevertheless, EH received significantly higher ratings in most of the questionnaire domains. COPD patients in advanced stages of the disease generally expressed higher level of satisfaction with their devices.
Collapse
Affiliation(s)
- Eleftherios Zervas
- 7th Respiratory Department and Asthma Center, Athens Chest Hospital "Sotiria", Athens, Greece
| | - Konstantinos Samitas
- 7th Respiratory Department and Asthma Center, Athens Chest Hospital "Sotiria", Athens, Greece
| | - Mina Gaga
- 7th Respiratory Department and Asthma Center, Athens Chest Hospital "Sotiria", Athens, Greece
| |
Collapse
|